离心压缩机小流量模型级的流动分析与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离心式压缩机由于单级压比高,工艺性能好在航天、能源、化工及冶金等部门发挥着及其重要的作用。本文所研究的离心压缩机小流量模型级是沈阳鼓风机有限公司某多级离心压缩机后面段的一小流量级。此小流量模型级的原始设计采用的是意大利新比隆公司七十年代的离心压缩机制造技术,由于技术老化,此小流量模型级级效率比现今国际同类产品低十个百分点,在激烈的国际市场竞争中,如此大的差距必然使我国的压缩机产品处于劣势。
     为了提高国际市场的竞争能力,本文利用计算流体力学的手段对离心压缩机小流量模型级内部流动情况进行数值模拟,对数值计算的结果进行分析,找出其效率低的原因,并进行相应的优化,达到显著提高其效率的目的,进而提高产品的性能,创造更高的经济效益和社会效益。本文主要工作包括:1、利用NUMECA等软件建立起完整的离心压缩机小流量模型级内部流动数值分析平台,对多级离心压缩机小流量模型级原结构内部流场进行数值模拟,得到了模型级初始的性能参数以及各通流元件(包括叶轮、扩压器、弯道及回流器)内部三维流场的完全信息。2、对模型级各通流元件内部流场进行详细的分析,针对流动中存在的问题找出影响原模型级性能因素,提出叶轮等通流元件结构参数的多种优化方案。3、根据流场分析的结果,对模型级各通流元件进行多次多方案的结构优化,结构优化工作的最终结果使多级离心压缩机小流量模型级整级性能得到明显的改善,级多变效率提高6.6个百分点,达到预期的结构优化要求。
     本文建立的数值分析平台是离心式压缩机小流量模型级的内部流场分析的一个实用的工具。在实际工程设计中利用此平台可以有效的改善机器的性能。
Centrifugal compressors are widely used in aeronautics, power and energy, chemical metallurgy-and many other industries for higher stage -pressure ratio and superiors manufacturing technique. The model stage studied in this thesis was designed by Nuovo Pignone in the 70s last century. The efficiency of such a model stage is usually 10% lower than the modern state-of-art products in current market and thus at a very disadvantage position in the competitive market, as the design method is out-of-date now.Based on the CFD software NUMECA, a numerical analytic system for the centrifugal model stage was developed and the detailed flow field with the main flow features inside the through-flow passages were obtained and studied. Main problems affecting the efficiency of the stage were analyzed carefully. Various approaches for the modification of the stage geometry, including the impeller, the diffuser, the curved duct and the return channel were explored numerically. The final results indicate that the stage efficiency has been increased by 6.6% with a satisfactory improvement of the flow structure inside the stage. Vaned diffuser can improve the efficiency of the model stage effectively, although may affect the off-design performance slightly.The analytic system developed in this thesis is a powerful tool in the analysis of the flow inside the centrifugal model stage. It can be used in engineering design process to improve the performance of the machine significantly.
引文
[1] 黄钟岳,王晓放.透平式压缩机.北京:化学工业出版社,2004.
    [2] 杨策,马朝臣,王航,老大中.离心压缩机叶轮设计方法研究进展.内燃机工程,2002,23(2).
    [3] 朱大鑫.涡轮增压与涡轮增压器[D].兵器工业第七零研究所.1997.
    [4] Bruce G J , Masme M Computer-aided Turbomachinery Design System[C]. I. Mech. E, 1998, 554/026/98.
    [5] Nojima. Development of Aerodynamic Design System for Centrifugal Compressors[D]. Mitsubishi Heveay Industries, Tech. Review, 1998, 25(1).
    [6] Zangeneh M, Goto A, Takemura T. Suppression of Secondary Flows in a Mixed-Flow Pump Impeller by Application of 3D Inverse Design Method: Partl-Design and Numerical Validation[C]. ASME Paper, 1994, 94-GT-45.
    [7] Yiu K F C, Zangeneh M. A 3D Automatic Optimization Strategy for Design of Centrifugal Compressor Impeller Blades[C]. ASME Paper, 1998, 98-GT-128.
    [8] Tjokroaminata W D, Tan C S, Hawthome W R. A Design Study of Radial Inflow Turbines with Splitter Blades in Three-Dimensional Flow[C]. ASME Paper, 1994,94-GT-36.
    [9] Arndt N, Acosta A J. Experimental investigation of rotor-stator interaction in a centrifugal pump with several vaned diffusers. ASME Journal of Turbomachinery, 1990,122:98-108.
    [10] Fatsis A. Three-dimensional unsteady flow and forces in centrifugal impellers with circumferential distortion of the outlet static pressure. ASME Journal of Turbomachinery, 1997,119:94-102.
    [11] Justen F. Experimental investigation of unsteady flow phenomena in a centrifugal compressor vaned diffuser of variable geometry. ASME Journal of Turbomachinery, 1999,121:763-771.
    [12] Engeda A. The unsteady performance of a centrifugal compressor with different diffusers. Proc Instn Mech Engrs, Part A, 2001, 215:585-599.
