用户名: 密码: 验证码:
江蓠对N、P和重金属Cd~(2+)、Cr~(6+)、Cu~(2+)、Ni~(2+)污染的去除效应及其生理生化响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
江蓠属(Gracilaria)海藻具有分布广、适应性强、生长快、产量高、易栽培等特点,具有重要的营养、药用和环保价值,并且在海洋环境污染的生物修复和监测中具有重要的前景。针对当今近海水域以及水产养殖等水体所面临的富营养化和重金属污染问题,本文在实验生态条件下,以菊花江蓠(Gracilaria lichenoides)为主要材料,研究了其对水体氮(N)、磷(P)和4种重金属离子(Cd2+、Cr6+、Cu2+、Ni2+)的去除效应及其生理生化响应和耐受机制;同时,比较了菊花江蓠与龙须菜(Gracilaria lemaneiformis)对环境中Cu2+的生理生化响应机制。以期为江蓠作为环境污染的生物修复器或生物检测器的实际应用提供理论依据和实践指导。研究的主要结果如下:
     1.菊花江蓠对N、P短期(0-4h)和长期(第14d)吸收的最佳N:P比为16:1,最大N和P短期吸收速率(12.85和0.79μmol g-1DW h-1)的环境N/P浓度分别为1200/75和960/60(μmol.L-1),而最大N和P长期吸收速率(4.23和0.31μmol g-1DW h-1)的N/P浓度均为480/30μmol.L-1
     2.混合N源条件下,江蓠对NH4+-N的吸收速率显著高于N03--N,长期吸收更为明显;光照条件有利于江蓠对NH4+-N和N03--N的吸收,尤其以N03--N更为明显。硝酸还原酶(NR)和谷氨酰胺合成酶(GS)的活性分别受环境中N03--N和NH4+-N的诱导并促进江蓠对NO3--N和NH4+-N的吸收。
     3.饥饿状态下的菊花江蓠在N、P营养盐缺乏条件下,生长减慢、各光合色素含量、蛋白含量、脯氨酸含量以及抗氧化能力均处于低水平,藻体颜色变浅,细胞内叶绿体、线粒体萎缩但淀粉粒增加,出现负生长;而在N/P为960/60和1200/75μmo1.L-1浓度中5-7d,江蓠的抗氧化防御系统受到显著抑制,引发大量自由基和脂质过氧化产物积累,叶绿体增多但类囊体肿胀、排列杂乱,线粒体数量减少,生长率、各光合色素和蛋白质含量显著下降。
     4.菊花江蓠在480/30-750/45μmol.L-1N/P浓度下的生长率(SGR)最高,光合色素、生化、抗氧化防御系统和细胞超微结构指标均显示,N/P750/45μmol.L-1和N/P480/30μmol.L-1分别是菊花江蓠短期(<7d)和长期(15d)内适宜N/P浓度的上限。在N/P480/30μmol.L-1条件下,江蓠获得最佳的生化和生长状态的N:P和ρ(NH4+-N):ρ(NO3--N)比值分别为16:1-32:1和6:0-1:1。
     5.在单一重金属离子(0.05mg.L-1或0.5mg.L-1)或各重金属离子质量浓度(0.5mg.L-1或1.0mg.L-1)相同的复合条件下,江蓠对重金属离子的去除率、去除效率和去除速率以及在江蓠体内外的积累量均依次为Cu2+>Ni2+>Cr6+>Cd2+。
     6.随着Cu2+、Ni2+、Cr6+、Cd2+胁迫浓度的提高,江蓠细胞活性氧自由基和脂质过氧化产物的积累逐渐增加,抗氧化防御体系中的SOD,CAT,POD, APX, GST, GR, T-AOC活性先被激活后被抑制,各光合色素和可溶性蛋白质含量逐渐降低;并且,细胞超微结构逐渐受到损伤或破坏(如:类囊体有肿胀,原生质穿壁转移,淀粉粒大量堆积,嗜饿小体增多,甚至叶绿体双层膜结构和核糖体消失等),并在细胞壁及叶绿体被膜上有大量Cu2+颗粒沉淀,叶绿体的元素成分发生改变。综合分析结果显示,江蓠对Cu2+、Ni2+、Cr6+、Cd2+胁迫的浓度生理耐受阈值依次为0.5、2.5、2.5、5mg.L-1。
     7.在过低或过高P浓度(1.5μmol.L-1或60μmol.L-1)下,江蓠对Cu2+、Ni2+、Cr6+、Cd2+胁迫的耐受性减低,表现为生长率下降和细胞超微结构损伤加剧;而其在适宜P浓度(15μmol.L-1)下,对Cu2+、Ni2+、Cr6+、Cd2+胁迫的耐受性均有所提高。
     8.与菊花江蓠相比,龙须菜在其生长速度、色素(叶绿素a,叶绿素b,藻胆蛋白,p-胡萝卜素)含量及光合活性方面受到Cu2+胁迫抑制的效应更显著,反应更敏感,生理耐受阈值为0.05mg.L-1。因而更适合作为Cu2+污染的潜在指示生物。
With high economical, medical and environmental protection benefits, Gracilaria is the type of strong adaptability and fast growth, high yield, simple cultivation method and promotion easily. Under the experimental ecology, this article mainly investigated the bioremoval of nitrogen, phosphorus and four heavy metals iron including cadmium, chromium, copper and nickel of Gracilaria lichenoides, as well as its physiological and biochemical responses on it. Meanwhile, the mechanism of physiological and biochemical response to Cu stress in Gracilaria lichenoides and Gracilaria lemaneiformis were also compared to provide theoretical basis and practical guidance for the Gracilaria as a bioremediation or bioindicator of the environment pollution. The results showed that:
     1. The uptake rates (SNUR and LNUR) and uptake efficiency (SNUE and LNUE) of N (TIN) and P (PO43--P) by Gracilaria lichenoides for short-term (0-4h) and long-term (over a24h period at14th day) were studied,showing that the optimal N:P ratio in culture media which SNUR and LNUR for N and P by G. lichenoides reached the highest value among different N/P concentrations (P<0.05) was16:1. The reached maximum SNUR of N and P by G. lichenoides was12.85and0.79μmol/(gDW·h), respectively, when the N/P concentration in medium was1200/75and960/60μmol/L; and the reached maximum LNUR of N and P by G. lichenoides were4.23and0.31μmol/(gDW·h), respectively, with the N/P concentration in medium of480/30μmol/L.
