用户名: 密码: 验证码:
共振隧穿器件的研制及模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共振隧穿器件是新一代的化合物半导体器件。本论文开展了对共振隧穿二极管(RTD)和共振隧穿三极管(RTT)器件的研制和模拟的研究工作,成功研制出四种类型的共振隧穿器件,同时对器件模拟和器件模型、器件测试与可靠性分析、逻辑电路实现等几个方面进行了深入的研究。创新性工作主要包括以下几个方面:
     1.器件设计和研制方面,成功研制出GaAs基台面型RTD器件,其电流峰谷比(PVCR)室温下达到4.2;提出两种平面型RTD的器件结构——注硼型平面RTD和深刻槽型平面RTD,并在国内首次研制成功GaAs基注硼型平面型RTD器件,其PVCR室温下达到3.5;设计并研制成功GaAs基肖特基栅型RTT器件(SGRTT)和RTD/HEMT串联型RTT器件,测量肖特基栅型RTT的栅极电压对峰值电流调控能力达到7mS,RTD/HEMT串联型RTT的栅极电压对峰值电压调控能力在1.5-7.7范围之间;
     2.在器件模拟方面,利用ATLAS软件实现了台面RTD和单向载流子传输光电二极管(UTC-PD)单片集成的模拟研究;完成对台面型RTD、注硼型平面RTD、深刻槽型平面RTD、肖特基栅型RTT等器件的器件模拟,研究了每种器件的结构和工艺参数对器件电学特性的影响,包括发射极面积、发射极浓度、势垒厚度等;通过器件模拟研究了肖特基栅型RTT器件在不同偏压情况下I-V特性的差异;
     3.在电路应用方面,成功实现了基于RTD器件的单稳-双稳逻辑转换单元电路(MOBILE)和柔性逻辑门电路,通过对电路逻辑功能的测试证实以上电路可以用少量器件实现多种逻辑功能,包括与、与非、或、或非等逻辑;首次提出肖特基栅型RTT器件的电路模型以及RTT类器件的相器统一模型;
     4.在器件的测试与可靠性方面,用变温法、外加电阻法、电桥法等多种方法测量RTD器件的串联电阻,对比并分析了几种测量方法的特点以及对串联电阻测量结果存在的影响;对台面型RTD进行了失效分析实验,初步完成了包括γ射线辐照、高强度电脉冲等应力作用下RTD器件的可靠性分析,结果表明化合物器件抗辐射能力要优于MOS类器件。
     本文完成了RTD以及RTT器件从材料设计、版图设计、器件模拟、工艺流片、测试及可靠性分析、电路应用等完整的研发工作,为共振隧穿器件的广泛应用奠定了重要的理论和实验基础。
Resonant tunneling device is a new compound semiconductor device. The research of fabrication and simulation on Resonant Tunneling Diode (RTD) and Resonant Tunneling Transistor (RTT) is mainly discussed in this dissertation. Four types of resonant tunneling device have been fabricated. The research on device simulation and modeling, measurement and reliability analysis, logic circuit realization are explained in detail. The innovation points in this dissertation can be concluded as follows:
     1. in the aspect of design and fabrication: GaAs RTD in mesa structure has been fabricated successfully, the Peak to Valley Current Ratio (PVCR) reaches 4.2 at room temperature; GaAs planner RTD based on boron-implantation and deep groove structures have been proposed and the boron-implantation planner RTD has been first fabricated domestically whose PVCR is 3.5 at room temperature; Schottky gate RTT (SGRTT) and RTD/HEMT combination RTT are designed and developed, the Gm of SGRTT reaches 3.5mS and the gate voltage controlling ability on peak voltage of RTD/HEMT combination RTT is in a range of 1.5-7.7 ;
     2. in the aspect of device simulation, the uni-travelling-carrier photodiode (UTC-PD) and RTD monolithic integration, mesa RTD, planner RTD and SGRTT are all simulated by Atlas software. The relationship between the structure parameters and the I-V characteristics of each device has been researched, such as emitter area, doping concentration and barrier thickness. The different I-V characteristics of SGRTT in forward and backward biases also have been researched.
