用户名: 密码: 验证码:
矩阵变换器—永磁同步电机调速系统稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矩阵变换器无需大的储能元件即可实现交-交直接功率变换,具有对电网谐波污染小、能量双向流动、结构紧凑、功率密度高等特点,是一类极具发展潜力的功率变换器。矩阵变换器在输出功率超过一定限值时运行会变得不稳定,输入侧电压、电流出现高频振荡,导致向电网注入谐波并危害功率器件,因此开展对矩阵变换器稳定性问题的研究具有实际意义。
     本文结合非线性动力学理论研究了矩阵变换器的稳定性问题。针对矩阵变换器-阻感负载系统在不稳定运行时的高频振荡现象,从非线性动力学角度研究了其本质原因,分析了系统在功率限值附近的特性。建立了矩阵变换器-阻感负载系统在dq旋转坐标系下的基波模型,对其在平衡点处做线性化处理,并通过数值方法获得近似线性化矩阵的特征值变化轨迹。根据特征值轨迹的变化规律验证了Hopf分岔定理的条件,据此判定矩阵变换器不稳定振荡的本质是非线性系统在临界点处的Hopf分岔现象。对系统在功率限值附近的特性做了仿真和实验研究,结果验证了矩阵变换器基波模型在低频范围内的有效性。
     针对矩阵变换器-阻感负载系统数学模型体现出的强非线性,研究了其混沌动力学特性。建立了系统的无量纲数学模型,比较模型相轨线和典型混沌系统相轨线之间的异同,指出无量纲系统具有混沌系统的典型特征——轨线对初值的极端敏感性及自相似性。对仿真结果做频谱分析并计算非线性系统的Lyapunov指数,分别从定性和定量角度证明:系统基波模型在输出功率大于稳定功率限值时具有混沌特性。对矩阵变换器不稳定振荡时的非线性特性做了实验分析,根据实验数据获得电压、电流变量的相轨迹并做频谱分析,结果在一定程度上与仿真结果相近,说明矩阵变换器在不稳定振荡时可能存在混沌特性。
     将稳定性问题研究扩展至矩阵变换器-永磁同步电机系统,分析了其稳定运行边界随系统参数的变化规律。用“占空比矢量法”描述矩阵变换器的输入输出关系,建立了包括电源、变换器、永磁同步电机和矢量控制器在内的系统微分方程模型,推导了系统在平衡点附近的小信号模型。根据Lyapunov稳定判据,通过数值方法得到系统的稳定运行边界。分析了稳定边界的功率特性及系统参数对稳定运行区域的影响。理论分析及数值计算表明,矩阵变换器输出功率限值与电机稳态工作点的选取有关;参数对系统稳定性的影响表现出一定的规律性。仿真结果验证了文中的建模和分析正确、有效,相关结论和实验研究对矩阵变换器-永磁同步电机系统参数设计和性能分析具有指导意义。
Matrix Converter has received a lot of attention from researchers due to some advantages over traditional rectifer-inverter type power converters, such as small reactive components, reduced harmonic injection to the power grid, reversible energy transforming, compact structure and high power density. As a result, the promising prospect on development of matrix converter has been widely noticed. An unstable oscillation emerges when output power of matrix converter exceeds some upper limit. The oscillation increases harmonics and results a breaking hazard to the power devices of matrix converter, which makes research on the stability issues of matrix converter very important to its practical application.
     The stability issues on matrix converter are studied by considering its nonlinear dynamic characteristics. The essential cause of the unstable oscillation is analyzed for an electrical drive fed by three phase to three phase matrix converter in a view of nonlinear dynamic theory, and behavior of the system close to the upper limit of output power is investigated. A fundamental-harmonic model is derived in rotating dq coordinate system. The model is linearized at the equilibrium point, and the characteristic root loci are acquired by solving the Jacobian matrix numerically. The Hopf bifurcation nature of unstable oscillation of matrix converter is concluded by checking Poincaré-Andronov-Hopf theorem, with output power as its bifurcation parameter. Behavior of the system near the critical power is examined by simulation and experiment. Simulation results coincide with experimental results very well in the low frequency region, which proves the validity of the fundamental-harmonic model.
