用户名: 密码: 验证码:
多级轴流叶轮机械内流场的隐式高精度高分辨率数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为进一步发展和完善多级轴流叶轮机械内三维紊流流场的数值模拟技术,本文围绕该领域内的若干关键问题展开了研究。
     本文首先推导得出了不受坐标系限制的张量形式的流体运动学基本方程组。引入正交曲线坐标系以及拉梅系数,将张量形式的方程组展开到相对圆柱坐标下并投影到计算空间上。在此基础上,详细推导得出了矢通量按正负特征值分裂以后的亚通量的统一形式,不仅简化了计算程序,而且为使用现代先进数值格式打下了基础。
     分析了现代先进数值格式的构造原则。将高分辨率的三阶ENN格式应用于三维叶栅紊流流场的数值模拟,并结合无矩阵求逆运算的LU-SGS隐式解法提高了计算速度,使得叶栅内复杂流动的数值模拟问题在精度和计算效率两个方面均有较好的效果。
     参考动静干涉面处理的“混合平面法”,本文提出并讨论了动静干涉而处理应该保证的两个问题:流动参数的守恒型和流动参数的上下游相互传递。以此为出发点,构造了两大类动静干涉面处理模型,即:动静干涉面重合处理模型及动静干涉面重叠处理模型。通过算例计算检验,验证了本文所发展的这两大类干涉面处理模型的可行性。
     对网格生成中需要注意的若干关键问题进行了讨论和分析,结合本文研究对象,提出了相应的网格生成方法。利用VC++开发了一套适用于叶轮机械内流场数值计算的界面化网格生成软件,可以生成平面叶栅、直列叶栅和三维通道叶栅的计算网格,具有较多的控制参数,能够快速高效且直观地生成网格。
     在上述一系列研究工作的基础上,结合本文所设计的串行分区计算流程,本文较完整地建立了多级轴流叶轮机械内三维紊流流场数值模拟系统。通过对某两级风扇近设计点和某带进口导叶的三级轴流压气机设计转速下多个状态的计算以及对计算结果的详细分析,表明了本文算法具有较高的激波捕捉能力,且有一定的精度,同时也证明了本文所开发的网格生成软件的有效性。
     文的工作为进一步发展和应用高精度高分辨率格式以及进一步开展动静干涉面处理的研究打下了良好的基础,对深入了解多级叶轮机械内部流动特性并指导设计具有较高的学术价值和工程实用价值。本文有针对性的研究工作,为多级
To improve the numerical simulation technique for internal flow of multistage axial flow turbomachinery, several key problems in this area arc researched and developed in this paper.Equations in form of tensor for describing fluid dynamics are presented, which are free of coordinates. Equations in relative cylindrical coordinate system are educed by introducing orthotropic curvilinear coordinate system and Lame coefficient, and then projected to the computational space. The uniform expressions of flux vector after splitting are presented to simplify the computation procedure and make preparations to use the advanced finite difference schemes.Principles for constructing advanced finite difference schemes are analyzed. Then using high resolution three-order ENN scheme for simulating 3D turbulent flow in blade rows, applying LU-SGS implicit method to avoid calculating inverse matrix, the accuracy and efficiency of numerical simulating for complex flow in blade rows can be gained preferable effect.Two qualifications of treatment for rotor-stator interferential surface are discussed by consulting "mixing-plane method" , one is conservativeness of flow parameters in the interferential surface and the other one is cross-transmit of flow parameters between upstream section and downstream section. Based on these two qualifications, two classes of treatment model for rotor-stator interferential surface are presented, one is treatment based on the joined grid between rotor and stator, the other one is treatment based on the overlapped grid between rotor and stator. The validity of these two classes of treatment model is demonstrated by analyzing the numerical simulation results of two examples.Some typical problems which should pay more attention to in grid generation are discussed, a series of grid generation methods are presented by aiming at the features of research object in this paper. A set of grid generation software is developed by using Visual C++ computer language, it can generate H type grid in plane blade row and 3D blade row. The interface of this software has many control parameters, so it can generate
    grid fleetly and efficiently.Base'd on the above research, a numerical simulation system for internal flow of multistage axial flow tubromachinery is developed according to the serial partitioning algorithm presented in this paper. The validity of this system is demonstrated by numerical simulation of a two stages fan in near design condition and a three stages axial flow compressor with IGV at design rotating speed. The numerical results show that the numerical method developed in this paper has better resolution and definite accuracy and the dependability of the grid generation software is also testified.The work of this paper can be used in further research and development of high order accuracy and high resolution schemes as well as treatment for rotor-stator interferential surface, it also make some contributions for the numerical simulation of multistage axial flow turobmachinery and have better theoretic value as also broad technical application foreground.