     2. On treatment with mixed nitrogen sources, the uptake rates of different state compounds of nitrogen for Gracilaria were compared, showing the uptake rates of NH4+-N of Gracilaria was significantly higher than NO3--N, especially for long-term absorption; light treatment had significant effects on the uptake of NH4+-N and NO3--N, especially for the NO3--N absorption. What's more, the activities of NR and GS were induced by the NH4+-N and NO3--N respectively, which in turn promoted the uptake of this two states of nitrogen.
     3. During the nitrogen and phosphorus starvation, the growth dropped, the color of algae turned gradually from red to yellow/white,the pigment, proline, protein content as well as the antioxidant capability of G. lichenoides were all affected and weakened; meanwhile, the atrophy of chloroplast and mitochondrial、increase of the grain starch in cell also occurred; while under the condition of the N/P concentration in medium of1200/75and960/60μmol/L for5-7days, the antioxidative defense system of G. lichenoides was obviously inhibited,leading to the accumulation of great amount of harmful free radicals and lipid peroxidation products;some damaged ultrastructure changes occurred in the chloroplasts including the thylakiod swollen and lined irregularly, number increase;volume increase, and significant accumulation of starch grains in the chloroplasts.Besides,the growth rate declined,and the pigment, protein content decreased dramatically.
     4. On the condition of480/30-750/45μmol.L-1N/P, the SGR of Gracilaria lichenoides reached the highest value,and the photosynthetic pigments、physiological and biochemical、antioxidative defense system and the ultrastructure indexes all indicated that the best N/P concentration of short-term (<7d) and long-term (15d) for Gracilaria lichenoides were N/P750/45μmol.L and N/P480/30μmol.L-1respectively. While treatment with N/P concentration of480/30μmol.L-1,the Gracilaria lichenoides could achieve optimum status with the ratio of N:P and ρ(NH4+-N):ρ(NO3--N) of16:1-32:1,6:0-1:1, respectively.
     5. In this trial, whatever the single heavy metal mass concentration (0.05mg.L-1or0.5mg.L-1)condition or composite conditions with equal heavy metal concentration (0.5mg.L-1or1.0mg.L-1) condition, the removal efficiency, removal rate, and accumulation of four heavy metals extra-and intra-cellularly of Gracilaria were all shown with the following sequence: Cu>Ni>Cr>Cd.
     6. With increasing Cu, Ni, Cr, Cd concentrations, the accumulation of harmful reactive oxygen species(ROS) and lipid peroxidation products(MDA) increase gradually; SOD, CAT, POD, APX, GST, GR, and T-AOC activities of antioxidative defense system were all first activated and then inhibited, both the soluble protein and photosynthetic pigments were dropped; moreover the damage of the ultrastructure of cells clearly occurred in the chloroplasts (thylakoid of chloroplast swollen, evident plasmolysis phenomena, significant accumulation of starch grains, increase of osmiophilic granule number, bilayer membrane structure of the chloroplast was ruptured, disappearing of the nucleoli, acumination of deposits of Cu on the surface of the cell wall and the chloroplast envelope),the composition of the chloroplasts elements changed gradually. The analysis results indicated that the physiological tolerant threshold concentration of Cu, Ni, Cr, Cd was0.5,2.5,2.5,5mg.L-1respectively for Gracilaria.
