用户名: 密码: 验证码:
富营养化水体不同水华阶段细菌群落结构的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富营养化已经成为水体环境中的普遍问题,由富营养化带来的一系列问题也日益引起人们的关注。与其他修复方法相比生物方法具有无副作用并且容易操作等优点,因此成为水体富营养化修复研究的热点。而微生物作为生态系统中物质转化的主体,在水环境有机物的降解与转化过程中发挥着重要作用。因此,开展对淡水生境中水华暴发不同阶段时细菌群落结构、功能和多样性的变化研究,对于富营养化的治理以及丰富湖沼学理论具有重要的意义。
     本研究以洋河水库和密云水库的表层水作为实验材料,分别在两地连续采集水样。使用显微镜镜检技术对水样中藻的总量进行统计,并结合水质数据以衡量水华的不同状态。采用现代分子生物学技术分别对洋河水库和密云水库不同水华状态下细菌群落结构的变化进行了研究,并对不同生境条件下细菌群落结构的变化进行了比较分析。采用显微镜计数和DAPI染色相结合的方法分别对两地不同水样进行了总细菌的计数。结果表明,在水华前期藻类的大量增殖过程中,总细菌的含量呈降低的趋势,而在水华高峰期至逐渐消减的过程中总细菌的含量则相对稳定。洋河水库水华的程度要甚于密云水库。
     分别采用PCR-DGGE和16S rDNA克隆技术对两水库不同水华状态下细菌的群落结构进行分析。PCR-DGGE分析结果表明:水华暴发前和水华基本消失时的细菌群落结构与水华暴发高峰期差别很大;放线菌在洋河水库不同水华阶段稳定存在,而在密云水库不同的水华阶段其存在量差别明显;α-proteobacteria在两水库的不同水华阶段均有存在,在洋河水库水华的末期α-proteobacteria的存在量要高于其它阶段,而在密云水库α-proteobacteria存在量较高时期出现在水华的早期阶段。16S rDNA克隆文库分析结果表明:在两水库不同水华阶段放线菌门类群的分布比例与PCR-DGGE分析结果一致;α-proteobacteria、β-proteobacteria、γ-proteobacteria、Verrucomicrobia、Fibrobacteres、Planctomycetes、Chloroflexi类群在两水库中伴随藻类的增减过程具有不同的演替规律;Bacteroidetes类群的个体无论是种类还是数量上,在藻的暴发与休眠时期均存在明显的差异,藻类暴发期的种类和数量均低于休眠期;在洋河水库水华发生过程中,细菌的均度变化较大,而密云水库在水华发生的过程中,细菌的均度变化不大。
Eutrophication in the water environment, which would result in a series of problems, had become an environmental and scientific project. Biological treatment method has obvious advantage in contrast to physico-chemical methods because of no side effects and easy operation. And also microorganisms are responsible for the degradation and transformation of organic matter in water environment. Therefore, the researches about the bacterial community structure, function and diversity during the water bloom have great significances for the eutrophication remediation and enriching the limnology theory.
     This study choosed Yanghe Reservoir and Miyun reservoir as the experimental spots. Five surface water samples were collected continuously in the two Reservoirs, respectively. Different states of water bloom are measured by water quality and total amount of algae in water samples which were calculated by microscopy technique. The bacterial community structure of all the samples was studied by molecular biology techniques. And also the microbial community structure in the two reservoirs was compared.
     The total number of bacteria was examined respectively in different water samples by using microscopy technique and DAPI staining. The results showed that the total number of bacteria decreased in the early stage of water bloom, while there were no changes in the later period of water bloom. The eutrophication degree in Yanghe reservoir was higher than that of Miyun Reservoir.
     The bacterial community structure during different water bloom stages was studied by PCR-DGGE and 16S rDNA cloning technique. The results by PCR-DGGE indicated that the occurrence of water bloom had a significant impact on the Bacterial community structure. The content of Actinomycetes in Yanghe reservoir was stable during different stages of bloom, while in Miyun reservoir it was fluctuated between different stages of water bloom. Theα-proteobacteria existed in each stage of water bloom in the two reservoirs. Its abundance is higher in the later stage of water bloom in Yanghe reservoir. But in Miyun reservoir it was higher in the early stage. Furthermore, the results by 16S rDNA clone confirmed that the proportion of actinomycetes in different stages of water bloom in the two reservoirs was consistent with the result by PCR-DGGE. Theα-proteobacteria,β-proteobacteria,γ-proteobacteria, Verrucomicrobia, Fibrobacteres, Planctomycetes and Chloroflexi have different rules of succession in different reservoirs in the process of water bloom. But both species and quantity of Bacteroidetes were less in the outbreak period of algae than that in the rest period which showed different rule as other populations. The evenness of bacteria changed greatly in Yanghe reservoir, while little change was happened in Miyun Reservoir during the water bloom cycle.