引文
[1] IHPTEEET十年进展[R].航空工业总公司内部资料,1998
    [2] 航空发动机设计手册——总序[Z].北京:航空工业出版社,2000
    [3] 刘大响,程荣辉.世界航空动力技术的现状及发展动向[J].北京航空航天大学学报,2002,28(5):490~496
    [4] 刘大响.对加快我国航空动力的思考[J].航空动力学报,2001,16(1):1~7
    [5] 周盛,韩振学,孟庆国.计算流体动力学在吸气推进领域中的某些应用[J].空气动力学学报,1998,16(1):97~107
    [6] 徐建中.叶轮机械气动热力学的回顺与展望[J].西安交通大学学报,1999,33(9):1~4
    [7] 陈懋章.叶轮机气动力学研究及其发展趋势[C].中国航空学会航空百年学术论坛动力分坛论文集(一),中国航空学会动力专业分会,2003:17~39
    [8] 杨策,蒋滋康,索沂生.时间推进方法在叶轮机械内部流动计算中的应用[J].力学进展,2000,30(1):83~94
    [9] Wu C H. A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial and mixed flow types[C]. ASME Paper, 1952-74: 1363~1380
    [10] Wu C H. Three-dimensional turbomachines flow equations expressed with respect to nonorthogonal curvilinear coordinates and methods of solution[C]. In: Proceedings of the 3rd ISABE. Munich, Germany, 1976: 233~252
    [11] MacCormack R W. The effect of viscosity in hypervelocity impact cratering[C]. AIAA Paper, 1969: 69-354
    [12] Denton J D. Extension of the finite area time marching method to three dimensions[C]. VKILS Paper, 1976: 76-84
    [13] Thomokins J W T, Epstein A H. A comparison of the computed and experimental three-dimensional flow in transonic compressor rotor[C]. AIAA Paper, 1976: 76-36
    [14] Denton J D. A method of calculating fully three dimensional inviscid flow through any type of turbomachine blade row[C]. VKILS Paper, 1983: 83-06
    [15] Von Hove W. Calculation of three-dimensional, inviscid, rotational flow in axial turbine blade rows[J]. ASME Journal of Engineering for Gas Turbine and Power, 1984, 106 (3): 430~436
    [16] Holmes D G, Tong S S. A three-dimensional Euler solver for turbomachinery blade rows[J]. ASME Journal of Engineering for Gas Turbine and Power, 1984, 107 (2): 258~264
    [17] 林保真,薛学勤,周盛.跨音带激波二维平面叶栅流场计算[J].航空学报,1978
    [18] 张耀科,龚增锦,沈孟育.跨音涡轮中三维流动数值试验[J].航空学报,1981,6(3):67~76
    [19] 沈孟育,张耀科.跨音涡轮中完全三维流动的计算[J].数值计算及计算机应用,1984
    [20] 张耀科,沈孟育.叶轮机械中三维跨音流场的数值计算[J].空气动力学学报,1981,5(1):29~35
    [21] 蒋滋康,朱钦.跨声速透平完全三元流场的计算方法及应用[J].工程热物理学报,1986,7(4):314~319
    [22] Hah C. A Navier-Stokes analysis of three-dimensional turbulent flows inside turbine blade rows at design and off-design condition[J]. ASME Journal of Engineering for Gas Turbine and Power, 1984, 106 (4): 421~429
    [23] Hah C. A numerical study of three dimensional flow separation and wake development in an axial compressor rotor[J]. Journal of Turbomachincry and Jet Engine, 1985, 11 (2): 241~251
    [24] Moore J G. Performance evaluation of centrifugal compressor impellers using three-dimensional viscous flow calculation[J]. ASME Journal of Engineering for Gas Turbine and Power, 1984, 106 (4): 475~481
