用户名: 密码: 验证码:
谐和与白(宽带)噪声联合激励下具有分数导数型阻尼的拟可积哈密顿系统的随机动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究谐和与白噪声或谐和与宽带噪声联合激励下具有分数导数型阻尼的拟可积哈密顿系统的随机响应、首次穿越破坏及随机稳定性。首先,基于广义谐和函数,推导了谐和与白(宽带)噪声联合激励下具有分数导数型阻尼的拟可积哈密顿系统的随机平均方程,指出了平均It(?)方程与系统共振性之间的关系,给出了平均It(?)方程的漂移与扩散系数。在此基础上,建立了响应过程的概率密度所满足的Fokker-Planck-Kolmogorov(FPK)方程、支配条件可靠性函数的后向Kolmogorov方程及支配平均首次穿越时间的Pontryagin方程,分别求解这些方程得到系统的响应统计量、条件可靠性函数、首次穿越时间条件概率密度以及平均首次穿越时间。通过一系列的算例分别讨论了分数阶数对系统随机响应以及可靠性的影响。另外,本文还研究了谐和与白噪声联合激励下两个非线性耦合Duffing振子的首次穿越破坏。最后,用最大Lyapunov指数研究谐和与白(宽带)噪声联合激励下具有分数导数型阻尼的拟可积哈密顿系统在非共振与共振情形的概率为1渐近稳定性,以及分数阶数对单自由度系统概率为1渐近稳定性的影响。
The stochastic response, first passage failure and stochastic stability of quasi integrable Hamiltonian systems with fractional derivative damping subjected to combined harmonic and Gauss white noise excitations or combined harmonic and wide band noise excitations are investigated. First, the stochastic averaged equations for quasi integrable Hamiltonian systems with fractional derivative damping under combined harmonic and Gauss white (wide band) noise excitations are derived by using the generalized harmonic functions. It is pointed out that the form and dimension of averaged Ito equations depend upon the resonance of systems. The drift and diffusion coefficients of the averaged Ito equation are given. Then, the Fokker-Planck-Kolmogorov ( FPK) equations governing the probability density of response processes, the backward Kolmogorov governing the conditional reliability function and the Pontryagin equation governing the mean first passage time are established. The response statistics, the conditional reliability function, the conditional probability density and mean of first passage time of the system are obtained by solving these equations, respectively. The effects of fractional order on the stochastic response and reliability are discussed via a series of examples, respectively. In addition, the first passage failure of two nonlinearly coupled Duffing oscillators subjected to combined harmonic and Gaussian white noises excitations is investigated. Finally, the asymptotic Lyapunov stability with probability one of combined harmonic and white (wide band) noise excited quasi integrable Hamiltonian systems with fractional derivative damping in the cases of non-resonance and resonance is studied by using the largest Lyapunov exponent and the effect of fractional order on the asymptotic stability of a single-degree-of-freedom system is investigated.
引文
[1]Lin Y K.Probabilistic Structural Dynamics.New York:McGraw Hill,1967.
    [2]Nigam N C.Introduction to Random Vibrations.Cambridge:NIT Press,1983.
    [3]朱位秋,随机振动,北京:科学出版社,1992。
    [4]方同,工程随机振动,北京:国际工业出版文社,2001。
    [5]Bagley R L,Torvik P J.A Theoretical Basis for the Application of Fractional Calculus to Viscoetasticity,Journal of Rheology,1983,27(3):201-210.
    [6]Bagley R L,Torvik P J.Fractional Calculus-a Different Approach to the Analysis of Viscoelastically Damped Structures,American Institute of Aeronautics and astronautics Journal,1983,21(5):741-748.
    [7]Bagley R L,Torvik P J.Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures,American Institute of Aeronautics and astronautics Journal,1985,23(6):918-925.
    [8]Koh C G,Kelly J M.Application of Fractional Derivatives to Seismic Analysis of Base-isolated Models,Earthquake Engineering &Structural Dynamics,1990,19:229-241.
