用户名: 密码: 验证码:
基于高强度钢板的车身结构设计关键理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量事实表明,高强度钢板已成为颇具竞争力的汽车轻量化材料,它在抗碰撞性能、加工工艺和材料成本方面较其他材料具有较大的优势。由于高强度钢板的力学性能与普通钢板相比差异较大,一方面导致车身板件成形性能变差且容易出现开裂、起皱等缺陷;另一方面回弹量大是高强度钢板在车身上应用时一直没有得到很好解决的主要问题,尺寸精度难以控制,严重影响了汽车产品的装配精度。另外,各种级别的高强度钢板在车身上应该怎样合理地分布,具体到哪些部件可以用高强度钢板替代,不同部件间高强度钢板如何匹配,需要在保证车身结构整体性能不受影响的前提下,有选择的进行替换,以便在满足整车原有性能及降低自重的基础上节约材料成本,发挥合理的材料用于合适部位的优势。
     (1)针对高强度激光拼焊板成形性差的问题,系统地研究了差厚同材、同厚异材、差厚异材三种材料匹配对其成形性能的影响规律及内在机理,包括材料流动、焊缝移动及应变路径的变化等,为车身拼焊板件的选材提供依据。同时针对差厚同材拼焊板,研究了厚/薄两侧压边力分布对其成形极限深度、焊缝移动和危险点应变路径的影响规律,为车身拼焊板件成形的压边力控制提供依据。
     (2)针对高强度激光拼焊板回弹量大的问题,建立了一种以破裂准则而非起皱准则设计的台阶式变压边力,可以在成形件未出现破裂的前提下增大有效塑性应变区域,减小回弹量;以前纵梁拼焊式内板为例,结合随位置和行程变化的变压边力,利用正交试验设计确定了各参数对回弹量大小的影响程度,优化方案表明合理的变压边力参数对高强度拼焊板侧壁和法兰回弹角的控制效果比较显著。
     (3)针对目前汽车抗撞性的CAE分析已经达到相对成熟阶段,模拟精度的继续提高受到多方面制约。在比较一步逆成形法与增量法成形精度的基础上,利用增量法成形和网格映射技术,将成形工艺引起的材料性能变化如厚度减薄、塑性硬化等引入到碰撞仿真分析中,分析了成形效应对单帽形件及整车结构变形、吸能率及加速度等的影响规律,考虑成形效应的仿真结果与实验结果更趋一致,精确碰撞仿真需要考虑成形工艺过程引起的材料性能的变化。
     (4)建立了变形量控制下碰撞仿真过程的理想加速度-位移历程曲线,以此为设计目标进行耐撞性研究,以某款自主品牌SUV车前纵梁为例,建立了前纵梁耐撞性问题的简化模型和拼焊板前纵梁焊缝位置的优化原则,以保证拼焊板前纵梁在碰撞过程中合理的压溃顺序吸收更多的碰撞动能;设计了质量最轻和吸能最优两种优化方案,建立了不同设计方案的数学优化模型,利用试验设计、近似模型及自适应响应面法相结合,得到了符合耐撞性要求的拼焊板轻量化设计优化解。
     (5)在白车身模态实验和实车100%正面碰撞实验验证有限元模型精度的基础上,建立了兼顾效率和精度要求的100%正面碰撞前端吸能结构的简化模型,考虑了材料的变形路径和应变率效应,基于多目标遗传算法得到了轻量化与耐撞性多目标问题的Pareto优化解集,优化后的零部件厚度、材料分布更加合理,使整车100%正面碰撞的安全性有了明显的提高,从而验证了基于多目标遗传算法的轻量化与耐撞性多目标优化的可行性。
     本文研究涉及材料匹配对成形回弹的影响以及材料匹配对结构耐撞性的影响等,目的是为车身结构的轻量化选材提供方法和依据,促进高强度钢板在自主品牌车型上的应用。
Facts showed that high-strength steel (HSS) has become quite competitive automotive lightweight materials, which has greater advantages on anti-collision performance, processing technology and material cost than other materials. As the mechanical properties of HSS are quite different from ordinary steel, which leading to poor forming performance of autobody panels; on the other hand, large rebound of HSS is a major problem when applied on autobody that hasn’t been solved yet, and dimensional accuracy is difficult to control, which seriously affects the assembly precision of automotive products. In addition, how should a reasonable distribution of various levels of HSS on autobody, which parts can be replaced with HSS, and how to match HSS between different components, that need to be replaced selectively in the premise of ensuring the overall performance of autobody unaffected, in order to take the advantage of the proper material selected for the right part based on meeting the original performance and reducing the autobody weight.