    [25] Denton J D. The use of a distributed body force to simulate viscous flow in 3-D flow calculations[C]. ASME Paper, 1986: 86-GT-114
    [26] Dawes W N. The extension of a solution-adaptive three-dimensional Navier-Stokes solver toward geometries of arbitrary complexity[J]. Journal of Turbomachinery, 1993, 115 (2): 283~295
    [27] 陈乃兴,张丰显.应用非正交曲线坐标表示的任意回转流面叶栅粘性气体流动的完全N-S方程求解[J].中国科学,A辑,1984-8
    [28] 蒋滋康,袁新.跨音述叶片中实际流动的数值实验[C].中国工程热物理学会第五届年会论文,1985:85-2066
    [29] 周新海,朱方元.应用Navier-Stokes方程的叶栅粘性流场数值分析[J].工程热物理学报,1988,9(3):230~233
    [30] 陈乃兴,徐燕冀.透平叶栅中三维湍流的数值计算[J].科学通报,1990,35(1):69~72
    [31] 陈乃兴,黄伟光,周倩.跨音速单转子压气机三维湍流流场的数值计算[J].航空动力学报,1995,10(2):109~112
    [32] 季路成,徐建中,项林,周盛.轴向超音来流风扇转子流场数值模拟[J].工程热物理学报,2000,21(4):437~439
    [33] 沈孟育,刘秋生,郭延虎,王保国.跨音速压气机转子中三维湍流流场计算及涡系分析[J].航空学报,1996,17(6):719~722
    [34] 郭延虎,刘秋生,王保国,沈孟育.隐式多重网格法求解叶轮机械三维跨声速湍流流场[J].空气动力学学报,1995,13(4).468~473
    [35] 张士杰,袁新,叶大均.低展弦比跨音风扇转子流场三维数值模拟[J].工程热物理学报,2001,22(5):566~568
    [36] 季路成,周盛.用N-S方程计算三维叶栅流[J].航空动力学报,1997,13(2):306~308,334
    [37] 刘前智,宁卫,姚吉先,周新海.跨音速压气机级三维紊流流场数值模拟[J].航空动力学报,1996,11(4):369~372
    [38] 姚吉先,刘前智,周新海.压气机叶片排内三维紊流流动的隐式高分辨率数值分析[J].航空动力学报,1996,11(3):225~229
    [39] 赵晓路.四级涡轮多叶片排三元N-S解网络并行计算[J].工程热物理学报1998,19(4):421~426
    [40] 赵晓路.使用槽道平均模型的多叶片排N-S方程并行计算[J].工程热物理学报,1995,20(5):568~571
    [41] 袁宁,王松涛,张振家,王仲奇等.涡轮级三维粘性流场的数值模拟[J].航空动力学报,1999,14(2):135~138
    [42] 袁宁,王松涛,张振家,冯国泰.三维粘性流数值计算在多级透平中的应用[J].推进技术,1999,20(5):57~61,71
    [43] 刘前智,周新海.多级风扇三维粘性流场的数值模拟[J].航空学报,2001,22(6):539~541
    [44] 刘前智.双级风扇三维粘性非定常流动的数值解[J].航空动力学报,2003,18(6):768~771
    [45] 刘前智,周新海.单级跨音压气机三维非定常粘性流动计算[J].航空动力学报,2000,15(1):12~16
    [46] 刘前智,周新海.多级压气机非定常流动的数值模拟[J].推进技术,2001,22(5):408~410
    [47] 刘前智,周新海,胡运聪.轴流叶轮机三维粘性非定常流动计算的双时间方法[J].工程热物理学报,2001,22(增刊):21~24
    [48] 季路成,周盛.一个跨音风扇转/静干扰流动的时间精确模拟[J].工程热物理学报,1999,20(4):426~430
    [49] 季路成,陈江,黄海波,徐建中.关于叶轮机时均(准四维)和非定常(四维)气动设计体系的初步诠释[J].工程热物理学报,2003,24(4):570~574
    [50] 任玉新,王筑.叶轮机械三维粘性动静叶干涉的数值模拟[J].航空动力学报,2002,17(2):178~182
    [51] Patankar S V, Spalding D B. A calculation procedurc for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. Journal of Heat and Mass Transfer, 1972, 15 (10): 1787~1806
    [52] Von Neumann J, Richtmyer R D. A method for the numerical calculation of hydrodaynamic shocks[J]. Journal of Application Physics, 1950-21
    [53] MacCormack R W. Numerical solution of the interaction of a shock wave with a laminar boundary layer[Z]. Lecture notes in physics, 1971-8: 151~163
    [54] MacCormack R W. A numerical method solving the equations of compressible viscous flow[J]. AIAA Journal, 1982, 20 (9)