     7. Both the relative higher and lower P concentrations (1.5μmol.L-1or60pmol.L-1) have adverse effects on the stress tolerance of Gracilaria to Cu, Ni, Cr, Cd, including the decline of the growth and the aggravation of the cells'ultrastructure injury. Whereas the tolerance of Cu、Ni、Cr、Cd stress increased under the appropriate concentration of15μmol.L-1P.
     8. In G. lemaneiformis, decrease in growth, pigment (chlorophyll a, chlorophyll b, phycobiliprotein, β-carotene) content and photosynthetic activity was more prominent, and the threshold concentration that caused a notable inhibition in SGR was50μgL-1Cu2+, making it a suitable candidate of potential bioindicator to Cu2+pollution.
引文
[1]McGlathery K J, Sundback K, Anderson I C. Eutrophication in shallow coastal bays and lagoons:the role of plants in the coastal filter[J]. Marine Ecology Progress Series,2007,348:1-18.
    [2]Bricker S B, Longstaff B, Dennison W, et al. Effects of nutrient enrichment in the nation's estuaries:a decade of change[J]. Harmful Algae,2008,8(1):21-32.
    [3]林贞贤,汝少国,杨宇峰.大型海藻对富营养化海湾生物修复的研究进展[J].海洋湖沼通报,2006,4:128-134.
    [4]姜晟,李俊龙,李旭文,等.江苏近岸海域富营养化现状评价与成因分析[J].环境监测管理与技术,2012,24(4):26-29.
    [5]李桂菊,马玉兰,李伟,等.春季渤海湾营养盐分布及潜在性富营养化评价[J].天津科技大学学报,2012,27(5):22-27.
    [6]Lopes C B, Pereira M E, Vale C, et al. Assessment of spatial environmental quality status in Ria de Aveiro (Portugal)[J]. Scientia Marina,2007,71(2):293-304.
    [7]Turner R E, RabelaisN N. Evidence for coastal eutrophication nearthe Mississippi River delta[J]. Nature, 1994,368:619-621.
    [8]胡海燕,卢继武,杨红生.大型海藻对海水鱼类养殖水体的生态调控[J].海洋科学,2003,27(2):19-21.
    [9]于志刚,米铁柱,谢宝东,等.二十年来渤海生态环境参数的演化和相互关系[J].海洋环境科学,2000,19(1):15-19.
    [10]Sousa A M M, Alves V D, Morais S, et al. A garextraction from integrated multitrophic aquacultured Gracilaria vermiculophylla:evaluation of a microwave-assisted process using response surface methodology[J]. Bioresour. Technol,2010,101:3258-3267.
    [11]Seregin I V, Ivanov V B. Physiological aspects of cadmium and lead toxic effects on higher plants[J]. Russian Journal of Plant Physiology,2001,48(4):523-544.
    [12]Fu F, Wang Q. Removal of heavy metal ions from wastewaters:A review[J]. Journal of Environmental Management,2011,92(3):407-418.
    [13]Wallenstein F M, Couto R P, Amaral A, et al. Baseline metal concentrations in marine algae from Sao Miguel (Azores) under different ecological conditions-Urban proximity and shallow water hydrothermal activity[J].2009,58(3):438-443.
    [14]吴建兰.长江入海口北支沿海滩涂养殖区底泥重金属污染特征及趋势评价[J].四川环境,2012,31(4):76-80.
    [15]Schwarzenbach R P, Egli T, Hofstetter T B, et al. Global water pollution and human health[J]. Annual Review of Environment and Resources,2010,35:109-136.
    [16]Balkis N, Aktan Y, Balkis N. Toxic metal (Pb, Cd and Hg) levels in the nearshore surface sediments from the European and Anotolian Shores of Bosphorus, Turkey[J]. Marine Pollution Bulletin,2012,64(9): 1938-1939.
    [17]Varma R, Turner A, Brown M T. Bioaccumulation of metals by Fucus ceranoides in estuaries of South West England[J]. Marine pollution bulletin,2011,62(11):2557-2562.
    [18]Mokhtar M B, Praveena S M, Aris A Z, et al. Trace metal (Cd, Cu, Fe, Mn, Ni and Zn) accumulation in Scleractinian corals:A record for Sabah, Borneo[J]. Marine Pollution Bulletin,2012,64(11):2556-2563.
    [19]Thomsen M S, McGlathery K, Tyler A C. Macroalgal distribution pattern in a shallow, soft-bottom lagoon, with emphasis on the nonnative Gracilaria vermiculophylla and Codium fragile[J]. Estuaries Coasts, 2006,29:470-478.
    [20]Cahill P L, Hurd C L, Lokman M. Keeping the water clean-seaweed biofiltration outperforms traditional bacterial biofilms in recirculating aquaculture[J]. Aquaculture,2010,306(1):153-159.
    [21]Teichberg M, Fox S E, Aguila C, et al. Macroalgal responses to experimental nutrient enrichment in shallow coastal waters:growth, internal nutrient pools, and isotopic signatures[J]. Mar Ecol Prog Ser, 2008,368:117-126.
