用户名: 密码: 验证码:
隔震结构的抗风分析与等效风荷载
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基础隔震技术是一种有效的被动控制减震技术,随着经济的发展高层建筑日益增多,隔震技术在中高层建筑中也已得到了广泛的应用。国内外许多学者对结构在地震作用下的隔震效果展开了大量理论和实验研究,而对于高层隔震结构在风作用下动力响应以及隔震结构的静力等效风荷载的研究相对较少。本文针对基础隔震建筑增加隔震层之后由于动力特性的改变,研究了基础隔震建筑在脉动风荷载下的响应以及对其静力等效风荷载进行计算,研究隔震建筑风荷下安全性、舒适性性能。
     本文针对我国东南沿海某城市一栋十二层框架混凝土隔震结构进行地震荷载时程下的响应分析,在Ansys环境下对隔震与非隔震结构建立有限元模型,对两种结构在八度地震作用下的响应进行了时程分析。
     为了解台风区隔震结构的风振响应,利用产生的人工脉动风时程,模拟脉动风荷载对结构进行了风振响应计算,对比分析了隔震与非隔震结构在风荷载作用下的响应。
     本文最后回顾了结构静力等效风荷载的计算方法,通过不同等效方法,对基础隔震结构的静力等效风荷载进行了分析比较。
Base-isolation is an effective seismic passive control technology. With the economic development, base-isolated technology has been widely used in middle and even high-rise buildings. Theoretical and experimential researches about the seismic control effectiveness about the base-isolated structures have been done, but there is rare research about the dynamic response of base-isolated structures under the wind loads and equivalent static wind load of this type of structures. This paper is to analyze the dynamic response of isolated and non-isolated structures under wind loads and compute the equivalent static wind loads of the isolated structures with different methods.
     In this paper, the seismic reponse of a 12 storey building is computed using Ansys for the finite element models of base-isolated and non-isolated structures, and their responses are compared under eight-degree of earthquake intensity.
     To investigate the wind induced response of seismic base-isolated structures, the fluctuating wind speeds are simulated with Auto Regressive method, The responses of the base-isolated and non-isolated structures under the fluctuating wind loads was analyzed and compared.
     The static equivalent wind load methods are reviewed. The equivalent wind loads for base-isolated structures are calculated and compared with different methods.
引文
[1]樊爱武,程灵芝.叠层橡胶支座基础隔震体系介绍[J].邮电设计技术. 1999(12):33-34.
    [2]王永卫,王群伟,杜杰.隔震技术的应用与发展[J].山西建筑. 2009, 35(27) :75-76.
    [3] Nagarajaiah S, Sun X. Response of Base-isolated Usc hospital Building in Northridge Earthquake.[J]. Journal of Structural Engineering. 2000, 126(10) : 1177.
    [4]朱前坤.高层隔震建筑抗震及抗风分析[D].兰州理工大学, 2008:17-17
    [5]魏德敏,康锦霞,韩海崴.基础隔震高层建筑地震响应的理论分析[J].地震工程与工程振动. 2003(01):36-37.
    [6]孙玉红,祁皑,王丽红.隔震技术在多层建筑中的应用[J].沈阳建筑大学学报(自然科学版). 2005(06):12-19.
    [7]张涛,张富有.基础隔震技术国内外研究新进展[J].西部探矿工程. 2003(12):45-48.
    [8]韩淼,王秀梅.基础隔震技术的研究现状[J].北京建筑工程学院学报. 2004(02):72-76.
    [9] Kaplan H, Seireg A. Optimal Design of a Base Isolated System for a High-rise[Z]. 2001: 30.
    [10] De la Llera J C, Lüders C. Analysis, Testing, and Implementation of Seismic Isolation of Buildings in Chile[Z]. Arthquake Engineering & Structural Dynamics, 2004: 33, 543-574.
    [11] Jain S K, Thakkar S K. Application of Base Isolation for Flexible Buildings[Z]. 2004.: 6-8.
    [12]候宝隆.日本隔震技术的新发展与控震技术的实际应用[J].工业建筑. 2000(11).:26-29.
    [13]孙柏锋,潘文.叠层橡胶垫基础隔震建筑结构设计方法与应用[J].世界地震工程. 2007(04):34-38.