引文
.本研究得到国家重点基础研究发展计划(973计划)(NO.2006CB403306)项目的资助
    [1]汤卫华,宋虎堂,范志华.水体富营养化的原因、危害及防治[J].天津职业院校联合学报,2006,8(2):52-54.
    [2]赵国军.湖泊富营养化问题及其防治浅议[J].环境科学,2009,29:27.
    [3] Jorgensen SE. Application of ecology in environmental management [M]. Boca Raton: CRC Press, 1983.
    [4]胡晓镭.湖、库富营养化机理研究综述[J].水资源保护,2009,25(4):44-47.
    [5]顾宗濂.中国富营养化湖泊的生物修复[J].农村生态环境,2002,18(1):42?45.
    [6]金相灿,屠清瑛.湖泊富营养化调查规范(第2版)[M].北京:中国环境科学出版社,1990:162?163.
    [7]邬红娟,郭生炼.水库水文情势与浮游植物群落结构[J].水科学进展,2001,12(1):51-55.
    [8]刘用凯.山仔水库水质富营养化防治对策[J].福建环境,2001,18(1):13-14.
    [9]孔繁翔.湖泊富营养化治理与蓝藻水华控制[J].江苏科技信息,2007(9):1-11.
    [10]朴承俊,王宏山,瞿春艳等.水体富营养化现状及对策分析[J].煤炭技术,2008,27(8):134-135.
    [11]冯太国,万新南.富营养化对湖泊的危害及修复技术探讨[J].水土保持研究,2006,13(2):145-146.
    [12]魏丽萍,梁美生.我国湖泊富营养化问题概述[J].化工文摘,2008,6:38-40.
    [13]潘双叶.水体中藻类的危害及控制方法[J].黑龙江环境通报,2006,3(1):43-45.
    [14]熊彩蕾,罗亚田,王丽.藻类对水体的危害及灭藻技术的现状分析[J].辽宁化工,2009,38(3):173-175.
    [15]刘革.水体富营养化的成因、危害及防治措施[J].中国水产,2009,10:68-69.
    [16]聂发辉,李田,吴晓芙等.藻型富营养化水体的治理方法[J].中国给水排水,2006,22(18):11-15.
    [17]袁夫臣.水体富营养化及其防治[J].现代农业科学,2008,15(4):43-44.
    [18]李佐荣,鲍素敏,黄祥明.水体的富营养化及其防治[J].安徽农学通报,2007,13(10):67–68.
    [19]张捷鑫,吴纯德,陈维平等.污染河道治理技术研究进展.生态科学,2005,24(2):178-181.
    [20]杨清海.中国富营养化水体修复技术进展[J].辽东学院学报,2008,15(2):71-77.
    [21]田伟君,翟金波.生物膜技术在污染河道治理中的应用[J].环境保护,2003,8:19-21.
    [22]李锋民,胡洪营.芦苇抑藻化感物质的分离及其抑制蛋白核小球藻效果研究[J].环境科学,2004,25(5):89-92.
    [23]武琳慧,吴林林,黄民生.人工浮床及其在污染水体治理中应用进展[J].净水技术,2006,25(4):8-9.
    [24]张军,周琪,何蓉.表面流人工湿地中氮磷的去除机理[J].生态环境,2004,13(1):98-101.
    [25]李佐荣.微生物在湖泊富营养化治理中的应用[J].安徽农学通报,2007,13(9):63.
    [26]宋关玲.生物修复技术在水体富营养化治理中的应用[J].安徽农业科学,2007,35(27):8597–8598.
    [27]李先会,朱建坤,施练东等.富营养化水体细菌去除氮磷能力研究[J].环境科学与技术,2009,32(4):28-32.
    [28] Rashidan KK, Bird DF. Role of predatory bacteria in the termination of a cyanobacterial bloom. Microb Ecol, 2001, 41: 97–105.