    [9]Koeller R C.Application of Fractional Calculus to the Theory of Viscoelasticity,ASME Journal of Applied Mechanics,1984,51:299-307
    [10]Koeller R C,Wisconsin P.Polynomial Operators,Stiettjes Convolution and Fractional Calculus in Hereditary Mechanics,Acta Mechanica,1986,58:251-264
    [11]Makris N,Constantinou M C.Spring-viscous Damper Systems of Combined Seismic and Vibration Isolation,Earthquake Engineering &Structural Dynamics,1992,21:649-664.
    [12] Pritz T. Analysis of Four-parameter Fractional Derivative Model of Real Solid Materials, Journal of Sound and Vibration, 1996,195(1): 103-115
    [13] Shen K L, Soong T T. Modeling of Viscoelastic Dampers for Structural Applications, ASCE Journal of Engineering Mechanics, 1995,121: 694-701.
    [14] Rossikhin Y A, ShitikovaMV. Analysis of Nonlinear Free Vibrations of Suspension Bridges, Journal of Sound and Vibration, 1995, 186: 369-393.
    [15] Rossikhin Y A, Shitikova M V. Analysis of Nonlinear Vibrations of a Two-degree-of-freedom Mechanical System with Damping Modeled by a Fractional derivative, Journal of Engineering Mathematics, 2000, 37: 343-362.
    [16] Rossikhin Y A, ShitikovaMV. Analysis of Free Non-linear Vibrations of a Viscoelastic Plate Under the Condition of Different Internal Resonances, International Journal of Non-linear Mechanics, 2006, 41:313-325.
    [17] Papoulia K D, Kelly J M. Visco-hyperelastic Model for Filled Rubbers Used in Vibration Isolation, ASME Journal of Engineering Material and Technology, 1997, 19: 292-297
    [18] Eldred L B, Baker W P, Kelvin-voigt vs Fractional Derivative Model as Constitutive Relations for Viscoelastic Material, American Institute of Aeronautics and astronautics Journal, 1995, 33(3): 491-511.
    [19] Rossikhin Y A, Shitikova M V. Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids, Applied Mechanics Reviews 1997, 50(1):15-67.
    [20] Shimizu N, Zhang W, Fractional Calculus Approach to Dynamic Problems of Viscoelastic Materials, Japan Social Mechanics Engineering C, 1999,42:825-837
    [21]Li J,Jiang T Q.Constitutive Equation for Viscoelastic Fluids via Fractional Derivative in Advances in Structure and Heterogen Continua(Sinner D A ed.) New York:Allerton Press Inc.,1994,187-193
    [22]Song D Y,Jiang T Q.Study on the Constitutive Equation with Fractional Derivative for Viscoelastic Fluids-modified Jefferys Model and its Application.Rheology Acta,1998,37:512-517
    [23]刘林超,张卫,具有分数Kelvin模型的粘弹性岩体中水平圆形硐室的变形特性,岩土力学,2005,26(2):287-289
    [24]刘林超,张卫,具有分数导数型黏弹性材料的一些阻尼特性,暨南大学学报,2004,25(5):287-289
    [25]朱正佑,李国根,程昌钧,具有分数导数本构关系的Timoshenko梁的静力学行为分析,应用数学与力学,2002,23(1):1-10
    [26]Suarez L,Shokooh A.An Eigenvector Expansion Method for the Solution of Motion Containing Fractional Derivatives,ASME Journal of Applied Mechanics,1997,64:629-635.
    [27]Shokooh A,Suarez L.A Comparison of Numerical Methods Applied to a Fractional Model of Damping Materials,Journal of Vibration and Control 1999,5:331-354
    [28]Yuan L X,Agrawal O P.A Numerical Scheme for Dynamics Systems Containing Fractional Derivatives,Journal of Vibration and Acoustics,2002,124(2):321-324
    [29]Zhu Z Y,Li G G,Cheng C J.A Numerical Method for Fractional Integral with Application,Applied Ma thematics and Mechanics,2003,24:373-384
    [30]Padovan J,Sawicki J T,Nonlinear Vibrations of Fractionally Damped Systems,Nonlinear Dynamics,1998,16:321-336.
    [31]Wahi P,Chatterjee a.Averaging for Oscillations with Light Fractional Order Damping, ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, September, 2-6, Chicago, Illinois, USA.