    [22]Cohen R A, Fong P. Nitrogen uptake and assimilation in Enteromorpha intestinalis(L.) Link (Chlorophyta):using 15N to determine preference during simultaneous pulses of nitrate and ammonium[J]. Journal of Experimental Marine Biology and Ecology,2004,309(1):67-77.
    [23]Crab R, Avnimelech Y, Defoirdt T, et al. Nitrogen removal techniques in aquaculture for a sustainable production[J]. Aquaculture,2007,270(1):1-14.
    [24]Chopin T, Buschmann A H, Halling C, et al. Integrating seaweeds into marine aquaculture systems:a key toward sustainability[J]. Journal of Phycology,2001,37(6):975-986.
    [25]Chow F, Oliveira M C, Pedersen M. In vitro assay and light regulation of nitrate reductase in red alga Gracilaria chilensis[J]. Journal of plant physiology,2004,161(7):769-776.
    [26]岳维忠,黄小平,黄良民,等.大型藻类净化养殖水体的初步研究[J].海洋环境科学,2004,23(1):13-15.
    [27]Naldi M, Wheeler P A. N-15 measurements of ammonium and nitrate uptake by Ulva fenestrata (Chlorophyta) and Gracilaria pacifica (Rhodophyta):comparison of net nutrient disappearance, release of ammonium and nitrate, and N-15 accumulation in algal tissue[J]. Phycol,2002,38:135-144.
    [28]Naldi M, Viaroli P. Nitrate uptake and storage in the seaweed Ulva rigida C. Agardh in relation to nitrate availability and thallus nitrate content in a eutrophic coastal lagoon (Sacca di Goro, Po River Delta, Italy)[J]. Journal of Experimental Marine Biology and Ecology,2002,269(1):65-83.
    [29]Pedersen A, Kraemer G, Yarish C. The effects of temperature and nutrient concentrations on nitrate and phosphate uptake in different species of Porphyra from Long Island Sound (USA)[J]. Journal of experimental marine biology and ecology,2004,312(2):235-252.
    [30]Pereira R, Kraemer G, Yarish C, et al. Nitrogen uptake by gametophytes of Porphyra dioica (Bangiales, Rhodophyta) under controlled-culture conditions[J]. European Journal of Phycology,2008,43(1): 107-118.
    [31]刘静雯,董双林.氮饥饿细基江蓠繁枝变型和孔石莼氨氮的吸收动力学特征[J].海洋学报,2004,26(2):95-102.
    [32]刘静雯,董双林,马牲.温度和盐度对几种大型海藻生长率和NH4+-N吸收的影响[J].海洋学报,2001,23(2):109-116.
    [33]温珊珊,张寒野,何文辉,等.真江蓠对氨氮去除效率与吸收动力学研究[J].水产学报,2008,32(5):794-803.
    [34]李恒,李美真,徐智广,等.不同营养盐浓度对3种大型红藻氮、磷吸收及其生长的影响[J].中国水产科学,2012,19(3):462-470.
    [35]钱鲁闽,徐永健,王永胜.营养盐因子对龙须菜和菊花江蓠氮磷吸收速率的影响[J].台湾海峡,2005,24(4):546-552.
    [36]许忠能,林小涛,林钦,等.江蓠对对虾排出氮磷的吸收[J].环境科学学报,2004,24(6):1059-1064.
    [37]黄鹤忠,孙菊燕,申华,等.无机氮浓度及其配比对细基江蓠繁枝变型生长及生化组成的影响[J].海洋科学,2006,30(9):23-27.
    [38]Yang Y F, Fei X G, Song J M, et al. Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters[J]. Aquaculture,2006,254(1): 248-255.
    [39]彭长连,温学,林植芳,等.龙须菜对海水氮磷富营养化的响应[J].植物生态学报,2007,31(3):505-512.
    [40]赵先庭,刘云凌,张继辉,等.龙须菜处理海水养殖废水的初步研究[J].海洋水产研究,2007,28(2):23-27.
    [41]徐姗楠,温珊珊,吴望星,等.真江蓠(Gracilaria verrucosa)对网箱养殖海区的生态修复及生态养殖匹配模式[J].生态学报,2004,28(4):1466-1475.
    [42]汤坤贤,焦念志,游秀萍,等.菊花江蓠在网箱养殖区的生物修复作用[J].中国水产科学,2005, 12(2):156-161.
    [43]Troell M, Ronnback P, Halling C, et al. Ecological engineering in aquaculture:use of seaweeds for removing nutrients from intensive mariculture[J]. Appl Phycol,1999,11:89-97.
    [44]Zertuche-Gonzalez J A, Camacho-Ibar V F, Pacheco-Ruiz I, et al. The role of Ulva spp. as a temporary nutrient sink in a coastal lagoon with oyster cultivation and upwelling influence[J]. Journal of Applied Phycology,2009,21(6):729-736.