    [29] Cole JJ, Likens GE, Strayer DL. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol Oceanogr, 1982, 27: 1080–1090.
    [30] Bertilsson S, Jones JB. Supply of dissolved organic matter to aquatic ecosystems: Autochthonous sources[M]. California, Academic Press, 2003, 3–24.
    [31] Ondergaard M, Middelboe M. A cross-system analysis of labile dissolved organic carbon[J]. Mar Ecol Progr Series, 1995, 118: 283–294.
    [32] Engstr?m-?st J, Koski M, Schmidt K, et al. Effects of toxic cyanobacteria on a plankton assemblage: community development during decay of Nodularia spumigena[J]. Mar Ecol Progr Series, 2002, 232: 1–14.
    [33] ?stensvik ?, Skulberg OM, Underdal B, et al. Antibacterial properties of extracts from selected planktonic freshwater Cyanobacteria–a comparative study of bacterial bioassays[J]. Appl Microbiol, 1998, 84: 1117–1124.
    [34] Chorus I, Bartram J. Toxic Cyanobacteria in Water: a Guide to Their Public Health Consequences, Monitoring and Management[M]. London: E&FN Spon, 1999: 15–40.
    [35] RainaM, Maier IL, Pepper CP, et al.环境微生物学[M].北京:科学出版社, 2004.
    [36]蔡金傍,李文奇,逄勇等.洋河水库污染现状及对策分析[J].水利水电技术,2006,37:10-13.
    [37]蔡金傍,李文奇,逄勇等.洋河水库水质主成分分析[J].中国环境监测,2007,23(2):62-65.
    [38]杜桂森,孟繁艳,李学东等.密云水库水质现状及发展趋势[J].环境科学,1999,20:110-112.
    [39]杜桂森,刘晓端,刘霞等.密云水库水体营养状态分析[J].水生生物学报,2004,28(2):190-196.
    [40]张彤,方汉平.微生物分子生态技术:16S rRNA/DNA方法[J].微生物学通报,2003,30(2):97-101.
    [41] Brock TD. The study of microorganism in situ: Progress and problems[J]. Symp. Soc. Gene. Microbiol. 1987, 41: 1-17.
    [42] Bakken LR. Separation and purification of bacteria from soil[J]. Applied and Envrionmental Microbiology, 1985, 49: 1482-1487.
    [43] WerkerA G, Becker J, Huitem AC. Assessment of activated sludge microbial community analysis in full-scale biological wasterwater treatment plants using patterns of fatty acid isopropyl esters( FAPEs)[J]. Water Res., 2003, 37(9): 2162-2172.
    [44] Hu HY, Tong ZH. Bacterial quinone profile for the study of microbial community structure in environmental samples[J]. Microbiology, 2002, 29(4): 95-98.
    [45]朱海霞,陈林海,张大伟等.活性污泥微生物菌群研究方法进展[J].生态学报,2007,27(1):314-321.
    [46] Harmsen D, Karch H. 16S rDNA for diagnosing pat hogens: aliving tree[J]. ASM News, 2004, 70: 19-24.
    [47]刘毅,韩金祥.16S rRNA基因在脑脊液细菌鉴定中的应用[J].临床检验杂志,2002(4):245-246.
    [48]杨霞,陈陆,王川庆.16S rRNA基因序列分析技术在细菌分类中应用的研究进展[J].西北农林科技大学学报,2008,36(2):55-60.
    [49] Zhang T, Fang HP. Digitization of DGGE (denaturing gradient gel electrophoresis) profile and cluster analysis of microbial communities[J]. Biotechnol Lett, 2000, 22: 399-405.
    [50] Wagner M, Amann R, Lemmer H, et al. Probing activatedsludge with oligonucleotides specific for Proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure[J]. Appl Environ Microbiol, 1993, 59(5): 1520-1525.
    [51] De BP, vandeGraaf AA, Jetten MSM, et al. Growth of Nitrosomonas europaea on hydroxylamine[J]. FEMS Microbiol Lett, 1995, 125: 179-184.
    [52]吴高锋,李文刚,高卫科等.PCR-DGGE的原理及在动物肠道菌群分析中的应用[J].中国畜牧兽医,2008,35(6):37-39.