    [55] Jameson A, Schimidt W, Turkel E. Numerical solutions of the Euler equations by finite volume methods with Runge-Kutta time stepping schemes[C]. AIAA Paper, 1981, 81-1259
    [56] Beam R M, Warming R F. An implicit factored scheme for the compressible Navier-Stokes equations[J]. AIAA Journal, 1978, 16 (4): 393~401
    [57] Jameson A, Yoon S. Multigrid solution of the Euler equations using implicit schemes[J]. AIAA Journal, 1986, 24 (11): 1737~1743
    [58] Steger J L, Warming R F. Flux Vector Splitting of the inviscid gas-dynamic equations with application to finite difference methods[J]. Journal of Computational Physics, 1981-40: 263~293
    [59] Van Leer B. Flux Vector Splitting for the Euler equations[Z]. Lecture notes in physics, 1982-170: 207~512
    [60] 张涵信.求解气动方程的混合反扩散方法[J].力学进展,1991,21(3):284~296
    [61] Harten A. A high resolution scheme for the computation of weak solution of hyperbolic conservation laws[J]. Journal of Computational Physics, 1983-49: 357~393
    [62] Harten A. On a class of high resolution total-variation stable finite difference schmes[J]. SIAM Journal, 1984-21: 1~23
    [63] Osher S, Chakravarthy S R. Very high order accurate TVD schemes[R]. UCLA Mathematics Report, 1984
    [64] Van Leer B. Towards the ultimate conservative difference scheme V: A second order sequel to Godunov's method[J]. Journal of Computational Physics, 1979-32: 101~136
    [65] 张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学学报,1988,6(2):143~165
    [66] Peaceman D W, Rachford H H. The numerical solution of parabolic and elliptic differential equations[J]. Journal of Applications Mathematics, 1955-3: 28~41
    [67] Douglas J, Rachford H H. On the numerical solution of heat conduction problems in two and three space variables[Z]. Trans Amer. Math Soc, 1956-82: 421~439
    [68] Yanenkeo N N. The method of fractional Steps: the solution of problems of mathematical physics in several variables[M]. New York: Pringer-Verlag
    [69] Yoon S, Jameson A. Lower-Upper implicit scheme for high-speed inlet analysis[J]. AIAA Journal, 1987, 25 (8): 1052~1053
    [70] Yoon S, Jameson A. A high resolution shock capturing scheme for high mach number internal flow[R]. NASA CR-179523, 1986
    [71] Yoon S, Jameson A. An LU-SSOR Scheme for the Euler and Navier-Stokes equations[C]. AIAA Paper, 1987: 87-0600
    [72] Jameson A, Yoon S. Lower-Upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987, 25 (7): 929~935
    [73] Yoon S, Jameson A. Lower-Upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26 (9): 1025~1026