    [45]Luning K, Pang S. Mass cultivation of seaweeds:current aspects and approaches[J]. Journal of Applied Phycology,2003,15(2):115-119.
    [46]Troell M, Halling C, Neori A, et al. Integrated mariculture:asking the right questions[J]. Aquaculture, 2003,226(1):69-90.
    [47]Troell M, Halling C, Nilsson A, et al. Integrated marine cultivation of Gracilaria chilensis(Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output[J]. Aquaculture,1997,156(1):45-61.
    [48]Neori A, Chopin T, Troell M, et al. Integrated aquaculture:rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture[J]. Aquaculture,2004,231(1):361-391.
    [49]Phillips J C, Hurd C L. Kinetics of nitrate, ammonium, and urea uptake by four intertidal seaweeds from New Zealand[J]. Journal of phycology,2004,40(3):534-545.
    [50]Fei X. Solving the coastal eutrophication problem by large scale seaweed cultivation[J]. Hydrobiologia, 2004,512(1-3):145-151.
    [51]杨宇峰,费修绠.大型海藻对富营养化海水养殖区生物修复的研究与展望[J].青岛海洋大学学报,2003,33(1):53-57.
    [52]Schramm W. Factors influencing seaweed responses to eutrophication:some results from EU-project EUMAC[J]. Journal of Applied Phycology,1999,11(1):69-78.
    [53]何培民,徐姗楠,张寒野.海藻在海洋生态修复和海水综合养殖中的应用研究简况[J].渔业现代化,2005,4:15-16.
    [54]Lyngby J E. Monitoring of nutrient availability and limitation using the marine macroalga Ceramium rubrum(Huds.) C. Ag[J]. Aquatic Botany,1990,38(2):153-161.
    [55]刘静雯,董双林.光照和温度对细基江蓠繁枝变型的生长及生化组成影响[J].青岛海洋大学学报,2001,31(3):332-338.
    [56]许忠能,黄长江,林小涛,等.环境因子对细基江蓠变型繁枝变型氮、磷吸收速率的影响[J].应用生 态学报,2001,12(3):417-421.
    [57]黄晓航,温宗存,彭作圣,等.间歇施肥对龙须菜的生长和化学组成的影响[J].海洋与湖沼,1998,29(6):570-575.
    [58]Wu C Y, Zhang Y X, Li R Z, et al. Utilization of ammonium-nitrogen by Porphyra yezoensis and Gracilaria verrucosa[J]. Hydrobiologia.1984,116/117:475-477.
    [59]徐永健,王永胜,韦玮.多因子交互作用对菊花江蓠氮、磷吸收速率的影响[J].水产科学,2006,25(5):222-226.
    [60]刘海亮,崔世民,李强,等.镉对作物种子萌发、幼苗生长及氧化酶同工酶的影响[J].环境科学,1991,12(6):29-31.
    [61]陈朝明,龚惠群.Cd对桑叶品质、生理生化特性的影响及其机理研究[J].应用生态学报,1996,7(4):417-423.
    [62]王小冬,王艳.赤潮异弯藻和海洋卡盾藻抗氧化酶活性对氮磷比失衡的响应[J].海洋环境科学,2012,31(3):337-340.
    [63]Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review[J]. Annals of botany,2003,91(2):179-194.
    [64]Chipasa K B. Accumulation and fate of selected heavy metals in a biological wastewater treatment system[J]. Waste management,2003,23(2):135-143.
    [65]Volesky B. Advances in biosorption of metals:selection of biomass types[J]. FEMS Microbiology Reviews,1994,14(4):291-302.
    [66]Brinza L, Nygard C A, Dring M J, et al. Cadmium tolerance and adsorption by the marine brown alga Fucus vesiculosus from the Irish Sea and the Bothnian Sea[J]. Bioresource technology,2009,100(5): 1727-1733.
    [67]Chojnacka K, Chojnacki A, Gorecka H. Biosorption of Cr3+, Cd2+and Cu2+ions by blue-green algae Spirulina sp.:kinetics, equilibrium and the mechanism of the process[J]. Chemosphere,2005,59(1): 75-84.
    [68]赵肖为,周茂洪,邓旭,等.羊栖菜吸附重金属的研究[J].海洋湖沼通报,2006,1(8):64-67.
    [69]常秀莲,王文华,冯咏梅.海藻吸附重金属离子的研究[J].海洋通报,2003,22(2):39-44.
    [70]林荣根,黄朋林,周俊良.两种褐藻对铜和镉吸附的研究[J].海洋环境科学,1999,18(4):8-13.
    [71]杨贤庆,李来好,戚勃.4种海藻膳食纤维对Cd2+、Pb2+、Hg2+的吸附作用[J].中国水产科学,2007,14(1):132-138.
    [72]刘慧君,龚仁敏,张小平,等.极大螺旋藻对六种重金属离子的生物吸附作用[J].安徽师范大学学报(自然科学版),2004,27(1):68-70.
