用户名: 密码: 验证码:
柔枝松和红锥的组织培养研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木本植物具有重要的经济、生态和社会价值。但是由于木本植物生长缓慢,生长周期长,种子生产受自然环境影响大等特性,极大地限制了木本植物繁殖和优树选育。植物组织培养不仅能够实现苗木的快速高效生产,还作为林木优良品种选育的新技术,大大缩短了林木育种的周期,实现了林木遗传增益的最大化。然而木本植物,特别是优树的组织培养过程中,仍然存在许多难以解决的问题。本研究以柔枝松(Pinus flexilis James)和红锥(Castanopsis hystrix A. DC)为研究对象,以柔枝松的合子胚和幼嫩顶芽及红锥优树根蘖枝条的幼嫩茎段为外植体,对不同外植体在器官直接发生途径的组织培养过程中存在的问题、解决的方法及其作用机理进行了系统研究,最终获得不同外植体类型在不同培养阶段的最佳培养方法为:
     (1)表面灭菌:柔枝松合子胚的最佳灭菌方法是以20%的NaCIO溶液浸泡20min;柔枝松幼嫩顶芽是在15%的NaCIO溶液中浸泡20 min;红锥幼嫩茎段是在冰水混合物中冷藏1 d后,在0.1%HgCl2溶液中浸泡13 min。
     (2)芽分生组织诱导:将表面灭菌后的柔枝松合子胚接种于含有BA2.0 mg·L-1的GD培养基中,暗培养2周后,于光下培养2周;柔枝松幼嫩顶芽宜采用含有BA0.5mg·L-1和NAA0.1 mg·L-1的SH培养基,于光下培养4周;为了抑制红锥幼嫩茎段的褐化,可将其接种于附加PVP1.0g·L-1和BA0.5 mg·L-1的SH培养基中,暗培养1周后,转至光下培养3周,或者接种于含有AC0.5 g·L-1和BA0.5 mg·L-1的SH培养基中,并于接种后的第二天将幼嫩茎段转至培养基的另一端,第2周和第4周分别继代至含有同样成分的培养基中,共培养6周。
     (3)芽分生组织的继代和增殖:对柔枝松合子胚的不定芽进行继代分化时,最佳培养基配方为附加AC0.5g·L-1、蔗糖25 g·L-1和琼脂6 g·L-1的SH培养基,pH值调整至5.2;柔枝松幼嫩顶芽的不定芽在SH基本培养基中即可伸长生长;对柔枝松合子胚和幼嫩顶芽产生的不定芽进行增殖时,将不定芽接种于含有BA2.0 mg·L-1的SH培养基中诱导4周,然后转至SH基本培养基或含有AC0.5 g·L-1的SH培养基中,进行伸长生长;红锥幼嫩茎段的不定芽继代宜采用含有BA 0.5 mg-L-1、NAA 0.1 mg·L-1和0.1 g·L-1 AC的SH培养基。
     (4)不定根发生和组培苗移栽:对柔枝松的合子胚和幼嫩顶芽起源的不定芽进行不定根诱导时,将1.0-1.5 cm长的不定芽接种于1/2GD培养基中,暗培养2周后,于光下培养4周,即可。组培苗在室内炼苗1周后,洗去基部培养基,移栽于灭菌后的基质(V草炭土:V蛭石=1:1)中,成活率为64.86%。
     (5)木本植物组织培养的成功是一系列因素共同作用的结果。外植体自身的个体发育阶段和生理状态是决定组织培养成功的关键,培养基种类和植物生长调节剂决定了外植体的生长和发育方向,培养基中的其他物质对外植体的生长起优化调节作用。
Woody plants have important economic, biologicl and social value, however, their multiplication and superior breeding were restricted by the characteristics of poor growth, long growth cycle, and unprecdictable seed production which was mainly depending on environmental change. Plant tissue culture could achieve the rapid, high-efficiency production of nursery stock. On the other hand, as a new technology for the breeding of superior tree species, plant tissue culture has shortened breeding period, and maximized its genetic gain. But there were still a lot of problems which were hard to solve in woody plant tissue culture, especially for superior tree species. In this paper, limber pine (Pinus flexilis James) and Castanopsis hystrix A. DC were taken as objects, the zygotic embryo and tender apical bud of limber pine and the tender stem segment derived from the stump sprouting of C. hystrix A. DC were used as explants, in order to investigate systematically the exsiting problems, their solutions, and mechinisms between them. Finally, the optimal culture methods of different explants during different culture phases were obtained:
     (1) Surface sterilization:the optimal method for zygotic embryos of limber pine were soaked 20 min in 20%NaClO solution; the tender buds of limber pine were soaked 20 min in 15%NaClO solution; the tender stem segements of C. hystrix A. DC were soaked 13 min in 0.1%HgCl2 solution after storing in ice-water mixture for 1 d.
     (2) Bud meristem induction:the disinfected zygotic embryos of limber pine were inoculated in GD medium supplemented with BA2.0 mg·L-1, after being cultured in darkness for 2 weeks they were exposed in light for other 2 weeks; the tender buds of limber pine were cultured in SH medium containing BA0.5 mg·L-1 and NAA0.1 mg·L-1 for 4 weeks in light; in order to reduce browning, the tender stem segments of C. hystrix A. DC were inoculated in SH medium containing PVP1.0 g·L-1and BA0.5 mg·L-1, cultured in darkness for 1 week, then exposed to lightness for another 3 weeks. Or inoculated in SH medium supplemented with AC0.5 g·L-1和BA0.5 mg·L-1, the explants were moved to the other side of medium at the 2nd d, and subcultured to the same medium at the 2nd and 4th weeks, respectively, and totally cultured for 6 weeks.
     (3) Subculture and multiplication of bud meristem:SH medium supplemented with AC0.5 g·L-1, sugar25 g·L-1, agar6 g·L-1, pH was adjusted to 5.2, was suitable for the differentiation of zygotic embryos of limber pine; the adventitious shoots induced from the tender buds of limber pine were elongated in SH basal medium; and the adventitious shoots differentiated form zytotic embryos and the tender buds were multiplicated in SH medium containing BA2.0 mg·L-1, for 4 weeks. Then transferred to SH basal medium or containing AC0.5 g·L-1 for elongation; the tender stem segments of C. hystrix A. DC were subcultured in SH medium supplymented with BA 0.5 mg·L-1, NAA 0.1 mg·L-1 and AC0.1 g·L-1.