    [53]韩衍青,徐幸莲,周光宏等.PCR-DGGE技术在应用过程中的常见问题分析[J].食品与发酵工业,2008,34(3):105-109.
    [54] Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis(TGGE) in microbial ecology[J]. Antonie van Leeuwenhoek, 1998, 73: 127-141.
    [55] Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems[J]. Current Opinion in Microbiology, 1999, 2: 317-322.
    [56] Fischer SG, Lerman LS. DNA fragments differing by single base pair substitutions are separated in denaturing gradient gels: correspondence with melting theory[J]. Proceedings of the National Academy of Science of USA, 1983, 80:1579-1583.
    [57] Muyzer G., Ellen CDW, Andre GU. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S RNA[J]. Appl Environ Microbiol, 1993, 59: 695-700.
    [58] Ferris MJ, Muyaer G, Ward DM. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined population inhabiting a hot spring microbial mat community[J]. Appl Environ Micribiol, 1996, 62: 340-346.
    [59] Wagner DI, Bennasar A, Vancanncyt M, et al. Microcosm enrichment of biphenyl-degrading microbial communities from soils and sedments[J]. Appl Environ Microbiol, 1998, 64: 3014-3022.
    [60] Rowan AK, Snape JR, Fearnside D, et al. Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater[J]. FEMS Microbiol Ecol, 2003, 43(2): 195-206.
    [61] Naglaa M, Mohamed JJ, Enticknap JE, et al. Changes in Bacterial Communities of the Marine Sponge Mycale laxissima on Transfer into Aquaculture[J]. Appl Environ Microbiol, 2008, 74: 1209-1222.
    [62]王芳,杨季芳,谢和.变性梯度凝胶电泳技术在海洋微生物分子生态学中的应用[J].浙江万里学院学报,2009,22(2):72-77.
    [63]宫曼丽,任南琪,邢德峰.DGGE/TGGE技术及其在微生物分子生态学中的应用[J].微生物学报,2004,44(6):845-848.
    [64] Ranjard L, Poly F, Nazaret S. Monitoring complex bacterial communities using culture- independent molecular techniques: application to soil environment[J]. Research in Microbiology, 2000, 151(3): 167-177。
    [65] Mccaig AE, Glover LA, Prosser JI. Molecular Analysis of Bacterial Community Structure and Diversity in Unimproved and Improved Upland Grass Pastures[J]. Applied and Environmental Microbiology, 1999, 65: 1727-1730。
    [66]王晓丹,李艳红.分子生物学方法在水体微生物生态研究中的应用[J].微生物学通报,2007,34(4):777-781.
    [67]郭园,刘大程,张爱忠.16S rRNA/DNA序列分析在瘤胃微生物区系研究中的应用[J].畜牧与饲料科学,2005,5:10-12.
    [68] Eiler A. Bertilsson S. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes[J]. Environmental Microbiology, 2004, 6(12): 1228–1243.
    [69] Gucht KV, Vandekerckhove T, Vloemans N, et al. Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure[J]. FEMS Microbiology Ecology, 2005, 53: 205–220.
    [70]刘东艳,孙军,张利永.胶州湾浮游植物水华期群落结构特征[J].应用生态学报,2003,14(11)∶1963~1966.
    [71]陈家长,孟顺龙,尤洋等.太湖五里湖浮游植物群落结构特征分析[J].生态环境学报,2009,18(4):1358-1367.
    [72]雷安平,施之新,魏印心.武汉东湖浮游藻类物种多样性的研究[J].水生生物学报,2003,27(2):179-184.
    [73] Kolmonen1 E, Sivonen1 K, Rapala J, et al. Diversity of cyanobacteria and heterotrophicbacteria in cyanobacterial blooms in Lake Joutikas, Finland[J]. Aquat Microb Ecol, 2004, 36: 201–211。
    [74] Zeng J, Yang LY, Du HW, et al. Bacterioplankton community structure in a eutrophic lake in relation to water chemistry[J]. Microbiol Biotechnol, 2009, 25: 763–772。
    [75]郑小红,肖琳,任晶等.玄武湖微囊藻水华暴发及衰退期细菌群落变化分析[J].环境科学,2008,29(10):2956-2962.
    [76]奚万艳,吴鑫,叶文瑾等.太湖梅梁湾水域蓝藻水华前与水华末期细菌群落结构的变化.应用与环境生物学报,2007,13(1):97~103.