    [14] Henderson P, Novak M. Response of Base-isolated Buildings to Wind Loads[Z]. 1989: 1201-1217.
    [15] Chen Y, Ahmadi G. Wind Effects on Base-isolated Structures[Z]. 1992: 118,1708-1727.
    [16] Vulcano A. Comparative Study of the Earthquake and Wind Dynamic Responses of Base-isolated Buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1998, 74-76: 751-764.
    [17] Liang B, Shishu X, Jiaxiang T. Wind Effects on Habitability of Base-isolated Buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90(12-15): 1951-1958.
    [18]韦永祥.基于强震和风振记录分析隔震结构的动力特性[D].北京:中国地震局工程力学研究所学位论文, 2006.
    [19]杜永峰,朱前坤.高层隔震建筑风振响应研究[J].工程抗震与加固改造. 2008(06):64-68.
    [20]庞迎波,葛新广,朱金松.基础隔震的多高层结构随机风振响应的解析法[J]四川建筑. 2008(12):116-118.
    [21]陆鸣,田学民,王笃国,等.建筑结构基础隔震技术的研究和应用[J].震灾防御技术. 2006, 1(1):8.
    [22]王成.隔震结构应用设计与研究[J].工程建设与设计. 2003(8):32-38.
    [23]李宏男,霍林生.结构多维减振控制[M].北京:科学出版社, 2007:97-147.
    [24]张建国,顾明,张永山.高层建筑静力等效风荷载研究[J].广州大学学报(自然科学版). 2005(06):532-536.
    [25] Fu J, Xie Z, Li Q S. Equivalent Static Wind Loads on Long-Span Roof Structures.[J]. Journal of Structural Engineering. 2008, 134(7): 1115-1128.
    [26]周印.高层建筑静力等效风荷载和响应的理论与实验研究[D].同济大学桥梁工程系同济大学, 1998.
    [27] Zhou Y, Kareem A, Gu M. Gust loading factors for design applications[C]. Copenhagen(DK): 1999.
    [28] Zhou Y. Alongwind Static Equivalent Wind Loads and Responses of Tall Buildings. Part II: Effects of Mode Shapes - Unfavorable Distributions of Static Equivalent Wind Loads[J]. Journal of Wind Engineering and Industrial Aerodynamics. 1999, 79: 151-158.
    [29] Kasperski M, Niemann H J. The L.R.C. (load-response-correlation) - Method a General Method of Estimating Unfavourable Wind Load Distributions for Linear and Non-linear Structural Behaviour [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992: 23, 1753-1763.
    [30]中华人民共和国建设部.建筑抗震设计规范GB50011-2010 [S].北京:中国建筑工业出版社, 2010.
    [31]王博潘文.弹性时程分析时地震波选用的一种方法[J].河南科学. 2010, 28(8):971.
    [32]魏德敏.高层隔震建筑三维地震响应[J].世界地震工程. 2002(1):116-118.
    [33]梁波,俞永敏,唐家祥.风对隔震建筑物居住舒适度的影响[J].振动工程学报. 2001(4):87-90.
    [34]刘尚培.风对结构的作用-风工程导论[M].同济大学出版社, 1992.
    [35]中国建筑技术研究院主编.高层民用建筑钢结构技术规程(JGJ-98)[S].北京:中国建筑工业出版社, 1998.
    [36]董军,邓洪洲,刘学利.高层建筑脉动风荷载时程模拟的AR模型方法[J].南京建筑工程学院学报. 2000(2):20-25.
    [37]舒新玲,周岱.风速时程AR模型及其快速实现[J].空间结构. 2003(4):27-32.
    [38]潘峰.大跨度屋盖结构随机风致振动响应精细化研究[D].浙江大学建筑工程学院浙江大学, 2008.:43.
    [39] Davenport A. How Can We Simplify and Generalize Wind Loads? [J]. 1995: 54-55, 657-669.
    [40]黄本才.结构抗风分析原理及应用[M].上海:同济大学出版社,2001.
    [41]李盛勇,廖耘,汪丛军,等.广州合景大厦所受风荷载的特点[J].结构工程师. 2006, 22(6):6.
    [42]陈波.大跨屋盖结构等效静风荷载精细化理论研究[D].哈尔滨:哈尔滨工业大学学位论文,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700