    [73]Pavasant P, Apiratikul R, Sungkhum V, et al. Biosorption of Cu2+, Cd2+, Pb2+and Zn2+using dried marine green macroalga Caulerpa lentillifera[J]. Bioresource Technology,2006,97(18):2321-2329.
    [74]Cobbett C S. Phytochelatin biosynthesis and function in heavy metal detoxification[J]. Current opinion in plant biology,2000,3:211-216.
    [75]Crist R H. Nature of bonding between metallic ions and algal cell wall[J]. Environ Sci Techno,1981,15: 1212-1217.
    [76]周洪英,王学松,李娜,等.关于海藻吸附水溶液中重金属离子的研究进展[J].科技导报,2006,24(12):61-66.
    [77]Kelly M G, Whitton B A. Relationship between accumulation and toxicity of zinc in Stigeoclonium (Chaetophorales, Chlorophyta)[J]. Phycologia,1989,28(4):512-517.
    [78]De Philippis R, Colica G, Micheletti E. Exopolysaccharide-producing cyanobacteria in heavy metal removal from water:molecular basis and practical applicability of the biosorption process[J]. Applied microbiology and biotechnology,2011,92(4):697-708.
    [79]Harris N S, Taylor G J. Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation[J]. BMC Plant Biology,2004,4(1):4.
    [80]Connolly E L, Fett J P, Guerinot M L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation[J]. The Plant Cell Online,2002,14(6):1347-1357.
    [81]赵玲,尹平河,齐雨藻.海洋赤潮生物原甲藻对重金属的富集机理[J].环境科学,2001,22(4):42-45.
    [82]Yu Q, Matheickal J T, Yin P, et al. Heavy metal uptake capacities of common marine macro algal biomass[J]. Water research,1999,33(6):1534-1537.
    [83]Filippis L F, Pallaghy C K. The Effect of Sub-Lethal Concentrations of Mercury and Zinc on Chlorella:Ⅱ. Photosynthesis and Pigment Composition[J]. Zeitschrift fur Pflanzen physiologie,1976,78(4):314-322.
    [84]林碧琴,张晓渡.羊角月芽藻对镉毒作用的反应和积累的研究,1,镉对羊角月芽藻的毒性作用[J].植物研究,1988,8(4):195-202.
    [85]Davies A G An assessment of the basis of mercury tolerance in Dunaliella tertiolecta[J]. J. Mar. Biol. Assoc. U. K.,1976,56(1):39-57.
    [86]Davies A G, Sleep J A. Photosynthesis in some British coastal waters may be inhibited by zinc pollution[J]. Nature,1979,227:192.
    [87]姜彬慧,林碧琴.镍对纤维藻毒性作用研究[J].环境保护科学,1995,21(4):26-31.
    [88]孔繁翔,陈颖,章敏.镍、锌、铝对羊角月芽藻(Selenastrum capricornutum)生长及酶活性影响研究[J].环境科学学报,1997,17(2):193-198.
    [89]李建宏,浩云涛,翁永萍.Cd2+胁迫条件下椭圆小球藻(Chlorella ellipsoidea)的生理应答[J].水生生物学报,2004,28(6):659-663.
    [90]王山杉,刘永定,金传荫,等.Zn2+浓度对固氮鱼腥(Anabaena azotica Ley)光能转化特性的影响[J].湖泊科学,2002,14(4):350-356.
    [91]杨艳华,陈国祥,刘少华,等.镉对黑藻叶光化学及硝酸还原酶特性的影响[J].南京师大学报(自然科学版),2002,25(1):28-32.
    [92]张小兰,施国新,徐楠,等Hg2+、Cd2+对轮藻部分生理生化指标的影响[J].南京师大学报(自然科学版),2002,25(1):38-43.
    [93]罗通,邓骛远,曾妮Ag+、Pb2+对轮藻生理生化指标的影响[J].四川师范大学学报(自然科学版),2005,28(6):723-726.
    [94]苏秀榕,李太武,费志清.Cd2+、Cu2+和Zn2+对5种单细胞藻酯酶基因表达调控的影响[J].应用与环境生物学报,2002,8(5):502-506.
    [95]Xue H B, Stumm W, Sigg L. The binding of heavy metals to algal surfaces[J]. Water Research,1988, 22(7):917-926.
    [96]Xue H, Sigg L. Binding of Cu (II) to algae in a metal buffer[J]. Water Research,1990,24(9):1129-1136.
    [97]Ting Y P, Lawson F, Prince L G. Uptake of cadmium and zinc by the alga Chlorella vulgaris:part Ⅱ. Multi-ion situation[J]. Biotechnology and Bioengineering,1991,37:445-455.
    [98]Rangsayatorn N, Upatham E S, Kruatrachue M, et al. Phytoremediation potential of Spirulina (Arthrospira) platensis:biosorption and toxicity studies of cadmium[J]. Environmental Pollution,2002, 119(1):45-53.