     (4) Rhizogenesis and plantlet transplantation:the adventitious shoots derived from zygotic embryos and the tender buds of limber pine,1.0-1.5 cm in length, were induced for rooting in 1/2GD medium, following 2 weeks cultured in darkness and 4 weeks in light. After being acclimated 1 week in room, the rooted shoots were removed from medium, and transplanted in sterilised substrate (Vpeat: Vvermiculite=1:1), the survival rate was 64.86%。
     (5) The success of woody plants tissue culture was the consequence of a series of factors co-acting. The ontogenic phase and physiological status of explant was the key of plant tissue culture, medium type and plant growth regulator controled the development direction of explant, and the other additions had an adjustment function on growth.
引文
[1]曹新祥,韩小云.植物组织培养中的pH值[J].杭州师范学院学报(自然科学版),2003,2(1):60-63.
    [2]陈金慧,王洪云,诸葛强,等.林木体胚发生技术进展[J].林业科技开发,2000,14(3):9-11.
    [3]陈亮中,饶龙兵,谭鉴锡,等.红豆杉的快速繁殖技术[J].湖北林业科技,2003,4:50-51.
    [4]程广有,唐晓杰,杨振国.东北红豆杉茎尖组织培养[J].吉林林学院学报,1997,13(4):209-211.
    [5]程广有,杨振国.红松组织培养技术的初步研究[J].吉林林业科技,2000,29(5):8-9.
    [6]成小飞,花晓梅,李文细.马尾松离体培养条件下的微繁殖和菌根的形成[J].林业科学研究,1995,8(3):241-246.
    [7]崔丽华.植物生长调节物质对组织培养中不定芽不定根的作用[J].辽宁师专学报,2000,2(2):97-99.
    [8]邓燕忠,连辉明.红锥扦插繁殖试验[J].广东林业科技,2005,21(3):45-50.
    [9]董丽芬,王岩,张宗勤.油松胚培养芽增殖培养基的筛选[J].西北林学院学报,2004,19(3):36-37.
    [10]冯金玲,陈辉,陈世品,等.锥栗成熟胚离体培养初报[J].经济林研究,2004,22(3):29-31.
    [11]冯金玲,陈辉,杨志坚,等.锥栗组织培养外植体消毒和选择[J].福建林学院学报,2006,26(1):22-25.
    [12]甘烦远,郑光植,彭丽萍.红豆杉细胞培养的研究[J].云南植物研究,1996a,18(2):134-138.
    [13]甘烦远,郑光植,彭丽萍.欧洲红豆杉细胞培养的研究[J].应用与环境生物学报,1996b,2(3):220-224.
    [14]辜夕容,石大兴.圆柏组织培养繁殖研究[J].亚热带植物通讯,2000,29(2):40-42.
    [15]郭长禄,陈力耕,胡西琴,等.银杏组织培养及其利用研究进展[J].果树学报,2003,20(5):399-403.
    [16]韩素英,齐力旺,杨云龙,等.几种针叶树种离体培养条件的研究[J].林业科技通讯,1995,(10):20-22.
    [17]黄健秋,卫志明.松属树种的组织培养和原生质体培养[J].植物学通报,1994,11(1):34-42.
    [18]黄健秋,卫志明,许智宏.马尾松成熟合子胚的体细胞胚胎发生和植株再生[J].植物学报,1995,37(4):289-294.
    [19]贺窑青,冯改霞,贺小青.林木组织培养的应用与研究[J].河南林业科技,2003,23(1):27-29.
    [20]胡庆,段晓毛,吴雪枫,等.北美红杉的组织培养[J].江西林业科技,2003,5:10-12.
    [21]蒋爱丽,王瑛.蓬莱松组织培养研究[J].上海农业学报,1999,15(4):22-24.
    [22]蒋燚,唐卫辰,姚广彬,等.红锥扦插育苗试验[J].西部林业科学,1996,35(1):40-43.
    [23]焦海华,周吉源.植物生长调节物质对一品红组织培养中器官分化的效应[J].华中师范大学学报(自然科学版),2002,36(2):225-228.
    [24]奎丽梅,袁峰.RAPD技术在植物组织培养中的应用[J].云南农业科技,1999,1:14-15.
    [25]赖家业,周传明,叶春生,等.厚荚相思组织培养与快速繁殖[J].四川大学学报(自然科学版),2003,40(5):982-985.
    [26]雷泽勇.针叶树无性繁殖研究进展[J].防护林科技,2001,46(1):55-57.
    [27]李科友,唐德瑞,刘永红,等.美国黄松成熟胚的离体培养与不定芽的形成[J].西北植物学报,2001,21(6):1223-1227.
    [28]李科友,唐德瑞,朱海兰,等.美国黄松组织培养不定根诱导的研究[J].西北植物学报,2003,23(3):464-467.
    [29]李林,李科友,唐德瑞.白皮松离体胚培养与不定芽的诱导[J].西北林学院学报,2004,19(2):61-63.
    [30]李林,黄忠良,唐德瑞,等.蔗糖、AC对美国黄松不定芽增殖和生长的影响[J].福建林学院学 报,2005,25(3):260-263.
    [31]李玲莉,郭素娟,李吉跃.柔枝松组培苗不定根形成的影响因子探讨[J].广东林业科技,2009,25(6):55-59.
    [32]李玲莉,郭素娟,李吉跃.2年生柔枝松容器苗的年生长规律和苗木质量评价[J].福建林学院学报,2010,30(1):67-72.
    [33]李云,王树芝,田砚亭,等.四倍体刺槐离体培养及其不定根发育和叶片解剖观察[J].中国水土保持科学,2003,1(1):91-94.
    [34]李云,田砚亭,钱永强,等.NAA和IBA对四倍体刺槐试管苗生根影响及不定根发育过程解剖观察[J].林业科学,2004,40(3):75-80.
    [35]缪耀梅,李开彪,叶添谋.组织培养过程中污染和褐化的防治[J].韶关学院学报(自然科学版),2003,24(6):101-112.
    [36]梁珍海,刘根林,徐锋.红豆杉属植物组织培养及其快速繁殖研究综述[J].江苏林业科技,2001,28(3):45-49.
    [37]刘华,陈宇.红豆杉组织、细胞培养物紫杉醇快速检测[J].辽宁大学学报自然科学版,2003,30(1):13-15.
    [38]刘丽萍,张立莹,贾景明,等.东北红豆杉组织培养的研究[J].沈阳农业大学学报,1998,29(4):302-305.
    [39]刘淑慧.紫杉组织培养的研究[J].中国林业,2004,6B:44.
    [40]刘铁燕,刘昀,赵彩凤,等.东北红豆杉愈伤组织诱导及组织培养研究[J].东北师大学报自然科学版,2002,34(2):67-71.
    [41]陆志华,李莉,刘玉嘉,等.兴安落叶松组培繁殖的研究[J].东北林业大学学报,1990,(3):18-25.