     Chaotic dynamic characteristics of the fundamental-harmonic model of matrix converter are studied. Dimensionless equations of the system are derived and analyzed by simulation. The trajectories from simulation show some typical chaotic characteristics such as the extreme sensitivity to initial values and self-similarity. Fast Fourier transform (FFT) of the simulation results is done to analyze its characteristic in frequency domain, and the Lyapunov Exponents of the system are calculated. The analysis and calculation results verify chaotic behavior of the studied matrix converter drive system qualitatively and quantitatively respectively. Experimental research is also developed. The trajectories drawn by using experimental data express similar behavior with simulation results. It expresses a possible, but not definite, chaos in the electrical drive system fed by matrix converter.
     An extended stability research on permanent magnet synchronous motor(PMSM) drive system fed by matrix converter(MC-PMSM) is launched, and the stable operation region variation against system parameters are analyzed. The input-output relationship of matrix converter is expressed simply using the“duty-cycle space-vector”. The differential equations of the system, including both power stage and control stage, are derived with the variables in rotating coordinates, and a small-signal equation is obtained. Then stable region and its boundary can be determined according to a Lyapunov-type stability analysis. Power characteristics of the stable boundary is presented and analyzed, and the influence of the parameters of input and digital filters on stable region is discussed. Numerical calculation results show that the output power limit of matrix converter varies with operating points of the PMSM, and is not constant. In addition, the influence of the parameters on stability appears to follow some rules. The modeling and analyzing is verified by computer simulations. Experimental research is carried out to give qualitative verification. The research of this paper can be used as a guide for stability design and parameters selection for MC-PMSM systems.
引文
[1] Bose B K . Advances in power electronics-its impact on the environment[C].Proceeding of IEEE International Symposium on Industrial Electronics,1998,(1):28-30.
    [2] Bose B K.Energy,environment,and advances in power electronics[J].IEEE Transactions on Power Electronics,2000,15(4):688-701.
    [3] Chan C C.Sustainable energy and mobility,and challenges to power electronics[C] . Proceeding of Power Electronics and Motion Control Conference,2006,(1):1-6.
    [4] Bose B K . Power electronics and motor drives recent progress and perspective[J].IEEE Transactions on Industrial Electronics,2009,56(2):581-588.
    [5] Shinde S M,Patil K D,Khairnar Ms S S,et al.The role of power electronics in renewable energy systems research and development[C].Proceeding of 2nd International Conference on Emerging Trends in Engineering and Technology,2009,726-730.
    [6] Sinnadurai N and Charles H K.Electronics and its impact on energy and the environment[C] . Proceeding of 32nd International Spring Seminar on Electronics Technology,2009,1-10.
    [7] Yeung Y P B,Cheng K W E,Chan W W,et al.Automobile hybrid air conditioning technology[C].Proceedings of 3rd International Conference on Power Electronics Systems and Applications,2009,1-5.
    [8]宋战锋.低电压故障下双馈风力发电系统特性分析与运行控制[D].[博士学位论文],天津:天津大学,2009.
    [9] Ellis M W,Spakovsky M R V,and Nelson D J.Fuel cell systems: efficient,flexible energy conversion for the 21st century[C].Proceedings of IEEE,2001,89(12):1808-1818.
    [10] Emadi A,Lee Y J,and Rajashekara K.Power electronics and motor drives in electric , hybrid electric , and plug-in hybrid electric vehicles[J] . IEEE Transactions on Industrial Electronics,2008,55(6):2237-2245.
    [11] Farooque M and Maru H C . Fuel cells-the clean and efficient power generators[C].Proceedings of IEEE,2001,89(12):1819-1829.
    [12] Rajashekara K . Propulsion system strategies for fuel cell vehicles[C].Proceedings of SAE World Congress,2000,56-65.
    [13] Gulhane V,Tarambale M R,and Nerkar Y P.A scope for the research and development activities on electric vehicle technology in pune city[C].Proceedings of IEEE Conference on Electric and Hybrid Vehicles,2006,1-8.
    [14] Zhang Xiang,Wang Jia,Yang Jianzhong,et al.Prospects of new energy vehicles for China market[C].Proceedings of IET Hybrid and Eco-Friendly Vehicle Conference,2008,1-11.
    [15]邓文浪.双级矩阵变换器及其控制策略研究[D].[博士学位论文],长沙:中南大学,2007.
    [16]曾雨竹.对矩阵变换器若干问题的研究[D].[博士学位论文],杭州:浙江大学,2007.