    [74] Harten A, Osher S. Uniformly high-order accurate essentially non-oscillatory schemes Ⅰ[J]. SIAM Journal, 1987, 24 (2): 279~309
    [75] Harten A, Engquist B, Osher S. Efficient implementation of essentially non-oscillatory shock capturin schemes Ⅱ[J]. Journal of Computational Physics, 1987-71: 231~303
    [76] Yang J Y. Third-order nonoscillatory schemes for the Euler equations[J]. AIAA Journal, 1991, 29 (10): 1611~1618
    [77] Yang J Y. High-resolution, nonoscillatory schemes for unsteady compressible flows[J]. AIAA Journal, 1992, 30 (6): 1570~1575
    [78] 张涵信,贺国宏,张雷.高精度差分求解气动方程的几个问题[J].空气动力学学报,1993,11(4):347~356
    [79] 张涵信,李沁.关于建立高阶差分格式的问题[J].空气动力学学报,1998,16(1):14~23
    [80] 袁新.一种新的LU型隐式格式及其应用[J].工程热物理学报,1996,17(3):291~295
    [81] 景思睿,张鸣远.流体力学[M].西安:西安交通大学出版社,2001
    [82] 章梓雄,董曾南.料性流体力学[M].北京:清华大学出版社,1998
    [83] 刘前智.轴流叶轮机械三元流动理论[Z].西安:西北工业大学研究生课程讲义.
    [84] 王仲奇.透平机械三元流动计算及其数学和气动基础[M].北京:机械工业出版社,1983
    [85] 王甲升.张量分析及其应用[M].北京:高等教育出版社,1987
    [86] 姚吉先.轴流压气机气动设计方法研究[D].西安:西北工业大学硕士学位论文,1992
    [87] 姚吉先.跨音速压气机流场数值模拟与激波组织研究[D].西安:西北工业大学博士学位论文,1995
    [88] 马铁犹.计算流体动力学[M].北京:北京航空学院出版社,1986
    [89] 王保国,黄虹宾.叶轮机械跨声速及亚声速流场的计算方法[M].北京:国防工业出版社,2000
    [90] 王掩刚.叶片尾缘开缝喷气对流场干扰和掺混效应的研究[D].西安:西北工业大学博士学位论文,2004
    [91] 王新月,杨青真.计算流体力学基础[Z].西安:西北工业大学研究生课程讲 义
    [92] 张涵信,沈孟育.计算流体力学——差分方法的原理和应用[M].北京:国防工业出版社,2003
    [93] 马延文,傅德熏.计算空气动力学中一个新的激波捕捉法——耗散比拟法[J].中国科学(A辑),1992,22(3):263~271
    [94] 张兆顺.湍流[M].北京:国防工业出版社,2002
    [95] Dawes W N. Towards improved through flow capability: The use of 3D viscous flow solvers in a multistage environment[C]. ASME Paper, 1990: 90-GT-18
    [96] Denton J D. The calculation of three dimensional viscous flow through multistage turbomachines[C]. ASME Paper, 1990: 90-GT-19
    [97] Adamczyk J J. Model equation for simulating flows in multistage turbomachinery[C]. ASME Paper, 1985, 85-GT-226
    [98] Adamczyk J J. A model for closing the inviscid form of the average passage cquation system[C]. ASME Paper, 1986: 86-GT-227
    [99] Rhie C M. Development and application of a multistage Navier-Stokes solver. Part Ⅰ: Multistage modeling using bodyforces and deterministic stresses[C]. ASME Paper, 1995: 95-GT-342
    [100] 赵晓路,肖翔.使用确定应力模型研究离心压气机叶片相互作用[J].工程热物理学报,2001,22(4):423~426
    [101] 孟庆国,季路成,周盛.关于叶轮机多级流动模拟的模型讨论[J].工程热物理学报,1996,17(增刊):56~59
    [102] Lockwood C, Ivey P C, Well R G. Experimental audit of the mixing-plane approach to turbomachinery analysis and a review of alternative multi-row techniques[J]. The Aeronautical Journal. The Royal Aeronautical Society, 2000, 104 (1033): 117~124
    [103] 姚征,Ch.Hirsch.多级叶轮机三维流动计算的级间混合方法分析[J].工程热物理学报,1996,17(4):417~422