    [32] Wahi P, Chatterjee A. Averaging Oscillations with Small Fractional Damping and Delayed Terms, Nonlinear Dynamics, 2004, 38:3-22
    [33] Sheu L J, Chen H K, Chen J H, et al. Chaotic Dynamics of the Fractionally Damped Duff ing Equation, Chaos, Solitons and Fractals, 2007, 32: 1459-1468.
    [34] Chen J H, Chen W C. Chaotic Dynamics of the Fractionally Damped van del Pol Equation, Chaos, Solitons and Fractals, 2008, 35: 188-198
    [35] Spanos P D, Zeldin B A. Random Vibration of Systems with Frequency-dependent Parameters or Fractional Derivatives, ASCE Journal of Engineering Mechanics, 1997, 123(3): 290-292.
    [36] Agrawal O P. An Analytical Scheme for Stochastic Dynamic Systems Containing Fractional Derivatives, Proceedings of the 1999 ASME Design Engineering Technical Conferences, September, 12-15, Las Vegas, Nevada.
    [37] Agrawal O P. Stochastic Analysis of a 1-D System with Fractional Damping of Order 1/2, Journal of Vibration and Acoustics, 2002, 124: 454-460.
    [38] Agrawal O P. Analytical Solution for Stochastic Response of a Fractionally Damped Beam, Journal of Vibration and Acoustics, 2004, 126: 561-566.
    [39] Ye K, Li L, Tang J X, Stochastic Seismic Response of Structures with Added Viscoelastic Dampers Modeled by Fractional Derivative, Earthquake engineering and engineering vibration, 2003, 2: 133-139
    [40] Riidinger F. Tuned Mass Damper with Fractional Derivative Damping, Engineering Structures, 2006, 28: 1774-1779.
    [41] Huang Z L, Jin X L, Response and Stability of a SDOF Strongly Nonlinear Stochastic System with Light Damping Modeled by a Fractional Derivative, Journal of Sound and Vibration, 2009, 319(3-5): 1121-1135.
    [42] Caughey T K, Dienes J K. Analysis of a Nonlinear First-order System with a White Noise Input, Journal of Applied Physics, 1961, 23:2476-2479
    [43] Andronov A A, Pontryagin A A, Vitt L S. On the Statistical Investigation of Dynamical Systems. Zh. Exp. Teor. Fiz. 1933, 3: 165-180. ( in Russian)
    [44] Kramer H A. Brownian Motion in a Field of Force and Diffusion of Chemical Reactions. Physica, 1940, 7:284-304.
    [45] Caughey T K. On the Response of a Class of Nonlinear Oscillators to Stochastic Excitations. Proc. Collog. Int. du Center National de la Recherche Scientifeque, 1964, 148: 292-402.
    [46] Caughey T K, Ma F. The Steady-state Response of a Class of Dynamical Systems to Stochastic Excitations. ASME Journal of Applied Mechanics, 1982,49:629-632.
    
    [47] Caughey T K, Ma F. The Exact Steady-state solution of a Class of Nonlinear Stochastic systems. ASME Journal of Applied Mechanics, 1983,17:137-142.
    
    [48] Yong Y, Lin Y K. Exact Stationary-response Solution for Second Order Nonlinear System under Parametric and External White-noise Excitations. ASME Journal of Applied Mechanics, 1987, 54: 414-418
    
    [49] Lin Y K, Cai G Q. Exact Stationary-response Solution for Second Order Nonlinear System under Parametric and External White-noise Excitations, part 2. ASME Journal of Applied Mechanics, 1988, 55: 702-705
    
    [50] Zhu W Q. Exact Solutions for Stationary Response of Several Classes of Nonlinear Systems to Parametric and (or) External White Noise Excitations. Applied mathematics and mechanics, 1990, 11: 165-175.
    [51] Fuller A T. Analysis of Nonlinear Stochastic Systems by Means of the Fokker-Planck Equation. International Journal of Control, 1969, 9: 603-655
    [52] Soize C. Steady State Solution of Fokker-Planck Equation in Higher Dimension. Probabilistic engineering mechanics, 1988, 3(4):195-206.