     3. in the aspect of circuit application, the Monostable-Bistable Transition Logic Element (MOBILE) and flexible logic gate circuit based on RTD device have been realized and measured, the realized logic contains AND/OR/NAND/NOR. The circuit model of SGRTT and the unification model of RTT devices are also proposed.
     4. in the aspect of measurement and reliability, the series resistance of RTD has been measured by different methods that is varying temperature method, addition resistance method and bridge method, the feature of different methods and the influence on the series resistance measurement are analyzed. The invalidation experiments on mesa RTD device have been carried on in the situation ofγ-radiation and electronic pulse, the results show that the radiation protective effect of compound device is better than MOS device.
     The research on development of RTD and RTT is illustrated in this dissertation, that contains material design, layout design, device simulation, fabrication, measurement, reliability analysis and circuit application. All these work can establish the foundation of RTD theory and experiment in future.
引文
[1] Esaki L, Tsu R, Superlattice and negative differential conductivity in semiconductors, IBM J. Res. Develop, 1970, 14:61-65
    [2]郭维廉,共振隧穿器件及其应用,北京,科学出版社,2008.
    [3] BOUREGBA R, VANBESIEN O, MOUNAIX P, et al. Resonant tunneling diodes as sources for millimeter and submillimeter wavelengths. IEEE Transantions on Microwave Theory and Techniques, 1993, 41(11): 2025-2027.
    [4] Soderstrom J R, Chow D H, McGill T C. New negative differential resistance device based on resonant interband tunneling. Applied physics Letters, 1989, 55(11): 1094.-1096.
    [5] Stock Jürgen, Malindretos J?rg, Indlekofer Klaus Michael,et al, A Vertical Resonant Tunneling Transistor for Application in Digital Logic Circuits, IEEE Transactions on Electron Devices, 2001;48(6):1028-1032
    [6] Bonnefoi A R, McGill T C, Burnham R D. Resonant tunneling transistors with controllable negative differential resistances. IEEE Electron Device Letters, 1985, 6(12): 636-638.
    [7] Chen K J, Maezawa K and Yamamoto M. Novel current–voltage characteristics in an InP-based resonant-tunneling high electron mobility transistor. Applied Physics Letters, 1995, 67(12): 3608-3610.
    [8] Seabaugh A C, Beam E A III, Taddiken A H et al. Co-integration of resonant tunneling and double heterojunction bipolar transistors on InP. IEEE Electron Device Letters, 1993, 14(10): 472-474
    [9] Chen W L, Munns G O, East J R et al. InGaAs/AlAs/InGaAsP resonant tunneling hot electron transistors grown by chemical beam epitaxy. IEEE Transactioms on Electron device, 1994, 41(2): 155-161.
    [10] Moise T S, Kao Y C, Garrett L D. Optically Switched resonant tunneling diodes. Applied physics Letters, 1995, 66(9): 1104-1106.
    [11] Mcmeekin S G, TAYLOR M R S, VOGELE B et al. Franz-Keldysh effect in an optical waveguide containing a resonant tunneling diode. Applied physics Letters, 1994, 65(9): 1076-1078.
    [12] Figueiredo J M L, Ironside C N, Stanley C R. Electric Field switching in a resonant Tunneling Diode Electroabsorption Modulator. IEEE Journal of Quantum Electronics, 2001, 37(12): 11547-1552.
    [13] GUO D F. Illumination effect on switching performance of a triangular barrier resonant-tunneling diode. IEEE Proceeding Optoelectronics, 2001, 148(2): 121-123.
    [14] Liu H C, Aers G C, Buchanan M et al. Intersubband photocurrent from the quantum well of an asymmetrical double barrier structure. Journal of Applied Physics, 1991, 70(2): 935-940.
    [15]毛海央,熊继军,张文栋,等,共振隧穿二极管的压阻特性测试与研究,半导体学报,2006,27(10):1789-1793
    [16] Clobodskyy A, Could C, Slobodskyy T, et al. Voltage-controlled Spin Selection in a Magnetic Resonant tunneling diode. Physical Review Letters, 2003, 90(24): 246601-1-4.