    [104] Wang L X, Caughey D A. Multiblock/multigrid Euler method to simulate 2D and 3D compressible flow[C]. AIAA Paper, 1993: 93-0332
    [105] Shyy W, Liu J, Wright J. Pressure-based viscous flow computation using multiblock overlapped curvilinear grids[J]. Numerical Heat Transfer, Part B, 1994-25: 39~59
    [106] Sheng C, Taylor L, Whitfield D. Multiblock multigrid solution of three-dimensional incompressible turbulent flows about appended submarine configurations[C]. AIAA Paper, 1995: 95-0203
    [107] 张士杰,袁新,叶大均.跨声速轴流压气机全工况三维流场数值分析[J].推进技术,2002,23(3):207~212
    [108] Thompson J F, Thames F C, Mastin C W. TOMCAT-A code for numerical generation of boundary fitted curvilinear coordinates systems on fields containing any number of arbitrary two-dimensional bodies[J]. Journal of computational Physics, 1977-24: 274~302
    [109] Thompson J F, Warsi E U A, Mastin C W. Numerical grid generation[M]. North-Holld: Elsevier science publishing corporation, 1985
    [110] Steger J L, Chaussee D S. Generation of body fitted coordinates using hyperbolic partial differential equations[J]. SIAM Journal of science compute, 1980-1: 431~437
    [111] Steger J L, Rizk Y M. Generation of three-dimensional body fitted coordinates using hyperbolic partial differential equations[R]. NASA TM 1985: 86753
    [112] Thompson J F, Weatherill N P. Aspects of numerical grid generation: Current science and art[C]. AIAA Paper, 1993: 93-23539
    [113] 李军,贺文胜,丰镇平,沈祖达.透平平面叶栅H型网格生成软件的研制及应用[J].汽轮机技术,1997,39(3):129~132
    [114] 李军,贺文胜,丰镇平,沈祖达.透平平面叶栅网格生成软件的研制及应用[J].发电设备,1997—2:2~5,38
    [115] 李军,丰镇平,常建忠,沈祖达.透平叶栅C型网格生成技术的研究[J].西安交通大学学报,1997,31(12):44~48
    [116] 王松涛,冯国泰,王仲奇.一种适用于多级粘性计算的三维网格生成方法[J].哈尔滨工业大学学报,1999,31(6):79~82
    [117] 杨金平,周新海.叶栅正交和局部正交贴体网格的生成方法及其应用[J].工程热物理学报,1989,10(1):36~39
    [118] 周正贵,胡骏.H型叶栅通道流计算网格的改进[J].推进技术,2003,24(5),436~439
    [119] 张涵信,呙超,宗文刚.网格与高精度差分计算问题[J].空气动力学学报,1999,31(4):398~405
    [120] 朱自强,李津,张正科,陈泽民等.计算流体力学中的网格生成方法及其应用[J].航空学报,1998,19(2):152~158
    [121] Smith R E. Algebraic grid generation in numerical grid generation[M]. North-Holland: Amsterdam, Holland, 1982: 137~170
    [122] Basson A H, Kunz R F. Grid generation for three dimensional turbomachinery geometries including tip clearance[C]. AIAA Paper, 1991: 91-22360
    [123] 李国君.叶轮机械三维跨音粘流的高分辨率格式和紊流模型研究及数值分析[D].西安:西安交通大学博士学位论文,1998
    [124] 倪明玖.现代差分格式的发展及离心压缩机内部紊流场的数值模拟[D].西安:西安交通大学博士学位论文,1997
    [125] NASA Lewis Research Center. Tow-stage fan Ⅰ: Aerodynamic and mechanical design[R]. NASA CR-120859, 1972

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700