    [17] Roberto Cárdenas,Rubén Pe?a,Patrick Wheeler,et al.Control of the reactive power supplied by a WECS based on an induction generator fed by a matrix converter[J].IEEE Transactions on Industrial Electronics,2009,56(2):429-438.
    [18] Rubén Pe?a,Roberto Cárdenas,Eduardo Reyes,et al.A topology for multiple generation system with doubly fed induction machines and indirect matrix converter[J].IEEE Transactions on Industrial Electronics,2009,56(10):4181-4193.
    [19] Wheeler P,Clare J,Empringham L,et al.A matrix converter based permanent magnet motor drive for an aircraft actuation System[C] . Proceeding of International Electric Machines and Drives Conference,2003,(2);1295-1300.
    [20] Bingsen Wang and Giri Venkataramanan.Dynamic voltage restorer utilizing a matrix converter and flywheel energy storage[J] . IEEE Transactions on Industrial Applications,2009,45(1):222-231.
    [21] Wheeler P W,Clare J C,Apap M,et al.A fully integrated 30kW motor drive using matrix converter technology[C].Proceedings of European Conference on Power Electronics and Applications,2005,1-9.
    [22] DongSheng Zhou,Philips K P,Skibinski G L,et al.Evaluation of AC-AC matrix converter,a manufacturer's perspective[C].Proceedings of the Industry Applications Conference,2002,3:1558-1563.
    [23] Hara Hidenori,Yamamoto Eiji,and Sonoda Keisuke.Matrix converter drive varispeed AC[J].Yaskawa Techinical Review,2005,69(2):75-78.
    [24] Bose B K.Modern Power Electronics and AC Drives[M].New Jersey:Prentice-Hall,2002.
    [25] Arévalo S L.Matrix Converter for Frequency Changing Power Supply Applications[D].[PhD Thesis],UK:University of Nottingham,2008.
    [26] Gyugyi L,Pelly B R著,王孝祥等译.静止功率变频器,北京:冶金工业出版社,1988.
    [27] Gyugyi L.Generalized theory of static power frequency changers[D].[PhD Thesis],UK:University of Salford,1970.
    [28] Casadei D,Serra G,Tani A,et al.Matrix converter modulation strategies:a new general approach based on space-vector representation of the switch state[J].IEEE Transactions on Industrial Electronics,2002,49(2):370-381.
    [29] Alesina A,Venturini M.Solid-state power conversion:a fourier analysis approach to generalized transformer synthesis[J].IEEE Transactions on Circuits and systems,1981,28(4):319-330.
    [30] Alesina A,Venturini M.Intrinsic amplitude limits and optimum design of 9-switches direct PWM AC-AC converters[C].Proceeding of IEEE PESC'88,1988,(2):1284-1291.
    [31] Alesina A , Vernturini M . Analysis and design of optimum-amplitude nine-switch direct AC-AC converters[J] . IEEE Transactions on Power Electronics,1989,4(1):101-112.
    [32] Roy G,Duguar L,Manias S,et al.Asynchronous operation of cycloconverter with improved voltage gain by employing a scalar control algorithm[C].Proceeding of IEEE IAS Annual Meeting,1987,889-898.
    [33] Roy G,April G E.Cycloconverter operation under a new scalar control algorithm[C].Proceeding of PESC'89,1989,368-375.
    [34] Ziogas P,Khan S,and Rashid M.Some improved forced commutated cycloconverter structure[J].IEEE Transactions on Industry Applications,1985, (1):1242-1253.
    [35] Ziogas P D,Khan S I,and Rashid M H.Analysis and design of forced commutated cycloconverter structures with improved transfer characteristic[J].IEEE Transactions on Industrial Electronics,1986,33(3):271-280.
    [36] Huber L,Borojevic D,and Burány N.Voltage space vector based PWM control of forced commutated cycloconverters[C] . Proceeding of 15th Annual Conference of IEEE Industrial Electronics,1989,106-111.
    [37] Huber L,Borojevic D.Space vector modulator for forced commutated cycloconverters[C] . Proceeding of Industry Applications Society Annual Meeting,1989,871-876.
    [38] Huber L,Borojevic D,and Burány N.Digital implementation of the space vector modulator for forced commutated cycloconverters[C].Proceeding of 4th International Conference on Power Electronics and Variable-Speed Drives,1990,63-68.
    [39] Huber L,Borojevic D.Space vector modulation with unity input power factor for forced commutated cycloconverters[C] . Proceeding of Industrial Applications Society Annual Meeting,1991,1032-1041.