     (1) With HSS tailor-welded cylindrical pieces as an example, the influence of material matching law on formability including material flow, weld-line movement and strain path changes was divided into three cases: 1) different thickness with the same material, 2) the same thickness with different materials and 3) different thickness with different materials, which provides the basis for material selection on autobody tailor-welded blank (TWB). While with the 1st case considered, the influence of blank holder force (BHF) distribution on thick/thin sides on its forming limit, weld-line movement and strain path at the cracking point was studied, which provides the basis for BHF control on TWB forming.
     (2) A step-BHF based on rupture criterion rather than wrinkle criterion was presented to increase effective plastic strain region and reduce the amount of springback with no rupture appeared; with TWB-front rail inner panel as an example, orthogonal experimental method was used to determine the influence of various BHF parameters on the amount of springback, the optimization results showed that the control effect is very significant for HSS TWB-sidewall and flange springback angle.
     (3) As the CAE simulation of crashworthiness has reached a mature stage relatively, the simulation accuracy to continue to improve subjected to many constraints. On the basis of precision comparison of one-step forming method and incremental method, material property changes such as thinning and plastic strain hardening were included into crash simulation analysis by incremental forming method and grid mapping technology. The influence of forming effects on structure deformation, energy absorption rate and acceleration, etc of a single cap-shaped pieces and the whole vehicle was studied, the simulation results considering forming effects were more consistent with experimental results, the changes of material properties during forming process should be considered in accurate crash simulation.
     (4) The ideal acceleration-displacement curve under deformation control of crash simulation was proposed. With a certain own-brand SUV front rail as an example, a simplified model of front rail on crashworthiness problem was established; the weld-line location of TWB front rail was optimized to obtain a reasonable crushing order and absorb more impact energy; two design cases and mathematical optimization models of lightest and optimal energy absorption were proposed, experimental design, approximation model and adaptive response surface method were combined to obtain the optimal TWB lightweight solution while satisfying the crashworthiness requirements.
     (5) With the accuracy of the CAE model verified through modal experiments of body in white and real 100% frontal crash test, a simplified model of the frontal energy-absorbing structures was established with efficiency and accuracy both taken into account, with the material deformation path and strain rate effect considered, the Pareto optimal solution set was obtained through multi-objective genetic algorithm base on lightweight and crashworthiness optimization. As the optimized thickness and material distribution more reasonable, the 100% frontal crash safety was greatly improved, thus verified the feasibility of multi-objective optimization of the lightweight and crashworthiness issue based on multi-objective genetic algorithm.