    [99]Parker D L, Rai L C, Mallick N, et al. Effects of cellular metabolism and viability on metal ion accumulation by cultured biomass from a bloom of the cyanobacterium Microcystis aeruginosa[J]. Applied and environmental microbiology,1998,64(4):1545-1547.
    [100]Mehta S K, Tripathi B N, Gaur J P. Influence of pH, temperature, culture age and cations on adsorption and uptake of Ni by Chlorella vulgaris[J]. European Journal of Protistology,2000,36(4):443-450.
    [101]Howe G, Merchant S. Heavy metal-activated synthesis of peptides in Chlamydomonas reinhardtii[J]. Plant physiology,1992,98(1):127-136.
    [102]Rauser W E. Structure and function of metal chelators produced by plants:the case fur organic acids, amino acids, phytin and metallothioneins[J]. Cell Biochem Biophys.1999,31:19-48.
    [103]Rauser W E. Phytochelatins and related peptides. Structure, biosynthesis, and function[J]. Plant Physiology,1995,109(4):1141-1149.
    [104]Tsuji N, Hirayanagi N, Okada M, et al. Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis[J]. Biochemical and biophysical research communications,2002,293(1):653-659.
    [105]Morelli E, Scarano G. Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum tricornutum[J]. Marine environmental research,2001,52(4):383-395.
    [106]Vallee B L. Introduction to metallothionein[J]. Methods in enzymology,1991,205:3-7.
    [107]Noctor G, Arisi A C M, Jouanin L, et al. Glutathione:biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants[J]. Journal of Experimental Botany,1998,49(321):623-647.
    [108]Stohs S J, Bagchi D. Oxidative mechanisms in the toxicity of metal ions[J]. Free Radical Biology and Medicine,1995,18(2):321-336.
    [109]Rai L C, Gaur J P, Kumar H D. Protective efects of certain environmental factors on the toxicity of zinc, mercury and methylmercury to Chlorella vulgaris Beij[J]. Environment Research,1981,25:250-259.
    [110]Sicko-Goad L M, Stoermer E F. A morphometric study of lead and copper efects on Diatoma tenue var. elongatum (Bacillariophyta)[J]. Phycol,1979,15:316-321.
    [111]Jensen T E, Baxter M, Rachlin J W, et al. Uptake of heavy metals by Plectonema boryanum (cyanophyceae) into cellular components, especially polyphosphate bodies:An X-ray energy dispersive study[J]. Environmental Pollution Series A, Ecological and Biological,1982,27(2):119-127.
    [112]Wu J T, Chang S J, Chou T L. Intracellular proline accumulation in some algae exposed to copper and cadmium[J]. Bot. Bull. Acad. Sin,1995,36:89-93.
    [113]Bierkens J, Maes J, Plaetse F V. Dose-dependent induction of heat shock protein 70 synthesis in Raphidocelis subcapitata following exposure to different classes of environmental pollutants[J]. Environmental Pollution,1998,101(1):91-97.
    [114]Nassiri Y, Mansot J L, Wery J, et al. Ultrastructural and electron energy loss spectroscopy studies of sequestration mechanisms of Cd and Cu in the marine diatom Skeletonema costatum[J]. Archives of environmental contamination and toxicology,1997,33(2):147-155.
    [115]Sheoran V, Sheoran A S, Poonia P. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites:A review[J]. Critical Reviews in Environmental Science and Technology,2010, 41(2):168-214.
    [116]Pourrut B, Shahid M, Dumat C, et al. Lead uptake, toxicity, and detoxification in plants[M]. Reviews of Environmental Contamination and Toxicology Volume 213. Springer New York,2011:113-136.
    [117]Hall J L. Cellular mechanisms for heavy metal detoxification and tolerance[J]. Journal of Experimental Botany,2002,53(366):1-11.
    [118]牟文,熊丽,胡芹芹,等.HgCl2对斜生栅藻生理生化特性的影响[J].生态毒理学报,2009,4(6):854-859.
    [119]Wu C Y, Pang S J. The seaweed resources of China[J]. Seaweed Resources of the World. Japan International Cooperation Agency,1998:34-46.
    [120]Nelson S G, Glenn E P, Conn J, et al. Cultivation of Gracilaria parvispora(Rhodophyta) in shrimp-farm effluent ditches and floating cages in Hawaii:a two-phase polyculture system[J]. Aquaculture,2001, 193(3):239-248.
    [121]Kaladharan P, Vijayakumaran K, Chennubhotla V S K. Optimization of certain physical parameters for the mariculture of Gracilaria edulis (Gmelin) Silva in Minicoy lagoon (Laccadive Archipelago)[J]. Aquaculture,1996,139(3):265-270.
    [122]Tang K X, Yuan D X, Lin S B, et al. Depression and affect of red tide on main water quality index by Gracilaria tenuistipitata[J]. Marine environmental science,2003,22(2):24.
    [123]Kinne P N, Samocha T M, Jones E R, et al. Characterization of intensive shrimp pond effluent and preliminary studies on biofiltration[J]. North American Journal of Aquaculture,2001,63(1):25-33.