    [42]罗建勋.南洋杉组织培养与快速繁殖研究[J].园艺学报,1997,24(1):100-102.
    [43]马兰珍,韦立秀,薛鹰,等.杂交松组织培养中外植体的灭菌方法[J].广西科学院学报,2005,21(1):37-39.
    [44]米建华,孙晓梅,李欣,等.东北红豆杉组织培养的研究[J].河南林业科技,2004,24(3):20-21.
    [45]马书燕,李吉跃,彭祚登.柔枝松引种试验初报[J].河北林果研究,2006,21(2):131-136.
    [46]马书燕,李吉跃.美国柔枝松研究现状及其应用前景[J].广东林业科技,2007,23(6):66-71.
    [47]马书燕.柔枝松引种及苗期抗逆性研究[D].北京:北京林业大学,2008.
    [48]牛焕琼,晋开颜,徐斌.植物组织培养在林业中的应用及进展[J].林业建设,2003,(3):27-30.
    [49]庞惠仙,张光飞,苏文华.软叶杉的组织培养与快速繁殖研究[J].林业实用技术,2004,3:7-8.
    [50]齐力旺,杨云龙,韩素英,等.侧柏的组织培养和植株再生[J].植物生理学通讯,1995a,4:284-285.
    [51]齐力旺,杨云龙,韩素英,等.油松封顶芽的组织培养[J].植物生理学通讯,1995b,31(1):40-44.
    [52]齐力旺,杨云龙,韩素英,等.油松的无性繁殖与离体培养研究[J].林业科技通讯,1996a,(11):12-14.
    [53]齐力旺,韩素英,杨云龙,等.华北落叶松的组织培养再生植株[J].植物生理学通讯,1996b,2:128-129.
    [54]齐力旺,韩一凡,韩素英,等.麦芽糖、NAA及ABA对华北落叶松体细胞胚成熟及生根的影响[J].林业科学,2004,40(1):52-58.
    [55]阙国宁,房建军,葛万川,等.火炬松、湿地松、晚松组培繁殖的研究[J].林业科学研究,1997,10(3):227-232.
    [56]桑红梅.柔枝松等几种松属树种种子活力的研究[D].北京:北京林业大学,2006a.
    [57]桑红梅,彭祚登,李吉跃.我国林木种子活力研究进展[J].种子,2006b,25(6):55-59.
    [58]尚国亮,李吉跃.水分胁迫对3个不同种源柔枝松种子发芽的影响[J].河北林果研究,2008,23(2):127-131.
    [59]邵长文,梅茜,孙涌栋,等.植物组织培养中玻璃化控制研究进展[J].长江蔬菜,2004,5:34-36.
    [60]盛长忠,王淑芳,王宁宁,等.红豆杉愈伤组织培养中褐变现象的初探[J].南开大学学报(自然科学),2001,34(4):120-121.
    [61]唐翠,詹亚光.松属林木组织培养不定芽的发生过程[J].哈尔滨师范大学自然科学学报,1997,13(5):68-71.
    [62]唐巍,欧阳藩,郭仲琛,等.针叶树体细胞无性系研究和应用进展[J].生物工程进展,1997,17(4):2-9.
    [63]唐巍,欧阳藩,郭仲琛.火炬松胚性愈伤组织诱导和植株再生的研究[J].林业科学,1998,34(3):115-119.
    [64]陶铭.组织培养中畸形胚状体及超度含水态苗的研究[J].西北植物学报,2001,21(5):1048-1058.
    [65]佟新萍.石刁柏组织培养技术研究[J].石河子科技,1995,5:15-16.
    [66]涂炳坤,胡婉仪.板栗扦插繁殖插穗生根特性的研究[J].林业实用技术,1999,4:14-16.
    [67]王德强.红豆杉原生质体制备和培养研究[J].安徽工业大学学报,2003,21(3):202-207.
    [68]王虹,张金凤,董建生.针叶树组织培养繁殖技术研究进展[J].河北林业科技,2004,2:14-18.
    [69]王利民,周毅,陈龙友,等.植物组织培养中消毒剂的运用[J].贵州师范大学学报(自然科学版),2002,20(1):15-17.
    [70]王水,贾勇炯,魏峰,等.云南红豆杉的组织培养及植株再生[J].云南植物研究,1997,19(4):407-410.
    [71]吴代坤.秃衫组织培养技术研究[J].林业实用技术,2002,10:11-13.
    [72]吴洪生.植物组织培养中的染菌及预防[J].药物生物技术,2001,8(2):239-240.
    [73]吴克贤,李伟,徐妙珍,等.长白落叶松组织培养的研究[J].林业科学,1996,32(2):125-133.
    [74]吴若菁.马尾松离体胚组织培养初报[J].福建林学院学报,1993,13(1):98-100.
    [75]吴幼媚,陈晓明,王以红,等.大叶栎的组织培养和快速繁殖[J].植物生理学通讯,2008,44(1):114.
    [76]夏铭,吴绛云,张丽梅.红豆杉组织培养中褐变问题的研究[J].生物技术,1996,6(3):18-20.
    [77]向邓云.植物生长调节物质对植物组织培养形态建成的调节控制[J].涪陵师专学报,2001,17(3):119-123.
    [78]肖关丽,杨清辉.植物组织培养过程中内源激素研究进展[J].云南农业大学学报,2001,16(2):136-138.
    [79]谢耀坚.欧洲云杉胚性愈伤组织培养中乙烯的释放及其作用[J].植物生理学通讯,1998,34(5):342-344.
    [80]邢子琢,康忠铭.大别山五针松子叶和下胚轴离体培养成苗[J].植物生理学通讯,1990,(1):52-53.
    [81]熊丽,周吉源,殷荣华.光质对石刁柏愈伤组织培养中生长和过氧化物酶的影响[J].武汉植物学研究,1995,13(3):253-257.
    [82]杨锋利,杜保国,张存旭.成龄栓皮栎组培苗生根影响因素研究[J].绵阳师范学院学报,2006,25(5):79-81,95.
    [83]杨礼香,周诗毅.南方红豆杉组织培养和紫杉醇含量测定[J].华中师范大学学报(自然科学版),2001,35(4):453-455.
    [84]杨永华,萧凤迥,刘艮舟.云南红豆杉愈伤组织诱导和组织培养[J].生物技术,1995,5(1):24-26.
    [85]杨振国,王明启,彭立新.紫杉芽体组织培养研究[J].吉林林学院学报,1997,13(1):20-22.
    [86]于世选.东北红豆杉组织培养的研究[J].生物技术.1994,4(2):30-32.
    [87]于震宇,李艳菊,郭军战,等.银杏组织培养研究进展[J].西北林学院学报,2004,19(3):72-76.