    [53] Soize C. Exact Stationary Response of Multi-dimension Nonlinear Hamiltonian Dynamical Systems under Parametric and Stochastic Excitations. Journal of Sound and Vibration, 1991,149(1): 1-24
    [54] Soize C. The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solution, Singapore: World Scientific, 1994.
    [55] Zhu W Q, Cai G Q, Lin Y K. On exact stationary solutions of stochastically perturbed Hamiltonian systems. Probabilistic engineering mechanics, 1990, 5:84-87.
    [56] Zhu W Q, Cai G Q, Lin Y K. Stochastically perturbed Hamiltonian systems. Proc. of IUTAM Symposium, Bollomo N, Casciati F., Springer-Verlag, 1992.543-552. .
    [57] Zhu W Q, Yang Y Q. Exact Stationary Solutions of Stochastically Excited and Dissipated Integrable Hamiltonian Systems. ASME Journal of Applied Mechanics, 1996, 63(2): 493-500.
    [58] Ying Z G, Zhu W Q, Exact Stationary Solutions of Stochastically Excited and Dissipated Gyroscopic Systems. International Journal of Non-linear Mechanics, 2000, 35 (5): 837-848.
    [59] Zhu W Q, Huang Z L. Exact Stationary Solutions of Stochastically Excited and Dissipated Partially Integrable Hamiltonian Systems. International Journal of Non-linear Mechanics, 2001, 36(1): 39-48.
    [60] Strtonovitch R L, Topics in the Theory of Random Noise. Vol.1.New York: Godon and Breach, 1963
    [61] Khasminskii R Z. A limit Theorem for the Solutions of Differential Equations with Random Right-hand Sides. Theory of Probability and Application, 1966, 11: 390-405.
    [62] Papanicolou G C, Kohler W. Asymptotic Theory of Mixing Ordinary Differential Equations. Commutations on Pure and Applied Mechanics, 1974, 27:641-668.
    [63] Roberts J B, Spanos P D, Stochastic Averaging: an Approximate Method of Solving Random Vibration Problems. International Journal of Non-linear Mechanics, 1986, 21:111-134.
    [64] Zhu W Q. Stochastic Averaging of the Energy Envelop of Nearly Lyapunov System, Random Vibration and Reliability. Proc. OF IUTAM Symposium, Hennig K. (ed.) Berlin: Academic Verlag, 1983, 347-357.
    [65] Khasminskii R Z. On the Averaging Principle for Ito Stochastic Differential Equations, Kibernetka, 1968, 3: 260-279 (in Russian)
    
    [66] Cai G Q, Lin Y K. Random Vibration of Strongly Nonlinear Systems. Nonlinear Dynamics, 2001, 24:3-15.
    [67] Zhu W Q. Stochastic Averaging of quasi-Hamiltonian systems, Science in China, Series A, 1996, 39:97-107.
    [68] Zhu W Q, Yang Y Q. Stochastic Averaging of quasi-non-integrable-Hamiltonian systems, ASME Journal of Applied Mechanics, 1997, 64: 157-164
    [69] Zhu W Q, Huang Z L, Yang Y Q. Stochastic Averaging of quasi integrable Hamiltonian systems, ASME Journal of Applied Mechanics, 1997, 64(4): 975-984
    [70] Zhu W Q, Huang Z L, Suzuki Y. Stochastic Averaging and Lyapunov exponent of quasi partially integrable Hamiltonian systems, International Journal of Non-linear Mechanics, 2002, 37:419-437
    [71] Zhu W Q, Huang Z L, Suzuki Y, Stochastic Averaging of Strongly Nonlinear Oscillator under Combined Harmonic and White Noise Excitations, Journal of Sound and Vibration, 2000, 36: 1235-1250.
    [72] Huang Z L, Gao L X, Zhu W Q. Jump and Bifurcation of Coupled Duffing-ven der Pol Oscillators under Combined Harmonic and White Noise Excitations, Advanced in Stochastic dynamics Proceedings of 5~(th) International Conferences on Stochastic Structural Dynamics. Zhu W Q, et al (Eds.) Boca Raton (USA) :CRC Press, 2003,215-222
    [73] Zhu W Q, Huang Z L, Suzuki Y, Response and Stability of Strongly Nonlinear Oscillator under Wide-band Noise Excitations. International Journal of Non-linear Mechanics, 2001, 36:1235-1250
    [74] Huang Z L, Zhu W Q, Ni Y Q, Ko J M. Stochastic Averaging of Strongly Nonlinear Oscillator under bounded noise excitation. Journal of Sound and Vibration, 2002, 254: 245-267.