    [40] Huber L , Borojevic D . Input filter design of forced commutated cycloconverters[C].Proceeding of 6th Electrotechnical Conference,1991,2:1356-1359.
    [41] Huber L , Borojevic D . Digital modulator for forced commutated cycloconverters with input power factor correction[C].Proceeding of the 1992 International Conference on Power Electronics and Motion Control,1992,1:518-523.
    [42] Huber L,Borojevic D,and Burány N.Analysis,design and implementation of the space-vector modulator for forced-commutated cycloconverter[C].IEE proceeding of Electric Power Applications,1992,139(2):103-113.
    [43] Huber L,Borojevic D,Zhuang X F,et al.Design and implementation of a three-phase to three-phase matrix converter with input power factor correction[C] . Proceeding of Applied Power Electronics Conference and Exposition,1993,860-865.
    [44] Huber L,Borojevic D.Space vector modulated three-phase to three-phase matrix converter with input power factor correction[J].IEEE Transaction on Industry Applications,1995,1234-1246.
    [45] Ormaetxea E,Andreu J,Kortabarria I,et al.A matrix converter control embedded in a single system on chip based on a FPGA[C].Proceeding of 5th IET International Conference on Power Electronics,Machines and Drives (PEMD 2010),2010,1-6.
    [46] Kumpner C,Nielsen P,Boldea I,et al.A new matrix converter motor (MCM)for industry applications[J].IEEE Transactions on Industrial Electronics,2002,49(2):401-406.
    [47] Casadei D,Grandi G,Serra G,et al.Space vector control of matrix converters with unity input power factor and sinusoidal input/output waveforms[C].Proceeding of 5th European Conference on Power Electronics and Applications,1993,7:170-175.
    [48] Casadei D,Serra G,and Tani A.Reduction of the input current harmonic content in matrix converters under input/output unbalance[J].IEEE Transactions on Industrial Electronics,1998,45(3):401-411.
    [49] Matteini M . Control techniques for matrix converter adjustable speed drives[D].[Doctor Thesis],Italy:University of Bologna,2001.
    [50] Ishiguro A,Inagaki K,Ishida M,et al.A new method of PWM control for forced commutated cycloconverters using microprocessors[C].Proceeding of Industry Applications Society Annual Meeting,1988,(1):712-721.
    [51] Ishiguro A,Furuhashi T,and Okuma S.A novel control method for forced commutated cycloconverters using instantaneous values of input line-to-line voltages. Industrial Electronics[J].IEEE Transactions on Industrial Electronics,1991,38(3):166-172.
    [52] Oyama J,Higuchi T,Yamada E,et al.New control strategy for matrix converter[C].Proceeding of Power Electronics Specialists Conference,1989,1:360-367.
    [53] Oyama J,Higuchi T,Tsukamoto R,et al.Power factor improvement of PWM matrix converter using intermediate voltage[C].Proceeding of the Power Conversion Conference,1993,284-289.
    [54] Oyama J,Xia Xiarong,Higuchi T,et al.Effect of PWM pulse number on matrix converter characteristics[C] . Proceeding of Power Electronics Specialists Conference,1996,2:1306-1311.
    [55] Burány N.Safe control of four-quadrant switches[C].Proceeding of Industry Applications Society Annual Meeting,1989,1:1190-1194.
    [56] Beasant R R,Beattie W C,and Refsum A.An approach to the realization of a high-power Venturini converter[C].Proceeding of Power Electronics Specialists Conference,1990,291-297.
    [57] Empringham L,Wheeler P W,and Clare J C.Intelligent commutation of matrix converter bi-directional switch cells using novel gate drive techniques[C].Proceeding of PESC,1998,707-713.
    [58] Empringham L,Wheeler P W,and Clare J C.A matrix converter induction motor drive sing intelligent gate drive level current commutation techniques[C].Proceeding of Industry Applications Conference,2000,3:1936-1941.
    [59] Wheeler P W . A matrix converter for variable speed AC motor drives[D].[Doctor Thesis],UK:University of Bristol,1993.
    [60] Ziegler M,Hoffman W.Semi natural two steps commutation strategy for matrix converters[C].Proceedings of PESC,1998,727-731.
    [61] Ziegler M,Hoffman W.A new two steps commutation policy for low cost matrix converters[C].Proceedings of PCIM 2000 Europe,2000.