     This study involved the influence of material matching on forming, springback and structural crashworthiness; the purpose is to provide material selection method for structural lightweight, and promote the application of HSS on own-brand autobody.
引文
[1]王利,朱晓东,张丕军等.汽车轻量化与先进的高强度钢板[J].宝钢技术,2003, (5):53-59
    [2]李建平,吴侠.超高强度钢板的发展动态与应用研究[C].第十六届全国汽车车身技术研讨会论文集,2008,11-14
    [3]李文彬.高强度汽车用钢板的生产和研究[J].重型汽车,2005(4):20-22
    [4]刘文华,何天明.高强度钢在汽车轻量化中的应用[J].汽车工艺与材料,2008, (11):49-51
    [5]马鸣图,M. F. Shi.先进的高强度钢及其在汽车工业中的应用[J].钢铁,2004, 39(7):68-72
    [6]龙江启.混合材料白车身结构开发理论及轻量化方法研究[D].广州:华南理工大学博士学位论文, 2009
    [7]蒋浩民,陈军.先进高强度钢板的冲压成形特性及其应用.塑性工程学报, 2009,16(4):183-186
    [8]江海涛,唐荻,米振莉.汽车用先进高强度钢的开发及应用进展[J].钢铁研究学报,2007, 19(8):1-6
    [9]陆匠心,王利,应白桦等.高强度汽车钢板的特性及应用[J].汽车工艺与材料,2004, (6):13-15
    [10] Thorpe M.D., Adam H., ULSAB-Advanced vehicle concepts-overview and design[R], SAE Technical Paper. 2002-01-0036, 2002
    [11] Shaw J., Roth R., Achieving and affordable low emission steel vehicle and economic assessment of the ULSAB-AVC program design[R], SAE Technical Paper. 2002-01-0361, 2002
    [12] American Iron and Steel Institute, ULSAB-AVC advanced vehicle concepts: overview report, 2002
    [13]田浩彬,林建平,刘瑞同等.汽车车身轻量化及其相关成形技术综述[J].汽车工程,2005,27(3):381-384
    [14]叶平,沈剑平,王光耀等.汽车轻量化用高强度钢现状及其发展趋势[J].机械工程材料,2006,30(3):4-7
    [15]李剑省,陈学涛.汽车用钢的开发现状及发展趋势[J].山东冶金, 2008, 30(2):15-18
    [16]谭善锟,潘兴旺.奇瑞轿车用钢板[J].汽车工艺与材料, 2001, (6):59-64
    [17]张熠虎.吉利,下一页更可靠.产品可靠性报告[R]. 2009, (9):20-27
    [18]李明曦.安全造就“都市装甲车”一汽奔腾轿车[J].汽车与安全, 2006, (1):22-25
    [19]汽车轻量化联盟艰难试水或将规范零部件标准[J].聚氨酯, 2008, (2):74-74
    [20]朱文英.汽车轻量化与高强度钢板的研究进展[J].上海金属,2003,25(4):11-15
    [21]林忠钦.汽车覆盖件冲压成形仿真[M].北京:机械工业出版社,2004.11
    [22]傅世枢.当代汽车用钢和超轻钢制汽车技术的开发[J].汽车工艺与材料,2008(2):39-48
    [23]于燕,刘相华,王华等.汽车用高强度钢板强化机理研究[J].汽车工艺与材料,2006, (7):12-16
    [24]苏凯,余际星,徐建兵.新型汽车用高强度钢的应用现状与发展趋势[J].钢铁钒钛,2006,27(4):53-62
    [25]林忠钦.汽车板精益成形技术[M].北京:机械工业出版社,2009.4
    [26]董绍斌.激光拼焊板技术在汽车车身制造中的应用[J].汽车工艺与材料,2006(5):9-11
    [27]李淑慧,林忠钦,倪军等.拼焊板在车身覆盖件冲压成形中的研究进展,机械工程学报,2002, 38(2):1-7
    [28]林忠钦,李淑慧,王武荣等.汽车板精益成形技术[J].中国工程科学,2009,11(11):22-29
    [29]李章,徐炜.激光焊接技术在汽车制造中的应用[J].汽车工艺与材料,2004(6):85-89
    [30]林忠钦,刘罡,李淑慧等.应用正交试验设计提高U形件的成形精度[J].机械工程学报,2002,38(3):83-89
    [31]刘林虎,李淑慧,林忠钦等.基于压边力设计的高强度钢板成形方法[J].上海交通大学学报,2005,39(7):1086-1088
    [32]孙成智,陈关龙,林忠钦等.利用变压边力控制技术改善盒形件成形性能[J].上海交通大学学报,2003,37(12):1883-1886
    [33]孙成智,陈关龙,李淑惠等.变压边力对矩形件成形性能的影响[J].塑性工程学报,2003,10(4):6-9
    [34]谷诤巍,单忠德.超高强度钢板冲压件热成形工艺[J].汽车工艺与材料, 2009,(4):15-17
    [35]王武荣,陈关龙,林忠钦等.基于PID闭环控制的变压边力优化设计[J].上海交通大学学报,2007,41(4):515-519
    [36]姜银方,张永康,朱元右等.基于变压边力的拼焊板方盒形件成形失效分析[J].金属热处理,2007,(32):290-294
    [37]吕盾,陈炜,郭伟刚等.随行程变化变压边力拼焊板盒形件成形性能研究[J].锻压技术,2006(4):129-131
    [38]兰凤崇,陈吉清,林建国等.U形件拉伸成形回弹影响因素的计算机仿真[J].塑性工程学报(英文版),2004,11(5):8-14
    [39]单体坤,张卫刚,李淑慧.TRIP钢薄板冲压的回弹研究[J].塑性工程学报,2008,15(4):12-16
    [40]罗云华,王磊.高强钢板冲压回弹影响因素研究[J].锻压技术,2009,34(1):23-26
    [41]王健,胡星,刘丽娜等.基于变压边力技术的微车大梁回弹研究和控制[J].锻压技术,2008,33(5):55-59
    [42]李奇涵,王娟,张庆芳等.厚板弯曲回弹变压边力控制曲线的优化[J].汽车技术,2008,(3):52-55
    [43]吴磊,李光耀,曹昭展.高强钢材料性能对汽车零件扭曲回弹的影响.塑性工程学报, 2009,16(3),13-17
    [44]聂昕.汽车板件回弹相关问题的研究[D].长沙:湖南大学博士学位论文, 2008
    [45] R. H. Wagoner. Fundamental Aspects of Springback in Sheet Metal Forming[C]. Proceedings of NUMISHEET conference, Jeju Island, Korea, 2002, (168):13-24
    [46] Li X.C, Yang Y.Y, Wang Y.Z, et al. Effect of the material-hardening mode on the springback simulation accuracy of V-free bending[J].Journal of Materials Processing Technology, 2002(123):209-211