    [77]龚世杰,吴兰,李思光.湖泊微生物多样性研究进展[J].生物技术通报,2008,4:55-57.
    [78] Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individualmicrobial cells without cultivation[J]. Microbiol. Rev., 1995, 59: 143–169.
    [79] Head IM, Saunders JR, Pickup RW. Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms[J]. Microb. Ecol., 1998. 35: 1–21.
    [80] Hugenholtz P, Goebel BM, Pace NR. Impact of cultureindependent studies on the emerging phylogenetic view of bacterial diversity[J]. Bacteriol, 1998. 180: 4765–4774.
    [81] J.萨姆布鲁克(JOSEPH SAMBROOK).分子克隆实验指南[M].化学工业出版社,2008.
    [82] Nemoto Y, Kawano S, Nakamura S, et al. Studies on plastid- nuclei (nucleoids) in N icotiana tabacum L. i isolation of proplastid-nuclei from cultured cells and identification of proplastid-nuclear proteins[J]. Plant Cell Physiology, 1988, 29: 167-177.
    [83] Kim TW, Lee JH, Kim SE, et al. Analysis of microbial communities in doenjang, a Korean fermented soybeanpaste, using nested PCR-denaturing gradient gel electrophoresis[J]. International Journal of Food Microbiology, 2009, 131(2-3): 265-271.
    [84] Yang GM, Bao BL, Peatman E, et al. Analysis of the composition of the bacterial community in puffer fish Takifugu obscurus[J]. Aquaculture, 2007, 262(2-4): 183-191.
    [85] Reid NM, Bowers TH, Lloyd-Jones G. Bacterial community composition of a wastewater treatment system reliant on N-2 fixation[J]. Applied Microbiology and biotechnology, 2008, 79(2): 285-292.
    [86]刘国生.微生物学实验技术[M].北京:科学出版社,2007.
    [87]杨长晓,杜洪凤.钼酸铵分光光度法测定工作场所空气中磷酸[J].中国卫生检验杂志,2008,18(6):1103-1104.
    [88]彭鹏,石慧.碱性过硫酸钾消解紫外分光光度法测定水样中的总氮[J].污染防治技术, 2008,21(2):86-88.
    [89]王文雷.纳氏试剂比色法测定水体中氨氮影响因素的探讨[J].中国环境监测,2009,25(1):29-32.
    [90] Yilmaz LS, Noguera DR. Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization[J]. Appl. Environ. Microbiol, 2004, 70(12): 7126–7139.
    [91]李岩,李社增,鹿秀云等.苯胺高效降解菌的筛选及其生物学特性研究[J].农业环境科学学报,2007,26(5):1738- 1743.
    [92] Li D, Yang M, Li ZL, et al. Change of bacterial communities in sediments along Songhua River in NortheasternChina aftera nitrobenzene pollution event[J]. FEMS Microbiology Ecology, 2008, 65: 494-503.
    [93] Wagner M, Loy A. Bacterial community composition and function in sewage treatment systems[J]. Currurent Opinion in Biotechnology, 2002, 13: 218-227.
    [94] Lorenzen CJ. Determination of chlorophyll-a and phaeopigrnents: Spectrophotometric equations[J]. Limnology and Oceanography , 1967, 12: 343-346.
    [95] Warnecke F, Amann R, Pernthaler J. Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages[J]. Environmental Microbiology, 2004, 6(3): 243-253.
    [96] Glockner FO, Zaichikov E, Belkova N, et al. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria[J].Applied and Environmental Microbiology, 2000, 66: 5053-5065.
    [97] Sekar R, Pernthaler A, Pernthaler J, et al. An improved protocol for the quantification of freshwater actinobacteria by fluorescence in situ hybridization. Applied and Environmental Microbiology, 2003, 69: 2928-2935.
    [98]沈萍,彭珍荣.微生物学(第五版).北京:高等教育出版社,2003.
    [99] McDonald JE, deMenezes AB, Allison HE, et al. Molecular Biological Detection and Quantification of Novel Fibrobacter Populations in Freshwater Lakes[J]. Applied and Environmental Microbiology, 2009, 75(15): 5148–5152.
    [100] Jaspers E, Nauhaus K, Cypionka H, et al. Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton[J]. FEMS Microbiology Ecology, 2001, 36(2-3): 153-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700