    [62] Andreas Waltsgott,Marcus Ziegler et al.Method of synchronising/controlling AC voltage-fed converters esp matrix converters,in multi-phase systems, Germany,DE19742609,1998-6-2.
    [63] Mahlein J,Igney J,Weigold J,et al.Matrix converter commutation strategies with and without explicit input voltage sign measurement[J].IEEE Transactions on Industrial Electronics,2002,49(2):407-414.
    [64] Wheeler P W,Clare J C,Empringham L.A MCT based matrix converter with minimized commutation times and enhanced waveform quality. Power Electronics[C].Proceeding of International Conference on Power Electronics,Machines and Drives,2002,206-210.
    [65] Ziegler M,Hofmann W.New one-step commutation strategies in matrix converters[C].Proceeding of 4th IEEE International Conference on Power Electronics and Drive Systems,2001,2:560-564.
    [66] Empringham L,Wheeler P,and Clare J.Power density improvement and robust commutation for a 100 kW Si-SiC matrix converter[C].Proceeding of 13th European Conference on Power Electronics and Applications,2009,1-8.
    [67] Neft C L and Shauder C D . Theory and design of a 30-HP matrix converter[C].Proceeding of the 1988 IEEE Industry Applications Society Annual Meeting,1988,1:934-939.
    [68] Klumpner C,Blaabjerg F.Using reverse-blocking IGBTs in power converters for adjustable-speed drives[J].IEEE Transactions on Industry Applications,2006,42(3):807-816.
    [69] Adamek J,Hofmann W,Ziegler M.Fast commutation process and demand of bidirectional switches in matrix converters[C].Power Electronics Specialist Conference,2003,3:1281-1286.
    [70] Bland M J,Wheeler P W,Clare J C,et al.Comparison of bi-directional switch components for direct ac-ac converters[C].Power Electronics Specialists Conference,2005,4:2905-2909.
    [71] Klumpner C,Nielsen P,Boldea I,et al.New solutions for a low-cost power electronic building block for matrix converters[J].IEEE Transactions on Industrial Electronics,2002,49(2):336-344.
    [72] Araki T.Integration of power devices-next tasks[C].2005 European Conference on Power Electronics and Applications,2005:1-10.
    [73] Chang J,Braun D.High-frequency AC-AC converter using 3-in-1 IBPMs and adaptive commutation[C].Power Electronics Specialists Conference,2002,1:351-357.
    [74] Casadei D,Serra G,Trentin A,et al.Experimental analysis of a matrix converter prototype based on new IGBT modules[C] . Proceedings of the IEEE International Symposium on Industrial Electronics,2005,2:559-564.
    [75] De Lillo L,Empringham L,Wheeler P,et al.A 20 KW matrix converter drive system for an electro-mechanical aircraft (EMA) actuator[C].2005 European Conference on Power Electronics and Applications,2006:1-6.
    [76] Hornkamp M,Loddenk?tter M,Münzer M,et al.EconoMAC the first all-in-one IGBT module for matrix converters[C].Proceeding of Drivers and Controls and Power Electronics Conference,2001:35-39.
    [77] Galvez J L,Jorda X,Vellvehi M,et al.Intelligent bidirectional power switch module for matrix converter applications[C].2007 European Conference on Power Electronics and Applications,2008:1-9.
    [78] Heldwein M L,Nussbaumer T,Kolar J W.Differential mode EMC input filter design for three-phase AC-DC-AC sparse matrix PWM converters[C].Power Electronics Specialists Conference,2004,1:284-291.
    [79] Wheeler P,Grant D.Optimised input filter design and low-loss switching techniques for a practical matrix converter[C].IEE Proceedings on Electric Power Applications,1997,53-60.
    [80] Klumpner C,Nielsen P,Boldea I,et al.New Steps Towards a Low-Cost Power Electronic Building Block for Matrix Converters[C].Proceedings of the 2000 IEEE Industry Applications Conference,2000,3:1964-1971.
    [81] Pinto F,Silva F.Input filter design for sliding mode controlled matrix converters[C].Power Electronics Specialists Conference,2001,2:648-653.
    [82] Kume T,Yamada K,Higuchi T,et al.Integrated filters and their combined effects in matrix converter[J].IEEE Transactions on Industry Applications,2007,43(2):571-581.
    [83] Schuster A.A matrix converter without reactive clamp elements for an induction motor drive system[C].Proceeding of IEEE Power Electronics Specialists Conference,1998,1:714-720.