    [47] C. Gomes, M. Lovell. Investigation of Springback in High Strength Anisotropic Steels[J]. Journal of Materials Processing Technology, 2005, (159):91-98
    [48] Recep Kazan, Mehmet Firat and Aysun Egrisogut Tiryaki. Prediction of springback in wipe-bending process of sheet metal using neural network[J]. Materials and Design,2009(30):418-423
    [49] Liu Wenjuan, Liu Qiang, Ruan Feng, et al. Springback prediction for sheet metal forming based on GA-ANN technology[J].Journal of Materials Processing Technology,2007,(187-188):227-231
    [50] C. D. Park, W. J. Chung, B. M. Kim. A Numerical and Experimental Study of Surface Deflections in Automobile Exterior Panel[J]. Journal of Materials Processing Technology,2007, (144):99-102
    [51] Myoung-Gyu Lee. Finite Element Investigations for the Role of Transformation Plasticity on Springback in Hot Press Forming Process[J]. Computational Materials Science. 2009, (47):556-567
    [52] Chen Peng, Koc Muammer. Simulation of Variation in Forming of Advanced High Strength Steels[J]. Journal of Materials Processing Technology, 2007, (224):189-198
    [53] G. Ingarao, R. D. Lorenzo. Analysis of Stamping Performances of Dual Phase Steels: A Multi-objective Approach to Reduce Springback and Thinning Failure[J]. Material and Design, 2009, (8):4421-4433
    [54] Firat Mehmet. Sheet Metal Forming Analyses with an Emphasis on the Springback Deformation[J]. Journal of Materials Processing Technology, 2008, (14):135-148
    [55] Aboozar Taherizadeh. Finite Element of Springback for a Channel Draw Process with Drawbead Using Different Hardening Models[J]. International Journal of Mechanical Sciences, 2009, (18):314-325
    [56] Redhe M, Forsberg J, Jansson T, et a1.Using the response surface methodology and the D-optimality criterion in crashworthiness related problems[J]. Structural and Multidisciplinary Optimization, 2002, 24: 185-194
    [57] Forsberg J, Nilsson L. On polynomial response surface and Kriging for use in structural optimization of crashworthiness[J]. Structural and Multidisciplinary Optimization, 2005, 29(3): 232-243
    [58] Forsberg J, Nilsson L. Evaluation of response surface methodologies used in crashworthiness optimization[J]. International Journal of Impact Engineering, 2006, 32: 759-777
    [59] Lee S H. Kim H Y, Oh S I. Cylindrical tube optimization using response surface method based on stochastic process[J]. Journal of Materials Processing Technology, 2002, 130-131: 490-496
    [60]张勇,陆勇.基于近似模型技术的圆管耐撞性优化设计[J].华中科技大学学报(自然科学版), 2010, 38(9): 129-132
    [61]侯淑娟,李青,龙述尧.端部圆锥形薄壁构件的抗撞性设计优化[J].湖南大学学报(自然科学版), 2006, 33(3): 37-40
    [62]侯淑娟,李青,龙述尧.端部方锥形薄壁构件的抗撞性尺寸优化[J].机械强度, 2007, 29(4): 682-685
    [63]侯淑娟,龙述尧,李光耀等.材料参数对车身吸能元件抗撞性影响的数值分析[J].汽车工程,2008,30(5):416-423
    [64]韩旭,朱平,余海东等.基于刚度和模态性能的轿车车身轻量化研究[J].汽车工程,2007,29(7):545-549
    [65]施颐,朱平,张宇等.基于刚度与耐撞性要求的车身结构轻量化研究[J].汽车工程, 2010, 32(9):757-762
    [66]王平,郑松林,吴光强.基于协同优化和多目标遗传算法的车身结构多学科优化设计[J].机械工程学报,2011, 47(2):102-108
    [67]朱平,张宇,葛龙等.基于正面耐撞性仿真的轿车车身材料轻量化研究[J].机械工程学报,2005,41(9):207-211
    [68]周云郊,兰凤崇,韦兴民等.正面碰撞下车身前端结构高强度钢板匹配规律研究[J].汽车工程,2009,31(10):990-994
    [69]施欲亮.基于耐撞性仿真的轿车车身零件拼焊板设计方法研究[D].上海:上海交通大学博士学位论文, 2009
    [70]赵东旭.轻量化车用钢板冲压成形与回弹数值仿真及工艺优化[D].长春:吉林大学博士学位论文,2007
    [71] S M Chan, L C Chan, T C Lee. Tailor-welded blanks of different thickness ratios effects on forming limit diagrams[J]. Journal of Engineering Materials and Technology, 2003, 132:95-101
    [72]陈炜,吴毅明,吕盾等.差厚拼焊板门内板的成形性能研究[J].中国机械工程,2006,17(11):1188-1190.