    [88]张存旭,宋敏,赵忠.栓皮栎茎段离体培养的研究[J].西北植物学报,2004,24(7):1260-1265.
    [89]张红晓,经剑颖.木本植物组织培养技术研究进展[J].河南科技大学学报(农学版),2003,23(3):66-69.
    [90]张立钦,郑勇平,罗士元,等.杨树湿地松组织培养愈伤组织耐盐性[J].浙江林学院学报,1997,14(1):16-21.
    [91]张玲,尹伟伦,王华芳.板栗胚珠培养研究初报[J].北京林业大学学报,2007,29(5):99-105.
    [92]张明文,陈力耕.银杏组织培养中控制褐化的研究[J].中国南方果树,2003,32(3):51-52.
    [93]张月娇.组织培养中有效无菌材料的获得[J].林业实用技术,2004,6:20-21.
    [94]张宗勤,杨建英,吴耀武.南方红豆杉组织培养及紫杉醇的产生[J].西北植物学报,1998,18(4):488-492.
    [95]郑春明,赵鹏,徐礼根.从事植物组织培养工作的点滴经验[J].植物生理学通讯,2004,40(3):396.
    [96]周诚.珍贵用材树种红锥的生物学特性与研究综述[J].江西林业科技,2007,(5):29-31.
    [97]周俊辉,周家容,曾浩森,等.园艺植物组织培养中的褐化现象及抗褐化研究进展[J].园艺学报,2000,27(增刊):481-486.
    [98]周微,黄健秋,卫志明,等.云南松成熟胚的不定芽诱导及植株再生[J].植物生理学通讯,1995,31(5):351-353.
    [99]周忠强,梅兴国.红豆杉细胞培养生产紫杉醇的研究进展[J].中南民族大学学报,2004,23(1):21-25.
    [100]朱海兰,李科友.不同美国黄松成熟胚对组织培养的反应[J].陕西林业科技,2003,3:5-7.
    [101]朱丽华,张艺,吴小芹.湿地松的组织培养及植株再生[J].南京林业大学学报(自然科学版),2004,28(6):47-51.
    [102]朱丽华,吴小芹.湿地松组培苗生根的影响因子[J].东北林业大学学报,2005,33(5):15-18.
    [103]祝朋芳,罗凤霞,陈长卿,等.落叶松属树种的组织培养研究概述[J].辽宁农业科学,2000,5:29-32.
    [104]祝朋芳,罗风霞,陈长青,等.日本落叶松的离体培养和植株再生[J].辽宁农业科学,2002,(1):21-23.
    [105]邹高顺,康木水.珍贵壳斗科树种种苗繁殖研究[J].林业勘察设计,2004,(2):15-20.
    [106]Alonso P, Moncalean P, Fernandez B, et al. An improved micropropagation protocol for stone pine(Pinuspinea L.)[J]. Ann For Sci,2006,63:879-885.
    [107]Andersone U, Ievinsh G. In vitro regeneration of mature Pinus sylvestris buds stored at freezing temperatures[J]. Biologia Plantarum,2005,49 (2):281-284.
    [108]Azad M A K, Yokota S, Ohkubo T, et al. In vitro regeneration of the medicinal woody plant Phellodendron amurense Rupr. through excised leaves[J]. Plant Cell, Tissue and Organ Culture, 2005,80:43-50.
    [109]Bellamine J, Penel C, Greppin H et al. Confirmation of the role of auxin and calcium in the late phases of adventitious root formation[J]. Plant Growth Regulation,1998,26:191-194.
    [110]Benkman C W. The impact of tree squirrels (Tamiasciurus) on limber pine seed dispersal adaptations[J]. Evolution,1995,49(4):585-592.
    [111]Benkman C W, Balda R P, Smith C C. Adaptations for seed dispersal and the compromises due to seed predation in limber pine[J]. Ecology,1984,65(2):632-642.
    [112]Bennett L K, Davies F T, Jr. In vitro propagation of Quercus shumardii seedling[J]. HortScinece, 1986,21(4):1045-1047.
    [113]Beruto M, Lanteri L, Portogallo C. Micropropagation of tree peony(Paeonia suffruticosa)[J]. Plant Cell, Tissue and Organ Culture,2004,79:249-255.
    [114]Bishop-Hurley S L, Gardner R C, Walter C. Isolation and molecular characterization of genes expressed during somatic embryo development in Pinus radiate[J]. Plant Cell, Tissue and Organ Culture,2003,74:267-281.
    [115]Bomal C, Tremblay F M. Effect of desiccation to low moisture content on germination, synchronization of root emergence, and plantlet regeneration of black spruce somatic embryos[J]. Plant Cell, Tissue and Organ Culture,1999,56:193-200.
    [116]Bonga J M. The effect of collection date and frozen storage on the formation of embryo-like structures and elongating shoots from explants from mature Larix decidua and L. x eurolepis [J]. Plant Cell, Tissue and Organ Culture,1997,51:195-200.
    [117]Bonga J M. The effect of various culture media on the formation of embryo-like structures in cultures derived from explants taken from mature Larix decidua[J]. Plant Cell, Tissue and Organ Culture,2004,77:43-48.
    [118]Cerda F, Aquea F, Gebauer M, et al. Stable transformation of Pinus radiata embryogenic tissue by Agrobacterium tumefaciens[J]. Plant Cell, Tissue and Organ Culture,2002,70:251-257.
    [119]Chalupa V. In vitro Propagation of Oak (Quercus robur L.) and Linden (Tilia cordata MmL.)[J]. BIOLOGIAPLANTARUM (PRAHA),1984,26 (5):374-377.
    [120]Chalupa V. Large scale micropropagation of Qercus robur L. using adenine-type cytokinins and thidiazuron to stimulate shoot proliferation [J]. BIOLOGIAPLANTARUM,1988,30 (6):414-421.
    [121]Chalupa V. Plant regeneration by somatic embryogenesis from cultured immature embryos of oak (Quercus robur L.) and linden (Tilia cordata Mill.)[J]. Plant Cell Reports,1990,9:398-401
    [122]Chalupa V. Vegetative propagation of oak (Quercus robur and Q. petraea) by cutting and tissue culture[J]. Ann Sci For,1993,50:295s-307s.
    [123]Chalupa V. Protocol for Somatic Embryogenesis in Woody Plants[M]. Netherlands:Springer, 2005:369-378.
    [124]Charity J A, Holland L, Donaldson S S, et al. Agrobacterium-mediated transformation of Pinus radiata organogenic tissue using vacuum-infiltration[J]. Plant Cell, Tissue and Organ Culture, 2002,70:51-60.