    [84] Nielsen P,Blaabjerg F,Pedersen J K.Novel solutions for protection of matrix converter to three phase induction machine[C].Proceeding of IEEE Industry Applications Conference,1997,2:1447-1454.
    [85] Nielsen P,Blaabjerg F,Pedersen J K.New protection issues of a matrix converter : design considerations for adjustable-speed drives[J] . IEEE Transactions on Industry Applications,2002,35(5):1150-1161.
    [86] Mahlein J,Braun M.A matrix converter without diode clamped over-voltage protection[C].Proceeding of 3rd International Power Electronics and Motion Control Conference,2000,2:817-822.
    [87] Mahlein J,Bruckmann M,Braun M.Passive protection strategy for a drive system with a matrix converter and an induction machine[J].IEEE Transactions on Industrial Electronics,2002,49(2):297-303.
    [88] Kwak S,Toliyat H A.An approach to fault-tolerant three-phase matrix converter drives[J].IEEE Transactions on Energy Conversion,2007,22(4):855-863.
    [89] Kwak S.Fault-tolerant structure and modulation strategies with fault detection method for matrix converters[J].IEEE Transactions on Power Electronics,2010,25(5):1201-1210.
    [90] Podlesak T F,Katsis D C,Wheeler P W,et al.A 150-kVA vector-controlled matrix converter induction motor drive[J].IEEE Transactions on Industry Applications,2005,41(3):841-847.
    [91] Tamai Y,Abe Y,Odaka A,et al.A high performance 1MVA matrix converter suitabe for wind power systems[C] . Proceeding of China Wind Power Conference,2009.
    [92] Barakati S M,Kazerani M,Aplevich J D.Maximum power tracking control for a wind turbine system including a matrix converter[J].IEEE Transactions on Energy Conversion,2009,24(3):705-713.
    [93] Nikkhajoei H,Lasseter R H.Power quality enhancement of a wind-turbine generator under variable wind speeds using matrix converter[C].Proceeding of Power Electronics Specialists Conference,2008:1755-1761.
    [94] Barakati S M,Kazerani M,Aplevich J D.Maximum power tracking control for a wind turbine system including a matrix converter[J].IEEE Transactions on Energy Conversion,2009,24(3):705-713.
    [95] Ratanapanachote S.A digitally controlled switch mode power supply based on matrix converter[C].Proceeding of Power Electronics Specialists Conference,2004,3:2237-2243.
    [96] Zanchetta P,Wheeler P W,Clare J C,et al.Control design of a three-phase matrix-converter-based AC-AC mobile utility power supply[J] . IEEE Transactions on Industrial Electronics,2008,55(1):209-217.
    [97] Arevalo L,Zanchetta P,Wheeler P W,et al.Control and Implementation of a Matrix-Converter-Based AC Ground Power-Supply Unit for Aircraft Servicing[J].IEEE Transactions on Industrial Electronics,2010,57(6):2076-2084.
    [98] Wang B,Venkataramanan G.Dynamic voltage restorer utilizing a matrix converter and flywheel energy storage[C].Proceeding of IEEE Industry Applications Conference,2007,208-215.
    [99]庄心复.交-交型矩阵变换器的控制原理与试验研究[J].电力电子技术,1994,28(2):1-6.
    [100]穆新华,庄心复.交-交型矩阵变换器的双电压控制原理及波形合成[J].南京航空航天大学学报,1997,29(2):151-157.
    [101]穆新华,庄心复.双电压控制的矩阵变换器的开关状态与仿真分析[J].电工技术学报,1998,13(1):46-50,54.
    [102]陈伯时,陆海慧.矩阵式交—交变换器及其控制[J].电力电子技术,1999,33(1):8-11.
    [103]汤宁平,王建宽,吴汉光.矩阵变换器的SPWM控制技术及其实现[J].电工技术学报,2003,18(4):25-29.
    [104]李志勇,朱建林,易灵芝,等.空间矢量调制的矩阵式变换器仿真模型研究[J].中国电机工程学报,2003,23(3):80-84.
    [105]陈希有,陈学允.一般矩阵式电力变换器的等效电路及其应用[J].电工技术学报,1999,14(5):31-34,39.
    [106]陈希有.矩阵式电力变换器在非对称输入条件下的原理与仿真[D].[博士学位论文],黑龙江:哈尔滨工业大学,2000.