    [17] Esaki L, New phenomenon in narrow germanium p-n junctions. Phys. Rev, 1958: 109-114
    [18] Tsu R, Esaki L. Tunneling in a finite supurlattice. Appl. Phys. Lett., 1973, 22: 562-568.
    [19] Chang L L,Esaki L,Tsu R. Resonant tunneling in semicondutor double barriers. Appl. Phys. Lett., 1974, 24: 593-599
    [20]盛柏桢,程文芳,纳米技术与器件的应用,http://www.smt.cn/info/html/Ele /Ele_5030-1.Html
    [21] Shimizu N., Miyamoto Y., Ishibashi, T., Uni-Traveling-Carrier Photodiodes, Lasers and Electro-Optics Society 1999 12th Annual Meeting. LEOS '99. IEEE, San Francisco, CA, 1999, 2:808 - 809
    [22]Luryi S. Mechanism of operation of double-barrier resonant-tunneling oscillators. Technical Digest - International Electron Devices Meeting, 1985, 666-669
    [23] Gerald WittResonant Tunneling Diode Research http://www.afrl.af.mil/techconn /index.html
    [24]Chenrong Xiong, Yan Wang, Peiyi Chen, et al, Fabrication of p-well resonant tunneling diode based on SiGe/Si and its DC-parameter extraction, Materials Science in Semiconductor Processing, 2004, 7: 379-382
    [25]王建林,王良臣,曾一平等,一种新材料结构的RTD器件的设计及实现,半导体学报,2005年,20(1):1-5
    [26]马龙,张杨,戴扬等,RTD与HEMT在InP衬底上的单片集成,2007,28(增):414-417
    [27]Ching Sung Lee, Wei Chou Hsu, Jun Chin Huang, Monolithic AlAs-InGaAs-InGaP-GaAs HRT-FETS With PVCR of 960 at 300K, IEEE, Electron Devices Letters,2005,26(2):50-52
    [28]李亚丽,张雄文,冯震等,InP基谐振隧穿二极管的研究,半导体技术,2008,33(2):141-143
    [29]张磊,杨瑞霞,武一宾等,共振隧穿二极管的设计、研制和特性分析,2007,28(5):737-740
    [30]王令全,王燕,陈培毅等,基于非平衡格林函数的共振隧穿二极管模型,半导体学报,2003,24(增):132-135
    [31]李涛,余志平,王燕等,室温下Si/Si1-xGex共振隧穿二极管的数值模拟,半导体学报,2006,27(5):869-873
    [32]梁擎擎,共振隧穿二极管的建模和模拟,硕士学位论文,2000
    [33]程玥,许军,共振隧穿二极管基础电路的模拟与分析,微纳电子技术,2003,7:579-572
    [34]杨倩,任勇峰,沈三民,基于Pspice的RTD等效模型及其应用电路研究,微纳电子技术,2008,3:131-135
    [35]林弥,孙浙永,沈继忠,基于RTD的与非门和或非门设计,科技通报,2004,20(5):434-437
    [36]林弥,沈继忠,王林,基于开关序列的RTD多值相器设计,浙江大学学报,2004,31(1):38-42
    [37]罗惠英,牛萍娟,陈乃金等,三稳态共振隧穿器件的研制,微纳电子技术,2006,1:8-10
    [38]马龙,王良臣,杨富华,RTD基高速多值量化器的设计,电子学报,2005,33(11):2006-2008
    [39]马龙,王良臣,黄应龙等,基于RTD与CMOS的新型数字电路设计,固体电子学研究与进展,2006,26(3):295-299
    [40]马龙,王良臣,杨富华,基于硅基共振隧穿二极管与CMOS的数字电路,第十四届全国半导体集成电路、硅材料学术会议,中国,珠海,2005,11:428-431
    [41]王建,张文栋,薛晨阳等,基于共振隧穿二极管的GaAS基压力传感器研制,传感技术学报,2006,19(5): 1844-1987
    [42]张文栋,王建,薛晨阳等,基于共振隧穿二极管的GaAs悬臂式声传感器研究,传感技术学报,2006,19(5):2293-2296
    [43]张斌珍,谢斌,薛晨阳等,基于共振隧穿二极管的矢量水声传感器设计,传感技术学报,2006,19(5):2283-2286
    [44]陈建军,GaAs基共振隧穿压阻式加速度计研究,硕士学位论,2006