    [75] Huang Z L, Zhu W Q. Stochastic Averaging of quasi integrable Hamiltonian systems under bounded noise excitation. Probabilistic Engineering Mechanics, 2004, 4: 219-228.
    [76] Wu Y J, Zhu W Q. Stochastic Averaging of Strongly Nonlinear Oscillator under Combined Harmonic and Wide-band Noise Excitations, Journal of Vibration and Acoustics, 2008, 130:051004.
    [77] Huang Z L, Zhu W Q. Stochastic Averaging of quasi Generalized Hamiltonian systems. International Journal of Non-linear Mechanics, 2009, 44(1): 71-80.
    [78] Booton R C. The Analysis of Nonlinear Control Systems with Random Inputs. IRE Trans. Circuit Theory, 1954, 1: 32-34.
    [79] Kazakov I E. Approximate Probabilistic Analysis of the Accuracy of Operation of Essentially Nonlinear Systems, Avtomatika I Telemekhanika 1956, 17: 385-409(in Russian)
    [80] Caughey T K. Equivalent Linearization Techniques. Journal of the Acoustical Society of America, 1963, 35(11): 1706-1711
    [81] Lutes L D. Approximate Technique for Treating Random Vibration of Hysteretic System. Journal of the Acoustical Society of America, 1970, 48: 299-306.
    [82] Caughey T K. Caughey T K. On the Response of a Class of Nonlinear Oscillators to Stochastic Excitation. Probabilistic Engineering Mechanics, 1986, 1: 2-4.
    [83] Lin A. A Numerical Evaluation of the Method of Equivalent Nonlinearization. Ph. D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1988
    [84] Cai G Q, Lin Y K. A new Approximate Solution Technique for Randomly Excited Nonlinear Oscillators, International Journal of Non-linear Mechanics, 1988, 23:409-420.
    [85] Zhu W Q, Yu J S. The Equivalent Nonlinear System Method. Journal of Sound and Vibration, 1989, 129:385-395.
    [86] To C W S, Li D M. Equivalent Nonlinearization of Nonlinear Systems to Random Excitations. Probability Engineering Mechanics, 1991, 6: 184-192.
    [87] Zhu W Q, Soong T T, Lei Y. Equivalent Nonlinear System Method for Stochastically Excited Hamiltonian Systems. ASME Journal of Applied Mechanics, 1994, 61(3): 618-623.
    [88] Zhu W Q, Lei Y. Equivalent Nonlinear System Method for Stochastically Excited and Dissipated Integrable Hamiltonian Systems. ASME Journal of Applied Mechanics, 1997, 64(1): 209-216.
    [89] Zhu W Q, Huang Z L, Suzuki Y. Equivalent Nonlinear System Method for Stochastically Excited and Dissipated Partially Integrable Hamiltonian Systems. International Journal of Non-linear Mechanics, 2001, 36(5): 773-786.
    [90] Zhu W Q, Deng M L. Equivalent Nonlinear System Method for Stochastically Excited and Dissipated Integrable Hamiltonian Systems-Resonant Case. Journal of Sound and Vibration, 2004, 274:1110-1122.
    [91]Rice S O.Mathematical Analysis of random noise.Bell sys.Tech.J.,1944,23:282-332;Also in Selected Papers on Noise and Stochastic Processes,Wax,N.ed.,Dower,1954.
    [92]Roberts J B.An approach to the first passage in random vibration.Journal of Sound and Vibration,1968,8:301-328.
    [93]Roberts J B.Probability of first-passage failure for non-stationary random vibration,ASME Journal of Applied Mechanics,1975,42:716-720.
    [94]朱位秋,非线性随机动力学与控制-Hamilton理论框架,北京:科学出版社,2003。
    [95]Cai G Q,Lin Y K.On Statistics of First Passage Failure,ASME Journal of Applied Mechanics,1994,61:93-99.