    [107]陈希有,韦奇.改进矩阵变换器在非对称输入情况下的空间矢量调制策略[J].电工技术学报,2000,15(2):78-82,40.
    [108]陈希有,陈学允.矩阵变换器在非对称输入情况下输出电压波形的改善[J].电气传动,2000,30(6):16-20.
    [109]仇红奎,周波,史明明.矩阵变换器双电压简化控制策略[J].中国电机工程学报,2008,28(36):23-27.
    [110]粟梅,孙尧,陈睿,等.双电压合成调制和空间矢量调制的一致性[J].中国电机工程学报,2009,29(21):21-26.
    [111]张绍,周波.非对称输入下矩阵变换器新型电流控制策略[J].电工技术学报,2009,24(3):47-54.
    [112]梅杨,黄立培,李正熙.矩阵式变换器驱动异步电机调速系统抑制输入电压扰动的研究[J].电工技术学报,2009,24(10):47-52.
    [113]粟梅,孙尧,覃恒思,等.一种改善矩阵变换器系统动态性能和稳定性的控制方法[J].电工技术学报,2005,20(12):18-23.
    [114]张晓锋,何必,林桦,等.矩阵变换器的一种安全换流策略[J].中国电机工程学报,2008,28(18):12-17.
    [115]林桦,佘宏武,何必,等.矩阵变换器的电压型两步换流策略[J].中国电机工程学报,2009,29(3):36-41.
    [116]王兴伟,林桦,佘宏武,等.矩阵变换器电压型两步换流策略及实现[J].电工技术学报,2010,25(4):103-108.
    [117]曾雨竹,鲍建宇,胡长生,等.改进的矩阵变换器全数字化电压换流策略[J].中国电机工程学报,2008,28(12):7-12.
    [118]周大宁,孙凯,孔鹏举,等.RB-IGBT驱动电路及其在矩阵式变换器中的应用[J].清华大学学报:自然科学版,2006,46(4):465-468,472.
    [119]梅杨,孙凯,黄立培.基于逆阻式IGBT的三相/单相矩阵式变换器[J].电工技术学报,2007,22(3):91-95.
    [120]王莉娜,黄立培.矩阵式变换器-异步电机系统的故障保护及容错运行方式[J].电工技术学报,2006,21(12):66-70,78.
    [121]张绍,周波,葛红娟.基于双空间矢量调制的矩阵变换器-永磁同步电机矢量控制系统[J].电工技术学报,2007,22(4):47-52.
    [122]张绍,周波,仇红奎.永磁同步电机-矩阵变换器新型电流调制策略研究[J].中国电机工程学报,2008,28(21):90-95.
    [123]葛红娟,苏国庆,刘伯华,等.基于输入电流空间矢量调制-输出滞环电流控制的MC-PMSM矢量控制系统[J].电工技术学报,2008,23(4):39-43.
    [124] Casadei D,Serra G,Tani A,et al.Stability analysis of electrical drives fed by matrix converters[C].Proceedings of the 2002 IEEE International Symposium on Industrial Electronics,2002,4:1108-1113.
    [125] Casadei D,Serra G,Tani A,et al.Improvement of the stability of electrical drives fed by matrix converters[C].IEE Seminar on Matrix Converter,2003,3:1-12.
    [126] Casadei D,Serra G,Tani A,et al.Effects of input voltage measurement on stability of matrix converter drive system[C].Proceeding of IEE Electric Power Applications,2004,487-497.
    [127] Casadei D,Serra G,Tani A,et al.Theoretical and experimental investigation on the stability of matrix converters[J].IEEE Transactions on Industrial Electronics,2005,52(5):1409-1419.
    [128] Casadei D,Clare J,Empringham L,et al.Large-signal model for the stability analysis of matrix converters[J].IEEE Transactions on Industrial Electronics,2007,54(2):939-950.
    [129] Harnefors L.Modeling of three-phase dynamic systems using complex transfer functions and transfer matrices[J].IEEE Transactions on Industrial Electronics,2007,54(4):2239-2248.
    [130] Cox S M , Clare J C . Nonlinear development of matrix-converter instabilities[J].Journal of Engineering Mathematics,2010,67(3):241-259.
    [131] Lipo T A,Krause P C.Stability analysis of a rectifier-inverter induction motor drive[J].IEEE Transactions on Power Apparatus and Systems,1969,1:55-66.