    [125]Chen J, Su Y C, Chen G Q, et al. Ethnobotanical studies on wild edible fruits in southern YUNNAN:folk names; nutritional value and uses[J]. Economic Botany,1999,53(1):2-14.
    [126]Chen Y L, Kang L H, Malajczuk N, et al. Selecting ectomycorrhizal fungi for inoculating plantations in south China:effect of Scleroderma on colonization and growth of exotic Eucalyptus globulus, E. urophylla, Pinus elliottii, and P. radiate[J]. Mycorrhiza,2006,16:251-259.
    [127]Chung K P S, Corlett R T. Rodent diversity in a highly degraded tropical landscape:Hong Kong, South China[J]. Biodiversity and Conservation.2006,15:452-4532.
    [128]Cortizo M, Diego N D, Moncalean P, et al. Micropropagation of adult stone pine (Pinus pinea L.)[J]. Trees,2009,23:835-842.
    [129]Cuenca B, San-Jose M C, Martinez M T, et al. Somatic embryogenesis from stem and leaf explants of Quercus robur L[J]. Plant Cell Reports,1999,18:538-543.
    [130]Cuesta C, Ordas R J, Fernandez B, et al. Clonal micropropagation of six selected half-sibling families of Pinus pinea and somaclonal variation analysis[J]. Plant Cell, Tissue and Organ Culture, 2008,95:125-130.
    [131]Davis E A. Propagation of shrub live oar from cuttings[J]. BOT. GAZ,1970,131(1):55-61.
    [132]Daza A, Manjon J L, Camacho M, et al. Effect of carbon and nitrogen sources, pH and temperature on in vitro culture of several isolates of Amanita caesarea (Scop.:Fr.) Pers[J]. Mycorrhiza.2006,16:133-136.
    [133]De Klerk G J, Arnholdt-schmitt B, Lieberei R, et al. Regeneration of roots, shoots and embryos: physiological, biochemical and molecular aspects[J]. Biologia Plantarum,1997,39(1):53-56.
    [134]Drake PMW, Johnl A, Power JB, et al. Cytokinin pulse-mediated shoot organogenesis from cotyledons of Sitka spruce [Picea sitchensis (Bong.) Carr.] and high frequency in vitro rooting of shoots[J]. Plant Cell, Tissue and Organ Culture,1997,50:147-151.
    [135]Dumas E, Monteuuis O. In vitro rooting of micropropagated shoots from juvenile and mature Pinus pinaster explants:influence of activated charcoal[J]. Plant Cell, Tissue and Organ Culture, 1995,40:231-235.
    [136]EdKlerk G J, Brugge J T, Marinova S. Effectiveness of indoleacetic acid, indolebutyric acid and naphthaleneacetic acid during adventitious root formation in vitro in malus'Jork 9'[J]. Plant Cell, Tissue and Organ Culture,1997,49:39-44.
    [137]El Euch C, Jay-Allemand C, Pastuglia M, et al. Expression of antisense chalcone synthase RNA in transgenic hybrid walnut microcuttings. Effect on flavonoid content and rooting ability[J]. Plant Molecular Biology,1998,38:467-479.
    [138]Endemann M, Wilhelm E. Factors influencing the induction and viability of somatic embryos of Quercus robur L[J]. Biologia plantarum,1999,42(4):499-504.
    [139]Endemann M, Hristoforoglu K, Stauber T, et al. Assessment of age-related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry[J]. BILOGIA PLANTARUM,2001,44(3):339-345.
    [140]Evers P, Vermeer E, Van Eeden S. Rejuvenation of Quercus robur[J]. Ann Sci For,1993,50: 330s-335s.
    [141]Favre J M, Juncker B. In vitro growth of buds taken from seedlings and adult plant material in Quercus robur L[J]. Plant Cell, Tissue and Organ Culture.1987,8:49-60.
    [142]Feher A, Pasternak T P, Dudits D. Transition of somatic plant cells to an embryogenic state[J]. Plant Cell, Tissue and Organ Culture,2003,74:201-228.
    [143]Feldman R, Tomback D E, Koehler J. Cost of mutualism:competition, tree morphology, and pollen production in limber pine clusters[J]. Ecology,1999,80(1):324-329.
    [144]Find J I, Kristensen M M H, N(?)rgaard J V, et al. Effect of culture period and cell density on regrowth following cryopreservation of embryogenic suspension cultures of Norway Spruce and Sitka spruce[J]. Plant Cell, Tissue and Organ Culture,1998,53:27-33.
    [145]Fishel D W, Zaczek J J, Preece J E. Positional influence on rooting of shoots forced from the main bole of swamp white oak and northern red oak[J]. Can. J. For. Res,2003,33:705-711.
    [146]Fraga M F, Canal M J, Rodriguez R. In vitro morphogenic potential of differently aged Pinus radiata trees correlates with polyamines and DNA methylation levels[J]. Plant Cell, Tissue and Organ Culture,2002,70:139-145.
    [147]Gingas V M, Lineberger R D. Asexual embryogenesis and plant regeneration in Quercus[J]. Plant Cell, Tissue and Organ Culture,1989,17:191-203.
    [148]Gresshoff P M, Doy C H. Development and differentiation of haploid Lycopersicon esculentum (Tomato)[J]. Planta (Berl.),1972,107:161-170.
    [149]Guevin T G, Kirby E G. Induction of embryogenesis in cultured mature zygotic embryos of Abies fraseri (Pursh) Poir[J]. Plant Cell, Tissue and Organ Culture,1997,49:219-222.
    [150]Haggman H M, Ryynanen L A, Aronen T S, et al. Cryopreservation of embryogenic cultures of Scots pine[J]. Plant Cell, Tissue and Organ Culture,1998,54:45-53.
    [151]Hamann A. Adventitious root formation in cuttings of loblolly pine(Pinus taeda L.): developmental sequence and effects of maturation[J]. Trees,1998,12:175-180.
    [152]Humara J M, Lopez M, Ordas R J. Induction of a virulence response in Agrobacterium tumefaciens by exudates of Pinus pinea cotyledons [J]. Plant Cell, Tissue and Organ Culture,1999, 55:175-181.
    [153]Ibaraki Y, Kurata K. Automation of somatic embryo production[J]. Plant Cell, Tissue and Organ Culture,2001,65:179-199.
    [154]Ibaraki Y, Nozaki Y. Estimation of light intensity distribution in a culture vessel[J]. Plant Cell, Tissue and Organ Culture,2005,80:111-113.
    [155]Ishii K, Teasdale R D. Effects of xylooligosaccharides on suspension-cultured cells and protoplasts of Pinus radiate[J]. Plant Cell, Tissue and Organ Culture,1997,49:189-193.