    [96]Roberts J B.First Passage Time for Randomly Excited Nonlinear Oscillators.Journal of Sound and Vibration,1986,109:33-50.
    [97]Bergman L A.Numerical Solutions of the First Passage Problem in Stochastic Structural Dynamics.Computational Mechanics of Probability and Reliability Analysis,Liu W k,Belytschko T.(Eds.)Lansanne:Elme Press International,1989,379-408.
    [98]Gan C B,Zhu W Q.First-passage failure of quais-non-integrable Hamiltonian systems.International Journal of Non-Linear Mechanics,2001,36:209-220
    [99]Zhu W Q,Deng M L,Huang Z L.First-Passage Failure of Quasi-Integrable Hamiltonian Systems.ASME Journal of Applied Mechanics,2002,69:274-282.
    [100]Zhu W Q,Huang Z L,Deng M L.First-Passage Failure and Its Feedback Minimization of Quasi Partially Integrable Hamiltonian Systems.International Journal of Non-Linear Mechanics,2003,38:1133-1148.
    [101]Zhu W Q,Wu Y J.First-passage Time of Duffing Oscillator under Combined Harmonic and White-noise Excitations. Nonlinear Dynamics, 2003,32: 291-305.
    
    [102]Wu Y J, Luo M, Zhu W Q. First-passage Failure of Strongly Nonlinear Oscillators under Combined Harmonic and Real Noise Excitations. Archive Applied Mechanics, 2008, 78: 501-515.
    
    [103] Schueller G I, et al. A Critical Appraisal of Reliability Estimation Procedures for High Dimensions. Probability Engineering Mechanics, 2004, 19:462-474
    
    [104]Koutsourelakis P S, Pradlwarter H J, Schueller G I. Reliability of Structures in High Dimensions, Part I: Algorithms and Applications. Probability Engineering Mechanics, 2004, 19:409-417
    [105]Koutsourelakis P S. Reliability of Structures in High Dimensions, part II: Theoretical Validation. Probability Engineering Mchanics, 2004, 19:419-423
    [106] Pradlwarter H.J, Schueller G I. Excursion probabilities of non-linear systems. International Journal of Nonlinear Mechanics 2004; 39:1447-1452
    [107]Ka Veng Yuen, Lambros S, Katafygiotisb, An Efficient Simulation Method for Reliability Analysis of Linear Dynamical Systems using Simple Additive Rules of Probability. Probability Engineering Mechanics, 2005, 20:109-114.
    [108]0seledec VI. A Multiplicative Ergodic Theorem: Lyapunov Characteristic number for dynamical systems. Trans. Moscow Math. Soc., 1968, 19: 197-231.
    [109]Khasminiskii R Z. Stochastic Stability of Differential Equations. Alphen aan den Rijn: Sijthoff & Noordhoff, 1980.
    [110]Grorud A, Talay D, Approximation of Lyapunov Exponents of Non-linear Stochastic Differential Systems, INRIA Technical Report, 1990, No. 1341
    [111]Xie W C. Moment Lyapunov Exponents of a Two-dimensional System under both Harmonic and White Noise Parametric Excitations, Journal of Sound and Vibration, 2006, 289:171-191.
    [112]Khasminskii R Z. On Robustness of Some Concept in Stability of Stochastic Differential Equation, Fields Institute Communications, 1996, 9: 131-137.
    [113]Arnold L, Papanicolaou G, Wihstutz V. Asymptotic Analysis of the Lyapunov Exponent and Rotation Numbers of the Random Oscillator and Applications, SIAM Journal of Applied Mathematics,1986, 46: 427-450.
    [114]Namachchivaya N Sri, Talwer S, Maximal Lyapunov Exponent and Rotation Number of Stochastically Perturbed Co-dimension two Bifurcation, Journal of Sound and Vibration, 1993, 169: 349-372.
    [115]Khasminskii R, Moshchuk N. Moment Lyapunov Exponent and Stability Index for Linear Conservative System with Small Random Perturbation, SIAM Journal of Applied Mathematics, 1998, 58:245-256.