    [132] Fallside F , Wortley A T . Steady-state oscillation and stabilisation of variable-frequency inverter-fed induction-motor drives[C].Proceedings of the Institution of Electrical Engineers,1969,116(6):991-999.
    [133] Kuroe Y,Hayashi S.Analysis of bifurcation in power electronic induction motor drive systems[C].Power Electronics Specialists Conference,1989,2:923-930.
    [134] Deane J H B,Hamill D C.Instability,subharmonics,and chaos in power electronic systems[J].IEEE Transactions on Power Electronics,1990,5(3):260-268.
    [135] Hamill D C . Power electronics : A field rich in nonlinear dynamics[C].Workshop on Nonlinear Dynamics of Electronic Systems,1995,164-179.
    [136] Kousaka T,Ueta T,Kawakami H.Bifurcation of switched nonlinear dynamical systems[J].IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing,1999,46(7):878-885.
    [137]卢伟国.开关功率变换器的混沌控制研究[D].[博士学位论文],重庆:重庆大学,2008.
    [138] Banerjee S,Verghese G C.Nonlinear phenomena in power electronics[M].New York :IEEE press,2001.
    [139] Tse C K , Di Bernardo M . Complex behavior in switching power converters[J].Proceedings of the IEEE,2002,90(5):768-781.
    [140]张波.DC-DC变换器非线性混沌现象研究[J].电源世界,2004,(3):35-38.
    [141]张波,曲颖.BUCK DC/DC变换器分岔和混沌的精确离散模型及实验研究[J].中国电机工程学报,2003,23(12):99-103.
    [142]张波.电力电子变换器非线性混沌现象及其应用研究[J].电工技术学报,2005,20(12):1-6.
    [143]马西奎,李明,戴栋,等.电力电子电路与系统中的复杂行为研究综述[J].电工技术学报,2006,21(12):1-11.
    [144] Motto E R,Donlon J F,Tabata M,et al.Application characteristics of an experimental RB-IGBT (reverse blocking IGBT) module[C] . Industry Applications Conference,2004,3:1540-1544.
    [145]胡寿松.自动控制原理[M].北京:科学出版社,2001.
    [146] Moiola J L,Chen G.Hopf bifurcation analysis:a frequency domain approach[M].Singapore:World Scientific Pub Co Inc,1996.
    [147] Tse C K,Lai Y M,Iu H H C.Hopf bifurcation and chaos in a free-running current-controlled Cuk switching regulator[J].IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2000,47(4):448-457.
    [148]刘秉正.非线性动力学[M].北京:高等教育出版社,2004.
    [149] Heinz O P,Hartmut J,Dietmar S著,田逢春译.混沌与分形——科学的新疆界[M].北京:国防工业出版社,2008.
    [150]李忠.永磁同步电动机混沌模型及其混沌现象分析与控制[D].广东:华南理工大学,2000.
    [151]吕金虎,陆君安,陈士华,等.混沌时间序列分析及其应用[M] .武汉:武汉大学出版社,2002.
    [152]马红光,韩崇昭.电路中的混沌与故障诊断[M].北京:国防工业出版社,2006.
    [153]高普云.非线性动力学——分叉、混沌与孤立子[M].长沙:国防科技大学出版社,2005.
    [154] Lyapunov Exponents Toolbox.
    [155] Hamill D C,Deane J H,Jefferies D J.Modeling of chaotic DC-DC converters by iterated nonlinear mappings[J].IEEE Transactions on Power Electronics,1992,7(1):25-36.
    [156]徐广人.高效高起动转矩永磁同步电动机设计中的关键技术问题研究[D].沈阳:沈阳工业大学,1999.
    [157] Morimoto S,Takeda Yoji,Hirasa Takao,et al.Expansion of operating limits for permanent magnet synchronous motor by current vector control considering inverter capability[J].IEEE Transactions on Industry Application,1990,26(5):866-871.
    [158] Jahns T M . Motion control with permanent-magnet AC machines[C].Proceedings of the IEEE,2002,82(8):1241-1252.
    [159] French C , Acarnley P . Direct torque control of permanent magnet drives[J].IEEE Transactions on Industry Applications,1996,32(5):1080-1088.
    [160] Zhong L,Rahman M F,Hu W Y,et al.Analysis of direct torque control in permanent magnet synchronous motor drives[J].IEEE Transactions on Power Electronics,1997,12(3):528-536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700