    [156]Janeiro L V, Vieitez A M, Ballester A. Cold storage of in vitro cultures of wild cherry, chestnut and oak[J]. Ann Sci For,1995,52:287-293.
    [157]Jasik J, De Klerk G J. Anatomical and ultrastructural examination of adventitious root formation in stem slices of apple[J]. Biologia Plantarum,1997,39(1):79-90.
    [158]Juncker B, Favre J M. Clonal effects in propagating oak trees via in vitro culture [J]. Plant Cell, Tissue and Organ Culture,1989,19:267-276.
    [159]Juncker B, Favre J M. Long-term effects of culture establishment from shoot-tip explants in micropropagating oak (Quercus robur L)[J]. Ann Sci For,1994,51:581-588.
    [160]Kartsonas E, Papafotiou M. Mother plant age and seasonal influence on in vitro propagation of Quercus euboica Pap., an endemic, rare and endangered oak species of Greece[J]. Plant Cell Tissue Organ Cult,2007,90:111-116.
    [161]Kim M S, Klopfenstein N B, Cregg B M. In vitro and ex vitro rooting of micropropagated shoots using three green ash(Fraxinus pennsylvanica) clones[J]. New Forests,1998,16:43-57.
    [162]Kim Y W, Lee B C, Lee S K, et al. Somatic embryogenesis and plant regeneration in Quercus acutissima[J]. Plant Cell Reports,1994,13:315-318.
    [163]Kim Y W, Youn Y, Noh E R, et al. Somatic embryogenesis and plant regeneration from immature zygotic embryos of Japanese larch (Larix leptolepis)[J]. Plant Cell, Tissue and Organ Culture,1999, 55:95-101.
    [164]Kitin P, Iliev I, Scaltsoyiannes A, et al. A comparative histological study between normal and fasciated shoots of Prunus avium generated in vitro[J]. Plant Cell, Tissue and Organ Culture,2005, 82:141-150.
    [165]Leifert C, Woodward S. Laboratory contamination management:the requirement for microbiological quality assurance[J]. Plant Cell, Tissue and Organ Culture,1998,52:83-88.
    [166]Luo J P, Mu Q, Gu Y H. Protoplast culture and paclitaxel production by Taxus yunnanensis[J]. Plant Cell, Tissue and Organ Culture,1999,59:25-29.
    [167]Manzanera J A, Pardos J A. Micropropagation of juvenile and adult Quercus suber L[J]. Plant Cell, Tissue and Organ Culture,1990,21:1-8.
    [168]Marks T R, Simpson S E. Interaction of explant type and indole-3-butyric acid during rooting in vitro in a range of difficult and easy-to-root woody plants[J]. Plant Cell, Tissue and Organ Culture, 2000,62:65-74.
    [169]Martins A. Mycorrhizae:Sustainable Agriculture and Forestry[M]. Springer Science+Business Media BV,2008:321-336.
    [170]Mauri P V, Manzanera J A. Induction, maturation and germination of holm oak(Quercus ilex L.) somatic embryos[J]. Plant Cell, Tissue and Organ Culture,2003,74:229-235.
    [171]Mauri P V, Manzanera J A. Protocol for Somatic Embryogenesis in Woody Plants[M]. Netherlands:Springer,2005:469-482.
    [172]McGuigan P J, Blazich F A, Ranney T G. Propagation of Quercus phillyreoides by Stem Cuttings[J]. J. Environ. Hort,1996,14(2):77-81.
    [173]Meier-Dinkel A, Becker B, Duckstein D. Micropropagation and ex vitro rooting of several clones of late-flushing Quercus robur L[J]. Ann Sci For,1993,50:319s-322s.
    [174]Meskaoui A E, Tremblay F M. Effects of sealed and vented gaseous microenvironments on the maturation of somatic embryos of black spruce with a special emphasis on ethylene[J]. Plant Cell, Tissue and Organ Culture,1999,56:201-209.
    [175]Mitton J B, Kreiser B R, Latta R G. Glacial refugia of limber pine(Pinus flexilis James) inferred from the population structure of mitochondrial DNA[J]. Molecular Ecology,2000a,9:91-97.
    [176]Mitton J B, Kreiser B R, Rehfeldt G E. Primers designed to amplify a mitochondrial nad1 intron in ponderosa pine, Pinus ponderosa, limber pine, P. flexilis, and scots pine, P. sylvestris[J]. Theor Appl Genent,2000b,101:1269-1272.
    [177]Mulin M, Pais M S S. In vitro floral induction from thin longitudinal sections and micro-cuttings of juvenile cork oak material[J]. Trees,2003,17:228-236.
    [178]Mulwa RMS, Bhalla P L. In vitro plant regeneration from immature cotyledon explants of macadamia(Macadamia tetraphylla L. Johnson) [J]. Plant Cell Rep,2006,25:1281-1286.
    [179]Murashige T and Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultres [J]. Physiologia Plantantarum,1962,15:473-497.
    [180]Negash L. Vegetative propagation of the threatened African wild olive [Olea europaea L. subsp. cuspidate (Wall. ex DC) Ciffieri] [J]. New Forests,2003,26:137-146.
    [181]Newell C, Growns D, McComb J. The influence of medium aeration on in vitro rooting of Australian plant microcuttings[J]. Plant Cell, Tissue and Organ Culture,2003,75:131-142.
    [182]Niemi K, Scagel C, Haggman H. Application of ectomycorrhizal fungi in vegetative propagation of conifers[J]. Plant Cell, Tissue and Organ Culture,2004,78:83-91.
    [183]Ostroluckam G, Gajdosova A, Libiakova G. Protocols for Micropropagation of Woody Trees and Fruits[M]. Springer,2007:85-91.
    [184]Pan M J, Van Staden J. The use of charcoal in in vitro culture-A review[J]. Plant Growth Regulation,1998,26:155-163.
    [185]Perrin Y, Doumas P, Lardet L, et al. Endogenous cytokinins as biochemical markers of rubber-tree (Hevea brasiliensis) clone rejuvenation [J]. Plant Cell, Tissue and Organ Culture,1997,47: 239-245.
    [186]Pesce P G, Rugini E. Influence of plant growth regulators, carbon sources and iron on the cyclic secondary somatic embryogenesis and plant regeneration of transgenic cherry rootstock'Colt' (Prunus avium × P. pseudocerasus)[J]. Plant Cell, Tissue and Organ Culture,2004,79:223-232.
    [187]Pinto G, Valentim H, Costa A, et al. Somatic embryogenesis in leaf callus from a mature Quercus suber L. tree[J]. In Vitro Cell. Dev. Biol. Plant,2002,38:569-572.