    [73]韦习成,谢群,符仁钰等.HSLA TRIP钢的动态拉伸行为及其模拟[J].材料研究学报,2006,20(5):556-560
    [74] M Jie, C H Cheng, C L Chow. Experimental and Theoretical Analysis on Formability of Aluminum Tailor-welded Blanks[J]. Journal of Engineering Materials and Technology, 2007, 129(1):151-158
    [75] Shi Y L, et a1.Impact Modeling of the Weld Line of Tailor-Welded Blank [J]. Materials & Design, 2008, 29:232-238
    [76] Si J H, et a1. Formability enhancement for Tailor-Welded blanks using blank holding force control[J]. Journal of Manufacturing Science and Engineering, 2003, 125:461-467
    [77] Zinmiak Z, et a1. Finite Element Analysis of a Tailored Blanks Stamping Process[J]. Journal of Materials Processing Technology, 2000, 106:254-260
    [78] Kinsey Brad, Liu, Zhihong, Cao Jian. A Novel Forming Technology for Tailor-Welded Blanks[J]. Journal of Materials Processing Technology, 2000, 1:99-103
    [79] Choi Y H, Heo Y G, Kim H Y. Investigations of Weld-line Movements for the Deep Drawing Process of Tailor Welded Blanks[J]. Journal of Materials Processing Technology, 2000, 11:198-204
    [80] Young Moo Heo, Youho Choi. Characteristics of weld line movements for the deep drawing with drawbeads of tailor-welded blanks[J]. Journal of Materials Processing Technology, 2001, 111(1-3):164-169
    [81]范瑞麟,陈军.考虑冲压变形历史的汽车结构件特性有限元分析[J].塑性工程学报,2009, 16(3):18-23
    [82] Huh H, Kim K P, Kim H S et al. Crashworthiness of Front Side Members in an Autobody Considering the Fabrication history[J]. International Journal of Mechanical Sciences, 2003, 45:1645-1660
    [83]胡平,鲍益东,胡斯博等.引入工艺因素的汽车车身部件碰撞仿真分析[J].固体力学学报,2006,27(2):148-158
    [84]曾鹏,朱平.冲压成型历史对车身典型结构耐撞性的影响研究[J].汽车技术,2010,(1):57-60
    [85] Wierzbicki T.,Abramowicz W,On the crushing mechanics of thin-walled structures[J]. Journal of applied mechanics,2003,50(4):727-734
    [86]余同希,卢国兴.材料与结构的能量吸收[M].北京:化工工业出版社,2006
    [87]庄蔚敏.工艺过程材料特性变化对车身结构件抗撞性影响研究[D].长春:吉林大学博士学位论文,2006
    [88] Cornette D, Galtier A. Influence of the Forming Process on Crash and Fatigue Performance of High Strength Steels for Automotive Components[C]. SAE Paper 2002-11-0642
    [89] Chen Guofei, Liu Shengdong, Lay Knoerr et al. Residual Forming Effects on Full-Vehicle Frontal Impact and Body-in-White Durability Analysis[C]. SAE Paper 2002-01-0640
    [90] Kim S H, Huh H. Inverse Finite Element Analysis of S-Rail Forming with a Direct Mesh Mapping Method for Crash Analysis Considering Forming Effects[J]. Key Engineering Materials, 2003,130: 233-236
    [91] Yasuyoshi Umezu and Ninshu Ma. Recent development for metal forming simulation[C]. 5th European LS-DYNA Users Conference, 2005, 6a-36
    [92] Hyunsup Kim, Sungoh Hong, Seokgil Hong et al. The evaluation of crashworthiness of vehicles with forming effect[C]. 4th European LS-DYNA Users Conference, 2003, B-Ⅰ: 25-33
    [93] Tristan van Hoek. The history influence of forming on the predicted crash performance of a truck bumper[D]. Eindhoven: M.Sc. Thesis of Eindhoven University of Technology, 2006.
