用户名: 密码: 验证码:
叶片扩压器对叶轮冲击的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离心压缩机作为一种工业装备,广泛应用于能源动力、石油化工等国民经济的各重要部门,但也消耗着大量的能源。因此,研究出高性能的离心压缩机以满足各行业发展需求,对我国工业发展水平及国民经济建设至关重要。
     某离心压缩机小流量模型级采用有叶扩压器可以显著提高模型级的效率,然而考虑到有叶扩压器可能对叶轮造成冲击,因此在有叶扩压器的使用问题上需要非常谨慎。以前的研究表明,离心叶轮与叶片扩压器间的径向间隙对级性能有重要的影响。然而离心压缩机在设计工况下运行时,叶轮与叶片扩压器间的相对运动所导致的非稳态流动对级性能影响一般不大;在非设计工况运行时,由于叶片扩压器的存在,变工况时离心压气机冲击损失较大,效率下降较多。本文在扩压器叶片前缘与叶轮轮缘的距离合适的基础上,在不同流量下对其进行非定常数值模拟研究,分析有叶扩压器叶轮叶片上的压力脉动。考虑到小流量下,叶轮内部可能会产生漩涡,甚至会更加恶劣,以至于机组无法正常运行。在一定程度上可能会影响到叶片扩压器对叶轮叶片的冲击力分析,对带无叶扩压器的离心叶轮进行变工况数值模拟,并对非定常计算结果进行对比,得到了一个比较满意的结果。
Centrifugal compressors, large energy consumers, are widely used in energy power and petrochemical and other important sectors in national economy. Therefore, it is high time to develop high-performance centrifugal compressors to meet the development needs of industries, which is essential to the level of industrial development and economic construction in our country.
     The vane diffuser can significantly improve the efficiency of the model stage for centrifugal compressor small flow coefficient model. However, it is careful to use vane diffuser for taking into the impact of the diffuser to impeller. Studies have shown that the radial clearance between the centrifugal impeller and vane diffuser has played an important role in performance influence on centrifugal compressors. However, the unsteady flow of centrifugal compressors on design conditions caused by the interaction between the impeller and vane-diffuser would create a bad effect on performance. The efficiency of centrifugal compressors decreased for the impact of vane-diffuser on off-design conditions. Based on leading edge of the vane diffuser is closer to the impeller rim, unsteady numerical simulation is studied by changing the flow to observe the pressure fields on the impeller in this paper.
     Taking into account the bad flow in the internal impeller on small flow condition will affect the impeller blades, centrifugal compressor with the vaneless diffuser need to be simulated on different condition. A result is obtained by compare several plans.
引文
[1]黄钟岳,王晓放.透平式压缩机.北京:化学工业出版社,2004.
    [2]王尚锦.离心压缩机三元流动理论与应用.西安交通大学出版社,1991.
    [3]孙宇涛.跨声速压气机非定常流动及损失的数值研究[D].北京:北京航空航天大学,2008.
    [4]Fischer K, Thoma D. Investigation of the Flow Conditions in a Centrifugal Pump. Trans ASME,1932,54:141-153.
    [5]Hamrick J T. Some Aerodynamic Investigations in Centrifugal Impellers. Trans ASME, 1956,78:591-602
    [6]Dean R, Senoo Y. Rotating wakes in vaneless diffusers[J]. ASME Journal of Basic Engineering,1960,82:563-574.
    [7]Eckardt D. Instantaneous Measurements in the Jet-Wake Discharge Flow of a Centrifugal Compressor Impeller. Journal of Engineering for Power, Trans. ASME, Series A, Vol.97, No.3, July 1975, PP.337-346.
    [8]Eckardt D. Detailed Flow Investigations within a High-speed Centrifugal Compressor Impeller. Journal of Fluids Engineering,1976,390-402.
    [9]Johnson M W, Moore J. The Development of Wake Flow in a Centrifugal Impeller. Journal of Engineering for Power,1980, Vol.102, PP,382-390.
    [10]Johnson M W, Moore J. The Influence of Flow Rte on the wake in A Centri fugal Impeller. ASME Journal of Engineering for Power,1983,105:33-39.
    [11]Krain H. A study on Centrifugal Impeller and Diffuser Flow. ASME Journal Of Engineering for Power,1981,103:688-697.
    [12]Arndt N, Acosta A J. Experimental investigation of rotor-stator interaction in a centrifugal pump with several vaned diffusers. ASME Journal of Turbomachinery, 1990,122:98-108.