    [13] 苏莫明,胡春波,洪灵.离心压缩机环列叶栅叶片不稳定脉动力的确定.甘肃工业大学学报,1996,22(4):32-37.
    [14] 刘立军,徐中,张玮.离心压气机模型级内非定常流动的数值实验.航空动力学报,2002,17(1):58-64.
    
    [15] 赵晓路,肖翔.使用确定应力模型研究离心压气机叶片相互作用.工程热物理学报.2001,22(4):423-426.
    [16] 刘国俊.计算流体力学的地位、发展情况和发展趋势.航空计算技术,1994,1:15-21.
    [17] 张健.计算流体力学在航空叶轮机设计中的应用.航空科学技术,1999,4:19-22.
    [18] James R, Lenz, Edward A. Application of Computational Fluid Dynamics to Compressor Efficiency Improvement. ICEC, 1994, 441.
    [19] J O Ban, U S Lee, B H Ahn. Application of Computational Fluid Dynamics to Rotary Compressor Efficiency and Noise. ICEC, 1998, 105.
    [20] 姚征,陈康民.CFD通用软件综述.上海理工大学学报,2002,24(2):137-144.
    [21] Jameson A, Schmidt W, Turkel E. Numerical solution of the Euler equation by Finite volume methods with Runge-Kutta time stepping schemes [A]. AIAA Paper[C],1981,81-1259.
    [22] Eberhardt S, Imlay S. Diagonal implicit scheme for computing flows with finite rate chemistry. Journal of Thermophysics and heat transfer, 1992, 6(2).
    [23] 林强.计算流体力学在压缩机设计中的应用.压缩机技术,1999,1:3-5.
    [24] 陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2001.3-4.
    [25] FINE~(TM) User Manual. FINE~(TM) Version 5.2. 2001.
    [26] Ferziger J H. High-level simulation of turbulent flows. In: Essers J A, ed. Computational methods for turbulent flows, transonic and viscous flows. Washington DC: hemisphere, 1983. 93-182.
    [27] Orszag S A. Numerical simulation of turbulence flows. In: Frost W, Moulden T H, eds. Handbook of turbulence. New York: Plenum Press, 1977. 281-313.
    [28] Moin P. Progress in large eddy simulation of turbulent flows. AIAA paper 97-157.
    [29] Baldwin B S, Lomax H. Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA-78-257.
    [30] Chow, C Y. An Introduction to computational Fluid Mechanics. John Wiley & Sons, 1979.
    [31] Brandt A. Multi-level adaptive solutions to boundary-value problems. Math Comput,1977, 31:330-390.
    [32] 刘超群.多重网格及其在计算流体力学中的应用.北京:清华大学出版社,1995.1-64.
    
    [33] Vanka S P, Wang G. Multigfid methods for internal flows and heat transfer. In: Minkowycz W J, Sparrow E M, eds. Advances in numerical heat transfer. Washington D C: Taylor & Francis, 1997. 241-286.
    [34] 周天孝,白文.CFD多块网格生成新进展.力学进展,1999,29(3):344-368.
    [35] Thompson J F, Weatherill N P. Aspects of numerical grid generation: current and art. AIAA 93-3539.
    [36] 朱自强.应用计算流体力学.北京:北京航空航天大学出版社,1998.92.
    [37] Zeeuw D De, Powell K G. An adaptively refined Cartesian mesh solver for the Euler equations. J of Comp. Phys., 104, 56-68, 1993.
    [38] Quirk J J. An alternative to unstructured grids for computing gas dynamic flows around arbitrary complex two-dimensional bodies. Computer & Fluids, 1994, 23: 125-142.
    [39] Smith R J, Johnston L J. Automatic grid generation and flow solution for complex geometries. AIAAJ, 1996, 34:1120-1124.
    [40] IGG~(TM) User Manual. IGG~(TM) Version 4.4-1. 2001.
    [41] 汪庆桓,喻达之,汤育红.多级离心式压缩机小流量系数叶轮的内流特点和设计方法.化工机械,1994,21(3):138-144.
    [42] B.φ.里斯.离心压缩机械.北京:机械工业出版社,1986.
    [43] 李强.多级离心压缩机级内叶轮参数的优化.风机技术,1998,2:5-7.
    [44] Suder K L, et al. The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor [R]. ASME Paper, 94-GT-339.
    [45] Walraevens R E, Compsty N A. Leading Edge Separation Bubble on Turbomachine blades [R]. ASME, 94-GT-91.
    [46] 陆宏志,徐力平,方韧.压气机叶片前缘形状的改进设计.航空动力学报,2000,15(2):129-132.
    [47] 冀春俊,肖蕾.小流量离心压缩机内部流动数值分析与优化.中国工程热物理学会流体机械学术会议论文集,西安:中国工程热物理学会,2004.200-205.
    [48] 施小将.有叶扩压器在改进离心压缩机性能中的应用.风机技术,2002,2:19-21.
    [49] 西安交通大学透平压缩机教研室.离心压缩机原理.北京:机械工业出版社,1978.114-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700