    [188]Prehn D, Serrano C, Mercado A, et al. Regeneration of whole plants from apical meristems of Pinus radiata[J]. Plant Cell, Tissue and Organ Culture,2003,73:91-94.
    [189]Prewein C, Wilhelm E. Plant regeneration from encapsulated somatic embryos of pedunculate oak (Quercus robur L.)[J]. In Vitro Cell. Dev. Biol. Plant,2003,39:613-617.
    [190]Pullman G S, Johnson S, Tassel S V, et al. Somatic embryogenesis in loblolly pine (Pinus taeda) and Douglas fir (Pseudotsuga menziesii):improving culture initiation and growth with MES pH buffer, biotin, and folic acid[J]. Plant Cell, Tissue and Organ Culture,2005,80:91-103.
    [191]Purohit V K, Tamta S, Chandra S, et al. In vitro multiplication of Quercus leucotrichophora and Q. glauca:Important Himalayan oaks[J]. Plant Cell, Tissue and Organ Culture,2002,69:121-133.
    [192]Ramarosandratana A V, Staden J V. Tissue position, explant orientation and naphthaleneacetic acid (NAA) affect initiation of somatic embryos and callus proliferation in Norway spruce (Picea abies)[J]. Plant Cell, Tissue and Organ Culture,2003,74:249-255.
    [193]Ramarosandratana A V, Staden J V. Effects of auxins and 2,3,5-triiodobenzoic acid on somatic embryo initiation from Norway spruce zygotic embryos (Picea abies)[J]. Plant Cell, Tissue and Organ Culture,2004,79:105-107.
    [194]Roberts L M, McCulley R L, Burke I C, et al. Indications of deep soil water usage by limber pine (Pinus flexilis) and skunkbush sumac (Rhus aromatica) in Northeastern Colorado:an oxygen isotope study[J]. Am Midl Nat,2004,152:178-182.
    [195]Romano A, Martins-Loucao M A. In vitro cold storage of cork oak shoot cultures[J]. Plant Cell, Tissue and Organ Culture,1999,59:155-157.
    [196]Romano A, Noronha C, Martins-Louqcao M A. Role of carbohydrates in micropropagation of cork oak[J]. Plant Cell, Tissue and Organ Culture,1995,40:159-167.
    [197]San-Jose M C, Ballester A, Vieitez A M. Factors affecting in vitro propagation of Quercus robur L[J]. Tree Physiology,1988,4:281-290.
    [198]Sanchez M C, San-Jose M C, Ballester A, et al. Requirements for in vitro rooting of Quercus robur and Q. rubra shoots derived from mature trees[J]. Tree Physiology,1996,16:673-680.
    [199]Savill P S, Kanowski P J. Tree improvement programs for European oaks:goals and strategies[J]. Ann Sci For,1993,50:368s-383s.
    [200]Schenk R U, Hildebrandt A C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures[J]. Canadian Journal of Botany,1972,50: 199-204.
    [201]Schestibratov K A, Mikhailov R V, Dolgov S V. Plantlet regeneration from subculturable nodular callus of Pinus radiata[J]. Plant Cell, Tissue and Organ Culture,2003,72:139-146.
    [202]Schoettle A W, Rochelle S G. Morphological variation of Pinus flexilis (Pinaceae), a bird-dispersed pine, across a range of elevations [J]. American Journal of Botany,2000,87(12): 1797-1806.
    [203]Schoettle A W. Developing proactive management options to sustain bristlecone and limber pine ecosystems in the presence of a non-native pathogen[M]. Fort Collins:Shepperd W D, Eskew L G, compilers,2004:146-155.
    [204]Schuller A, Kirchner-Neβ R, Reuther G. Interaction of plant growth regulators and organic C and N components in the formation and maturation of Abies alba somatic embryos[J]. Plant Cell, Tissue and Organ Culture,2000,60:23-31.
    [205]Schuster WSF, Alles D L, Mitton J B. Gene flow in limber pine:evidence from pollination phenology and genetic differentiation along an elevational transect[J]. American Journal of Botany, 1989,76(9):1395-1403.
    [206]Schuster WSF, Mitton J B, Woodhouse C A. A comparison of limber pine (Pinus flexilis) ages at lower and upper treeline sites east of the continental divide in Colorado[J]. The American Midland Natualist,1995,133(1):101-111.
    [207]Schuster WSF, Mitton J B. Paternity and gene dispersal in limber pine (Pinus flexilis James)[J]. Heredity,2000,84:348-361.
    [208]Schwarz O J, Schlarbaum S E. Axillary bud proliferation of 2 North American oak species: Quercus alba and Quercus rubra[J]. Ann Sci For,1993,50:340s-343s.
    [209]Seckinger G R, Mccown B H, Struckmeyer B E. Production of anomalous structures in Quercus rubra L[J]. callus cultures. Amer. J. Bot,1979,66(8):993-996.
    [210]Seth M K. Trees and their rconomic importance [J]. The Botanical Review.2004,69(4):321-376.
    [211]Sommer H E, Brown C L, Kormanik P P. Differentiation of plantlets in longleaf pine (Pinus palustris Mill.) tissue cultured in vitro[J]. GAZ,1975,136(2):196-200.
    [212]Stasolla C, Yeung E C. Recent advances in conifer somatic embryogenesis:improving somatic embryo quality[J]. Plant Cell, Tissue and Organ Culture,2003,74:15-35.
    [213]Steele R. Limber pine. http://www.na.fs.fed.us/spfo/pubs/silvics_manual/volume_1/pinus/flexilis.htm.2010-02-10.
    [214]Stojicic D, Budimir S, Culafic L. Micropropagation of Pinus heldreichii[J]. Plant Cell, Tissue and Organ Culture,1999,59:147-150.
    [215]Su Z Y, Chen BG, Chang Y, et al. Environmental Correlates of Distribution of the 25 Broad-leaved Tree Species Indigenous to Guangdong Province, China[J]. Forestry Studies in China, 2004,6(4):23-28.
    [216]Sul I W, Korban S S. Effects of salt formulations, carbon sources, cytokinins, and auxin on shoot organogenesis from cotyledons of Pinus pinea L[J]. Plant Growth Regulation,2004,43:197-205.
    [217]Sundriyal M, Sundriyal R C. Wild edible plants of the Sikkim Himalaya:values of selected species[J]. Economic Botany.2004a,58(2):286-299.
    [218]Sundriyal M, Sundriyal R C. Wild edible plants of the Sikkim Himalaya:marketing, value addition and implications for management[J]. Economic Botany,2004b,58(2):300-315.
    [219]Sundriyal M, Sundriyal R C, Sharma E. Dietary use of wild plant resources in the Sikkim Himalaya, India[J]. Economic Botany,2004c,58(4):626-638.