    [45]陈乃金,郭维廉,牛萍娟,共振隧穿二极管型光探测器和光调制器,微纳电子技术,2008,45(1):6-11
    [46]郭维廉,牛萍娟,梁惠来等,新型纳米器件——共振隧穿二极管的研究,压电与声光,2001,增:319-321
    [47]王伟,牛萍娟,郭维廉等,由RTD/MOSFET构成的新型振荡电路,半导体学报,2007,28(2):289-293
    [48]张世林,郭维廉,梁惠来等,共振隧穿二极管的开关时间特性,半导体学报,2003,24(增):136-139
    [49]牛萍娟,郭维廉,梁惠来等,共振隧穿二极管交流小信号模型的建立,固体电子学研究与进展,2002,22(2):1-4
    [50]牛萍娟,郭维廉,梁惠来等,谐振隧穿二极管的直流模型及其双稳态特性,半导体学报,2001,22(9):1171-1175
    [51] LURYT S. Frequency limit of double barrier resonant tunneling oscillators. Applied Physics Letters, 1985, 47(9): 490-492.
    [52] TSUCHIYA M, SAKAKI H, YOSHINO J, et al. Room temperature observation of differential negative resistance in an AlAs/GaAs/AlAs resonant tunneling diode. Japanese Journal of Applied Physics, 1985, 24(6): L466-L468.
    [53] VAN DER WANGT J P A, SEABAUGH A C, BEAM E A, et al. RTD/HFET standy power SRAM gain cell. IEEE Electron Device Letters, 1998, 19(1):7-9.
    [54] TOM P E, BROEKAERT, LEE WAI, et al. Pseudomotphic In0.53Ga0.47As/AlAs/ InAs resonant tunneling diodes with peak-to-valley current ratios of 30 at roomtemperature. Applied Physics Letters, 1988, 53(6): 1545-1547.
    [55] SZE S M. Physics of semiconductor devices. John Wiley&d Sons. 1981, 531-534.
    [56] SHIMIZU N, NAGATSUMA T, SHINAGAWA M, et al. Picosecond-switching time of In0.53Ga0.47As/AlAs resonant-tunneling diodes measured by electro-optic sampling technique. IEEE Electron Device Letters, 1995, 16(6): 262-264.
    [57] SHIMIZU N, NAGATSUMA T, WAHO T, et al. In0.53 Ga0.47As/AlAs resonant tunneling diodes with switching time of 1.5ps. Electronics Letters, 1995, 31(19): 1695-1697.
    [58]施敏主编.现代半导体器件物理.北京,科学出版社,2002. 194-197.
    [59] FINLEY J J, DUCOMMUN Y, KRENNER H. Semiconductor science and nanotechnology. Double barrier resonant tunneling diodes experiment.本文献源于德国慕尼黑工业大学的沃尔特肖特基研究所(Walter Schottky Institute of Technische Universit?t München)实验讲义
    [60] RICCO B, AZBEL M Y. Physics of resonant tunneling: the one-dimensional double-barrier case. Physical Review B, 1984, 29(4):1970-1981.
    [61] WeiL T and Vinter B. Equivalence between resonant tunneling and sequential tunneling in double barrier diodes. Applied Physics Letters, 1987, 50(18): 1281-1283.
    [62]李效白,砷化镓微波功率场效应晶体管及其集成电路,北京:科学出版社, 1998.
    [63]王良臣,半导体量子器件物理讲座第三讲异质结双极晶体管(HBT),物理, 2001, 30(6): 372-379
    [64]康昌鹤,杨树人,半导体超晶格材料及其应用,北京:科学出版社, 1998
    [65]牛萍娟,共振隧穿器件及其应用的研究,博士学位论文,天津大学, 2002. [66王建新,郑燕兰,用于n-p-n HBT的AlGaAs/GaAs多层MBE材料,半导体情报, 1991, 28(6): 7-10.