    [13]Miyamoto Hiroyuki, Nakashima Yukitoshi. Effects of splitter blades on the flows and characteristics in centrifugal impeller. JSME International Series II, 1992,35(2):238-246.
    [14]Engeda A. The unsteady performance of a centrifugal compressor with different diffusers. Proc Instn Mech Engrs, Part A,2001,215:585-599.
    [15]Moore J, Moore J G. Three-Dimensional Viscous Flow Calculations for Assessing the Thermodynamic Performance of Centrifugal Compressors, Study of the Eekardt Compressor. ASME Journal of Engineering for Power,1981,103:367-372.
    [16]Ekeral H, Railly J W. A Theory for Boundary Layer Growth on the Blade for Radial Impeller Including End-Wall Influence, ASME Paper 82-GT-9D,1982.
    [17]Johson J P, Eide S A. Turbulent Boundary Layers on Centrifugal CompressorBlades: Prediction of the Effects of Surface Curvature and Rotation. ASME Journal of Fluids Engineering,1976, Vol.98, P374-381.
    [18]Kunz R, Lakshminarayana B. Navier-Stokes Investigation of a Transonic Centrifugal Compressor Stage Using an Algebraic Reynolds Stress Model. AIAA Paper,1992,92-3311.
    [19]Krain H. Swirling Impeller Flow. ASME Journal of Turbomachinery,1988,110: 122-128.
    [20]Wu Zhonghua. A General Theory of three dimensional Flow in Subsonic and Supersonic Turbo-machines of Axial-, Radial- and Mixed- Flow Types. NACA TN 2604,1952.
    [21]苏莫明,胡春波,洪灵.离心压缩机环列叶栅叶片不稳定脉动力的确定.甘肃工业大学学报,1996,22(4):32-37.
    [22]席光,王尚锦.半开式离心式压气机叶轮三维湍流场数值分析.西安交通大学学报,1997,31(5):90-96.
    [23]刘正先.离心叶轮内三维湍流流场的数值计算与实验比较.FLUID MACHINER,2000,28(4).
    [24]刘立军,徐忠,张玮.叶顶间隙泄漏时离心压气机模型级内流动的数值模拟.西安交通大学学报,2001,35(9):908-913.
    [25]王彤,谷传纲,刘正先.非设计工况下叶片扩压器与离心叶轮间非定常流动的二维数值模拟.上海交通大学学报,2003,37(12).
    [26]张莉,陈汉平.离心式叶轮机械内部非定常流动的数值计算.风机技术,2004(4).
    [27]赵晓路,肖翔.使用确定应力模型研究离心压气叶片相互作用.工程热物理学报,2001,22(4):423-426.
    [28]Adamczyk J J. Model Equation for Simulation Flows in Multistage Turbomachinery. ASME Paper 85-GT-226 1985.
    [29]Rie C M and etal. Development and Application of A Multistage Navier-Stokes Flow Slover. Part I Multistage Modeling Using Bodyforces and Deterministic Stresses. ASME 95-GT-342,1995.
    [30]刘瑞韬,徐忠.含分流叶片的离心压缩机级内三维黏性流场数值分析.应用力学学报,2004,21(1):43-48.
    [31]席光,周莉等.叶片扩压器进口安装角对离心压缩机性能影响的数值与实验研究.工程热物理学报,2006,27(1).
    [32]潘小强,袁璟.CFD软件在工程流体数值模拟中的应用.南京工程学院学报(自然科学草药版)Vol.2, No.1, Mar.,2004, pp.62-66.
    [33]高智.CFD研究与CFD软件应用和平台开发.中国科学院力学的研究所讲义.2002.
    [34]姚征,陈康民.CFD通用软件综述.上海理工大学学报,2002,24(2):137-144.
    [35]王福军.计算流体动力学分析-CFD软件原理及应用.北京:清华大学出版社,2004.
    [36]焦德勇,冯国泰.叶轮机内流场数值计算.哈尔滨:哈尔滨工业大学出版社[M].1990.
    [37]Fine/Turbo v8.7. Flow Integrated Environment User Manual.2009.4.
    [38]Baldwin B S, Lomxa H. Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA-78-257.
    [39]Spalart P R, Allmarsa S R. A One-equation Turbulence Model for Aerodynamic Flows. AIAA Paper92-0439,1992.
    [40]George P L. Automatic mesh generation:application to finite element methods, Wiley,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700