    [116]Liu X B, Liew K M. On the Stability Properties of a van der Pol Duffing Oscillator that is Driven by a Real Noise, Journal of Sound and Vibration, 2005, 285: 27-49.
    [117]Zhu f Q., Huang Z L. Lyapunov Exponents and Stochastic Stability of Quasi-integrable -Hamiltonian Systems. ASME Journal of Applied Mechanics, 1999, 66(1): 211-217.
    [118]Huang Z L., Zhu W. Q. Lyapunov Exponents and Almost-Sure Asymptotic Stability of Quasi-Linear Gyroscopic Systems. International Journal of Non-Linear Mechanics, 2000, 35(4): 645-655.
    [119]Zhu W Q. Lyapunov Exponent and Stochastic Stability of Quasi Non-integrable Hamiltonian Systems. International Journal of Non-Linear Mechanics, 2004, 39: 569-579.
    [120]Huang Z L, Zhu ¥ Q. A new Approach to Almost-sure Asymptotic Stability of Stochastic Systems of Higher Dimension,International Journal of Non-Linear Mechanics,2003,38:239-247.
    [121]Zhu W Q.,Huang Z L.Stochastic Stability of Quasi-non-integrable -Hamiltonian Systems.Journal of Sound and Vibration,1998,2818:769-789
    [122]吴勇军,谐和与白(宽带)噪声激励下强非线性系统随机动力学与控制[博士学位论文],中国杭州,浙江大学,2005.
    [123]Feng C S,Zhu W Q.Asymptotic Lyapunov Stability with Probability one of Duffing Oscillator Subject to Time-delayed Feedback Control and Bounded Noise Excitation.Acta Mechanica.DOI:10.1007/s00707-008-0126-3.
    [124]Xu,Z.,Chung,Y.K.Averaging Method using Generalized Harmonic Functions for Strongly Non-linear Oscillators,Journal of Sound and Vibration,1994,174:563-576.
    [125]Oldham K B,Spanier K B.The Fractional Calculus.New York:Academic Press,1974,
    [126]Miller K S,Ross B.An Introduction to the Fractional Calculus and Fractional Differential Equations.New York:Wiley,1993.
    [127]Samko S G,Kilbas A A,Marichev O I,Fractional Integrals and Derivatives Theory and applications,Gordon and Breach,Longhorne,Pennsylvania,1993
    [128]Hiller R.Applications of Fractional Calculus in Physics.Singapore:World Scientific,1999.
    [129]Iwatsubo,I.Kawahara,N.Nakagawa,R Kawai.Reliability design of rotating machine against earthquake excitation.Bulletin of the Japanese Society of Mechanical Engineers,1979,22:1632-1639.
    [130]V.Srinivasan,A.H.Soni.Seismic analysis of rotating mechanical systems-a review.Shock and Vibration,Dig.1982,14:13-19.
    [131]B.L.Ly.Seismic response of a gyroscopic system by the response spectrum method.Transactions of the 8th International Conference on Structural Mechanics in Reactor Technology K(a),1985,pp.547-552.
    [132]Spencer B.F.,Tang J.,Hilal C.G..Reliability of non-linear oscillators subjected to combined periodic and random loading.Journal of Sound and Vibration,1990,140:163-169.
    [133]Namachchivaya N.Sri.Almost sure stability of dynamical systems under combined harmonic and stochastic excitations.Journal of Sound and Vibration,1991,151:77-91.
    [134]Zhu W.Q.,Lu M.Q.and Wu Q.T.Stochastic jump and bifurcation of a Duffing oscillator under narrowband excitation.Journal of sound and vibration,1993,165:285-304
    [135]Zhu W.Q.,Wu Y.J.Optimal bounded control of harmonically and stochastically excited strongly nonlinear oscillators.Probabilistic Engineering Mechanics,2005,20:1-9.
    [136]Khasminiskii R Z.Necessary.and sufficient conditions for the asymptotic stability of linear stochastic systems.Theory of Probability and Application,1967,11:144-147
    [137]Kozin F,A Survey of Stability of Stochastic Systems.Automatica,1969,4:95-112
    [138]冯长水,窄带随机激励下时滞反馈控制的强非线性系统随机动力学研究[博士学位论文],中国杭州,浙江大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700