    [94] Aleksandra Krusper. Influences of the forming process on the crash performance finite element Analysis[D]. G?teborg: M.Sc. Thesis of Chalmers University of Technology,2003
    [95] Bttcher C S, Frik S. Consideration of Manufacturing Effects to Improve Crash Simulation Accuracy[C]. 4th European LS-DYNA Users Conference, 2003, B-Ⅰ: 1-8
    [96] Katsuhiko, Kazuhiro, Takeo. Influence of Work Hardening During Metal Forming on Crashworthiness Simulation[J]. New Technology, 2008, 20: 117-120
    [97] Ganesh B Gadekar, Prithvi Raj, Sarang Kshirsagar, C Anilkumar. Inclusion of Forming Effect in Crash Simulations using One Step Forming Simulation[C]. Altair Users Conference, 2006, 35-42
    [98] Janka Cafolla, Roger W. Hall et al. "Forming to Crash" Simulation in Full Vehicle Models[C]. 4th European LS-DYNA Users Conference, 2003, E-Ⅱ: 17-26
    [99] William Broene PE. Improving Crash Analysis through the Estimation of Residual Strains Brought about by Forming Metal[C]. 7th European LS-DYNA Users Conference, 2006, B-Ⅰ: 115-12
    [100]崔新涛.多材料结构汽车车身轻量化设计方法研究[D].天津:天津大学博士学位论文,2007
    [101]廖兴涛,张维刚,李青.响应表面法在薄壁构件耐撞性优化设计中的应用研究[J].工程设计学报, 2006, 13(5): 298-302
    [102] Shi Yuliang, Lin Zhongqin, Zhu Ping, et al. Impact modeling of the weld line of tailor-welded blank[J]. Materials and Design,2008(29):232-238
    [103] Pan Feng, Zhu Ping, Zhang Yu. Metamodel-based lightweight design of B-pillar with TWB structure via support vector regression[J]. Computers and structures,2010(88):36-44
    [104] Cui Xintao, Zhang Hongwei, Wang Shuxin, et a1. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration[J].Materials and Design,2011(32):815-821
    [105] Han J., Yamazaki K., Crashworthiness optimization of S-shape square tubes[J]. International Journal of Vehicle Design,2003,31(1):72-85
    [106] Nagel G.M., Thambiratnam D.P., A numerical study on the impact response and energy absorption of tapered thin-walled tubes[J]. International Journal of Mechanical sciences, 2004,46(2):201-216
    [107]施欲亮,朱平,沈利冰等.汽车前纵梁的拼焊板轻量化设计研究[J].中国机械工程, 2008,19(3): 374-377
    [108]张斌,张维刚,杨济匡等.基于响应面法的汽车侧撞安全性仿真优化[J].系统仿真学报,2009,21(12):3850-3854
    [109]邳薇,崔新涛,王树新.基于Kriging模型的汽车车门抗撞性优化设计[J].设计与研究,2007(1):29-31
    [110]李铁柱,李光耀,陈涛等.基于Kriging近似模型的汽车乘员约束系统稳健性设计[J].机械工程学报, 2010, 46(22): 123-129
    [111]张维刚,刘晖. Kriging模型与优化算法在汽车乘员约束系统仿真优化中的应用研究[J].湖南大学学报(自然科学版), 2008, 35(6): 23-26
    [112]张勇.基于近似模型的汽车轻量化优化设计方法[D].长沙:湖南大学博士学位论文, 2009.