    [67] Umemoto D K, Velebir J R, Kobayashi K W et al. Integrated npn/pnp GaAs/AlGaAs HBTs grown by selective MBE. Electronics Letters, 1991, 27(17): 1517-1518.
    [68] Mihail Ion Lepsa, Forschungszentrum Jülich, Experiment: Resonant tunneling in quantum structures, CNI-Ferienpraktikum Nanoelektronik 2007, 1-9
    [69] E.R.Brown, W.D.Goodhue,T.C.L.G.Sollner, Fundamental oscillations up to 200 GHz in resonant tunneling diodes and new estimates of their maximum oscillation frequency from stationary-state tunneling theory, J.Appl.Phys, 1988, 84(3):1519-1529
    [70]Koenig, E.T.; Jogai, B.; Huang, C.I. et al,Emitter structure influence on the electron transport mechanism in resonant tunneling diodes, High Speed Semiconductor Devices and Circuits, 1991, Proceedings IEEE/Cornell Conference on Advanced Concepts in 5-7 Aug. 1991:151 - 159
    [71]张世林,郭维廉,梁惠来等,共振隧穿二极管(RTD)I-V特性的几个问题,固体电子学研究与进展,2003,vol 23 (3): 329-333
    [72] SMITH R P, ALLEN S T, REDDY M et al. 0.1μm Schottky-collector AlAs/GaAs resonant tunneling diodes. IEEE Electron Device Letters, 1994, 15(8): 295-297.
    [73] J. N. Schulman, H. J. De Los Santos, D. H. Chow, Physics-Based RTD Current-Voltage Equation, [J] IEEE Electron Device Letters, 1996, 17 (5): 220-222
    [74]Sheard F.W., Toombs G.A., Space-charge buildup and bistability in resonant–tunneling double-barrier structures , [J] Appl.phys.Lett,1988,52:1228-1230
    [75]郭维廉,共振隧穿二极管中电荷积累效应,[J]微纳电子技术2006, 4, p172-176
    [76] Guo Weilian, Song Ruiliang, Wang Wei etal, A new method for measuring series resistance of RTD, [J] Chinese Journal of Semiconductors, 2008, 29, 950-955.
    [77] Nishigachi M , Hashinaga T , Nishizawa H et al. Radiation tolerant GaAs MESFET with a hig hly-doped thin active layer grown by OMVPE. IEEE Transactions on Nuclear Science, 1990, 37(6) part 1: 2071-2705.
    [78] A. A. Belyaev, A. E. Belyaev, R. V. Konakova, et al, Radiation hardness of AlAs/GaAs-based resonant tunneling diodes, Semiconductor Physics, Quantum Electronics & Optoelectronics. 1999. 2( 1): 98-101.
    [79] J. N. Schulman, H. J. De Los Santos, D. H. Chow, Physics-Based RTD Current-Voltage Equation, [J] IEEE Electron Device Letters, 1996, 17 (5): 220-222
    [80] Maezawa K and Mizutani T. A New Resonant Tunneling Logic Gate Employing Monostable-Bistable Transition. Japanese Journal of Applied Physics, 1993, 32(1): L42-L44.
    [81] Mathews R H, Sage J P, Sollner T C L G et al. A new RTD-FET logic family. Proceedings of the IEEE, 1999, 87(4): 596– 605.