    [220]Tamta S, Palni L M S, Purohit V K, et al. In vitro propagation of brown oak(Quercus semecarpifolia Sm.) from seedling explants[J]. In Vitro Cell. Dev. Biol.-Plant,2008,44:136-141.
    [221]Tang W, Ouyang F. Plant regeneration via organogenesis from six families of loblolly pine[J]. Plant Cell, Tissue and Organ Culture,1999,58:223-226.
    [222]Tang W, Guo Z C. In vitro propagation of loblolly pine via direct somatic organogenesis from mature cotyledons and hypocotyls[J]. Plant Growth Regulation,2001,33:25-31.
    [223]Tang W, Harris L C, Outhavong V, et al. The effect of different plant growth regulators on adventitious shoot formation from Virginia pine(Pinus virginiana) zygotic embryo explants[J]. Plant Cell, Tissue and Organ Culture,2004a,78:237-240.
    [224]Tang W, Luo H S, Newton R J. Effects of antibiotics on the elimination of Agrobacterium tumefaciens from loblolly pine(Pinus taeda) zygotic embryo explants and on transgenic plant regeneration[J]. Plant Cell, Tissue and Organ Culture,2004b,70:71-81.
    [225]Teixeira S L, Ribeiro J M, Teixeira M T. Influence of NaClO on nutrient medium sterilization and on pineapple(Ananas comosus cv Smooth cayenne) behavior[J]. Plant Cell Tissue Organ Cult, 2006,86:375-378.
    [226]Thakur R, Sood A. An efficient method for explant sterilization for reduced contamination[J]. Plant Cell, Tissue and Organ Culture,2006,84:369-371.
    [227]Thilenius J F. An isolated occurrence of limber pine(Pinus flexilis James) in the black hills of south Dakota[J]. American Midland Naturalist,1970,84(2):411-417.
    [228]Toering A, Pullman G S. Modeling available 2,4-dichlorophenoxyacetic acid in a tissue culture medium containing activated carbon[J]. Plant Cell, Tissue and Organ Culture,2005,82:179-188.
    [229]Tomback D F, Kramer K A. Limber pine seed harvest by clark's nutcracker in the sierra Nevada: timing and foraging behavior[J]. Condor,1980,82:467-468.
    [230]Toribio M, Fernandez C, Celestino C, et al. Somatic embryogenesis in mature Quercus robur trees[J]. Plant Cell, Tissue and Organ Culture,2004,76:283-287.
    [231]Vengadesan G, Pijut P M. In vitro propagation of northern red oak (Quercus rubra L.)[J]. In Vitro Cell. Dev. Biol.-Plant,2009a,45:474-482.
    [232]Vengadesan G, Pijut P M. Somatic embryogenesis and plant regeneration of northern red oak (Quercus rubra L.)[J]. Plant Cell Tissue Organ Culture,2009b,97:141-149.
    [233]Vetaas O R. The effect of environmental factors on the regeneration of Quercus semecarpifolia Sm. in Central Himalaya, Nepal[J]. Plant Ecology,2000,146:137-144.
    [234]Vieitez A M, Pintos F, San-Jose M C, et al. In vitro shoot proliferation determined by explant orientation of juvenile and mature Quercus rubra L[J]. Tree Physiology,1993,12:107-117.
    [235]Vieitez A M, Sanchez M C, Amo-Marco J B, et al. Forced flushing of branch segments as a method for obtaining reactive explants of mature Quercus robur trees for micropropagation[J]. Plant Cell, Tissue and Organ Culture.1994,37:287-295.
    [236]Vieitez A M, Corredoira E, Ballester A, et al. In vitro regeneration of the important North American oak species Quercus alba, Quercus bicolor and Quercus rubra[J]. Plant Cell Tissue Organ Culture,2009,98:135-145.
    [237]Von Aderkas P, Rohr R, Sundberg B, et al. Abscisic acid and its influence on development of the embryonal root cap, storage product and secondary metabolite accumulation in hybrid larch somatic embryos[J]. Plant Cell, Tissue and Organ Culture,2002,69:111-120.
    [238]Von Aderkas P, Pattanavibool R, Hristoforoglu K, et al. Embryogenesis and genetic stability in long term megagametophytederived cultures of larch[J]. Plant Cell, Tissue and Organ Culture, 2003,75:27-34.
    [239]Von Arnold S, Sabala I, Bozhkov P, et al. Developmental pathways of somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture,2002,69:233-249.
    [240]Vyas S, Purohit S D. In vitro growth and shoot multiplication of Wrightia tomentosa Roem et Schult in a controlled carbon dioxide environment[J]. Plant Cell, Tissue and Organ Culture,2003, 75:283-286.
    [241]Walter C, Charity J, Grace L, et al. Gene technologies in Pinus radiata and Picea abies:tools for conifer biotechnology in the 21st century[J]. Plant Cell, Tissue and Organ Culture,2002,70:3-12.
    [242]Wang P J, Huang L C. Beneficial effects of activated charcoal on plant tissue and organ cultures[J]. In Vitro,1976,12(3):260-262.
    [243]Webster K L, Johnson E A. The importance of regional dynamics in local populations of limber pine (Pinus flexilis)[J]. Ecoscience,2000,7(2):175-182.
    [244]Wilhelm E. Somatic embryogenesis in oak (QUERCUS spp.)[J]. In Vitro Cell. Dev. Biol.-Plant, 2000,36:349-357.
    [245]Witte C P, Tiller S A, Taylor M A, et al. Addition of nickel to Murashige and Skoog medium in plant tissue culture activates urease and may reduce metabolic stress[J]. Plant Cell, Tissue and Organ Culture,2002,68:103-104.
    [246]Xu Q M, Cheng J S, Ge Z Q, et al. Effects of organic solvents on membrane of Taxus cuspidate cells in two-liquid-phase cultures[J]. Plant Cell, Tissue and Organ Culture,2004,79:63-69.
    [247]Zaczek J J, Steiner K C, Henser C W, Jr. Vegetative Propagation of Mature and Juvenile Northern Red Oak[C]. In:Gillespie, Andrew R; Parker, George R; Pope, Phillip E; Rink, George:eds,1993: 210-221.
    [248]Zaczek J J, Steiner K C. Grafting-mediated meristem selection influences rooting success of Quercus rubra[J]. Can. J. For. Res,1997,27:86-90.
    [249]Zhang Y, Wei Z, Xi M, et al. Direct organogenesis and plantlet regeneration from mature zygotic embryos of masson pine(Pinus massoniana L.)[J]. Plant Cell, Tissue and Organ Culture,2006,84: 119-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700