    [113]兰凤崇,钟阳,庄良飘等.基于自适应响应面法的车身前部吸能部件优化[J].汽车工程, 2010, 32(5): 404-408
    [114]王海亮,林忠钦,金先龙.基于响应面模型的薄壁构件耐撞性优化设计[J].应用力学学报, 2003, 20(3): 61-65
    [115] Kim H.S., Wierzbicki T., Effect of the cross-sectional shape of hat-type cross-sections on crash resistance of an”S”-frame[J]. Thin-walled structures, 2001, 39(7):535-554
    [116]张维刚,钟志华.汽车正碰吸能部件改进的计算机仿真[J].汽车工程,2002,24(1):6-9
    [117]张维刚,钟志华,赵幼平等.计算机仿真技术在汽车正碰安全性能改进中的应用研究[J].机械工程学报,2002,38(3):135-138
    [118] J. Forsberg, L. Nilsson. Evaluation of response surface methodologies used in crashworthiness optimization[J]. International Journal of Impact Engineering, 2006(32):759-777
    [119]黄世霖,张金焕.汽车碰撞与安全[M].北京:清华大学出版社, 2000
    [120]朱西产,钟荣华.薄壁直梁件碰撞性能计算机仿真方法的研究[J].汽车工程,2000,22(2):85-89
    [121]李玉璇,林忠钦,蒋爱琴等.材料模型参数设置对碰撞仿真结果的影响[J].汽车工艺与材料,2002,(10):26-28
    [122]王国春,成艾国,高晖等.材料应变率对汽车碰撞性能影响的研究[J].汽车工程2010,32(6):482-485
    [123]何平,陈浩铭.基于高速拉伸试验的车身用钢板材料应变速率敏感特性研究[J].汽车技术,2010,(7):39-42
    [124]张勇,李光耀,孙光永等.多学科设计优化在整车轻量化设计中的应用研究[J].中国机械工程,2008,19(7):877-881
    [125]谢然,兰凤崇,陈吉清等.满足可靠性要求的轻量化车身结构多目标优化方法[J].机械工程学报, 2011, 47(4): 117-124
    [126]陈国栋,韩旭,刘桂萍等.基于自适应径向基函数的整车耐撞性多目标优化[J].中国机械工程,2011,22(4):488-493
    [127]张勇,李光耀,钟志华.基于可靠性的多学科设计优化在薄壁梁轻量化设计中的应用研究[J].中国机械工程,2009,20(15):1885-1889
    [128]张勇,李光耀,孙光永.汽车车身耐撞性与NVH多学科优化设计研究[J].中国机械工程,2008,19(14):1760-1763
    [129]张维刚,廖兴涛,钟志华.基于逐步回归模型的汽车碰撞安全性多目标优化[J].机械工程学报, 2007, 43 ( 8) : 142-146
    [130]王广勇,王刚.高强度钢板在汽车轻量化中的应用[J].汽车工艺与材料,2011(1):1-5
    [131]张勇,李光耀,钟志华.基于移动最小二乘响应面方法的整车轻量化设计优化[J].机械工程学报, 2006,42( 6) : 1-6
    [132]姚宙,李光耀,李方义.基于遗传算法与仿真的偏置碰撞安全结构改进研究[J].中国机械工程,2010,21(22):2755-2759
    [133]张勇,李光耀,王建华.多目标遗传算法在整车轻量化优化设计中的应用研究[J].中国机械工程,2009,20(4):500-503
    [134]孙光永,李光耀,钟志华,等.基于序列响应面法的汽车结构耐撞性多目标粒子群优化设计[J] .机械工程学报, 2009, 45(2) : 224-230
    [135] Zhang Yan, Lai Xinmin, Zhu Ping. et al. Lightweight design of automobile component using high strength steel based on dent resistance[J]. Materials and Design, 2006(27):64-68
    [136] Zhang Yu, Zhu Ping, Chen Guanlong, Lightweight Design of Automotive Front Side Rail Based on Robust Optimization[J].Thin Walled Structures,2007(45):670-676
    [137] Marklund P.O., Nilsson L., Optimization of a car body component subjected to side impact[J]. Structural and Multidisciplinary Optimization, 2001, 21(5):383-392
    [138] Avalle M., Chiandussi G., Belingardi G., Design optimization by response surface methodology: application to crashworthiness design of vehicle structures[J]. Structural and Multidisciplinary Optimization, 2002, 24(4):325-332
    [139] Jin. R, Chen. W, Simpon. T. W. Comparative Studies of Metamodeling Techniques under Multiple Modeling Criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23: 1-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700