    [82] Kevin J. Chen, Tomoyuki Akeyoshi, Koichi Maezawa,Monolithic Integration of Resonant TunnelingDiodes and FET’s for Monostable-Bistable Transition Logic Elements (MOBILE’S),IEEE Electron Device Letter, 1995, 16(2):70-73
    [83] Kevin J . Chen, Takao Waho,Koichi Maezawa, et al, An Exclusive-OR Logic Circuit Based on Controlled Quenching of Series-Connected Negative Differential Resistance Devices, IEEE Electron Device Letter, 1996, 17(6):309-312
    [84] Klamkin, J., Johansson, L.A.; Ramaswamy, A., etal, Monolithically Integrated Balanced Uni-Traveling-Carrier Photodiode with Tunable MMI Coupler for Microwave Photonic Circuits, [M] Optoelectronic and Microelectronic Materials and Devices, 2006 Conference on, 2006, Dec: 184
    [85] M.Yuda, K. Kato, R. Iga, et al, High-input-power-allowable uni-travelling-carrier waveguide photodiodes with semi-insulating-InP, [J] IEEE Electronics Letters, 1999, 35 (16): 1377
    [86] Tomoyuki Akeyoshi, Naofumi Shimuzu, Jiro Osaka, etal, Optoelectronic logic gate monolithically integrating resonant tunneling diodes and uni-traveling-carrier photo diode, [M] 10th Intern. Conf. on Indium Phosphide and Related Materials, Tsukuba, Japan, 1998, May: 423
    [87] Kimikazu Sano,Koichi Murata,Taiichi Otsuji,etal, An 80-Gb/s Optoelectronic Delayed Flip-Flop IC Using Resonant Tunneling Diodes and Uni-Traveling-Carrier Photodiode, IEEE [J] J. of solid state circuits, 2001, 36 (2): 281
    [88]朱浩波,毛陆虹,杨展.单向载流子传输光电探测器模拟, [J]半导体学报, 2006, 27(11):2019
    [89] Camassel J., Peyre H., Glew, R.W., Experimental investigation of the thermal stability of strained InGaAs/InGaAsP MQWs, [C] Indium Phosphide and Related Materials, Conference Proceedings., Fifth International Conference on, Paris, 1993: 36
    [90]张春安,高带宽光收发器件的技术现状,光电子技术与信息,2002,15(4):28-32
    [91] Scott J S, Kaminski J P, Allen S J, et al, Terahertz response of an InGaAs/AlAs resonant tunneling diode, Semicond. Sci. Technol., 1994, vol 9: 530-532
    [92] C. L. Chen, R. H. Mathews, L. J. Mahoney,et al. New Self-Aligned Planar resonant-Tunneling Diodes for Monolithic Circuits, IEEE ELECTRON DEVICE LETTERS, 18(10): 489, 1997
    [93] H. Z. Zheng and F. H. Yang, in Proc. of 20th Int. Conf. on Physics of Semicond., Edited by E. M. Anastassaki, and J. D. Joannoponlas, World Scientific, Singapore,1990, p. 1317.
    [94] M. L. Leadbeater, E. S.Alves, F. W. Sheard, L. Eaves, M. Henini, O. H. Hughes, and G. A. Toombs, J. Phys. Condens. Matter, 1, 10606, 1989
    [95] DELLOW M W,BETON P H,HENINI M,et al, Gated Resonant Tunnelling Devices, Electronics Letters, 1991; 27(2):134-136
    [96] Koichi Maezawa, Tomoyuki Akeyoshi, Takashi Mizutani, Functions and applications of monostable-bistable transition logic elements (MOBILE's) having multiple-input terminals , IEEE Transactions on Electron Devices, 1994; 41(2):148-150
    [97] Ching Sung Lee, Wei Chou Hsu, Jun Chin Huang, Monolithic AlAs-InGaAs-InGaP-GaAs HRT-FETS With PVCR of 960 at 300K, IEEE, Electron Devices Letters,2005,26(2):50-52
    [98] J. N. Schulman, H. J. De Los Santos, D. H. Chow, Physics-Based RTD Current-Voltage Equation, [J] IEEE Electron Device Letters, 1996, 17 (5): 220-222
    [99]刘恩科,朱秉升,罗晋生,[M]半导体物理学第四版,北京,国防工业出版社,p184
    [100] Chen K J, Maezawa K and Yamamoto M. Novel current–voltage characteristics in an InP-based resonant-tunneling high electron mobility transistor. Applied Physics Letters, 1995, 67(12): 3608-3610.
    [101] Woodward T K, McGill T C and Burnham R D. Experimental realization of a resonant tunneling transistor. Applied Physics Letters, 1987, 50(8): 451-453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700