    [124]Zhou Y, Yang H, Hu H, et al. Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China[J]. Aquaculture,2006, 252(2):264-276.
    [125]Xu Y, Fang J, Wei W. Application of Gracilaria lichenoides (Rhodophyta) for alleviating excess nutrients in aquaculture[J]. Journal of Applied Phycology,2008,20(2):199-203.
    [1]Nelson S G, Glenn E P, Conn J, et al. Cultivation of Gracilaria parvispora (Rhodophyta) in shrimp-farm effluent ditches and floating cages in Hawaii:a two-phase polyculture system[J]. Aquaculture,2001, 193(3):239-248.
    [2]Tang K X, Yuan D X, Lin S B, et al. Depression and affect of red tide on main water quality index by Gracilaria tenuistipitata[J]. Marine environmental science,2003,22(2):24-27.
    [3]Armisen R. World-wide use and importance of Gracilaria[J]. Journal of Applied Phycology,1995,7(3): 231-243.
    [4]Zhou Y, Yang H SH, Hu H Y, et al. Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China[J]. Aquaculture,2006, 252(2):264-276.
    [5]Xu Y J, Fang J G, Wei W. Application of Gracilaria lichenoides (Rhodophyta) for alleviating excess nutrients in aquaculture[J]. Journal of Applied Phycology,2008,20(2):199-203.
    [6]Huo Y Z, Wu H L, Chai Z Y, et al. Bioremediation efficiency of Gracilaria verrucosa for an integrated multi-trophic aquaculture system with Pseudosciaena crocea in Xiangshan harbor, China[J]. Aquaculture, 2012,326:99-105.
    [7]国家海洋局,海洋监测规范[S].北京:海洋出版社,1991,265-273.
    [8]Haglund K, Bjorklund M, Gunnare S, et al. New method for toxicity assessment in marine and brackish environments using the macroalga Gracilaria tenuistipitata (Gracilariales, Rhodophyta)[J]. Hydrobiologia,1996,326(1):317-325.
    [9]邹崎.植物生理学实验指导[M].北京:中国农业出版社,2000,129.
    [10]钱鲁闽,徐永健,焦念志.环境因子对龙须菜和菊花江蓠N、P吸收速率的影响.中国水产科学,2006,13(2):257-262.
    [11]Hargreaves J A. Nitrogen biogeochemistry of aquaculture ponds[J]. Aquaculture,1998,166(3):181-212.
    [12]Fatima Lopes P, de Cabral Oliveira M, Colepicolo P. Characterization and daily variation of nitrate reductase in Gracilaria tenuistipitata(Rhodophyta)[J]. Biochemical and biophysical research communications,2002,295(1):50-54.
    [13]Dortch Q, Ahmed S I, Packard T T. Nitrate reductase and glutamate dehydrogenase activities in Skeletonema costatum as measures of nitrogen assimilation rates[J]. Journal of Plankton Research,1979, 1(2):169-186.
    [14]Chow F, de Oliveira M C. Rapid and slow modulation of nitrate reductase activity in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta):influence of different nitrogen sources[C]. Nineteenth International Seaweed Symposium. Springer Netherlands,2009:325-332.
    [15]钱鲁闽,徐永健,王永胜.营养盐因子对龙须菜和菊花江蓠氮磷吸收速率的影响[J].台湾海峡, 2005,24(4):546-552.
    [16]许忠能,林小涛,林继辉,等.营养盐因子对细基江蓠繁枝变种氮、磷吸收速率的影响[J].生态学报,2002,22(3):366-374.
    [17]刘静雯,董双林.氮饥饿细基江蓠繁枝变型和孔石莼氨氮的吸收动力学特征[J].海洋学报,2004,26(2):95-103.
    [18]Leonardo N A, Daniel R. Effects of nitrogen source, N:P ratio and N-pulse concentration and frequency on the growth of Gracilaria cornea (Gracilariales, Rhodophyta) in culture[J]. Hydrobiologia,1999, 398/399:315-320.
    [19]Jones A B, Denhison W C, Stewart G R. Macroalgal responses to N source and availablity:amino acid metabolic profiling as a bioindicator using Gracilarea edulis[J]. Journal of Phycology,1996,32(5): 757-766.
    [20]Cedergreen N, Madsen T V. Nitrogen uptake by the floating macrophyte Lemna minor[J]. New Phytologist,2002,155(2):285-292.
    [21]李铁,史致丽,李俊,等.营养盐对中肋骨条藻和新月菱形藻部分生化组成和性质的影响[J].海洋与湖沼,2000,31(3):239-245.
    [22]Oaks A, Hirel B. Nitrogen metabolism in roots[J]. Annual review of plant physiology,1985,36(1): 345-365.
    [23]Dortch Q. The interaction between ammonium and nitrate uptake in phytoplankton[J]. Marine ecology progress series. Oldendorf,1990,61(1):183-201.
    [24]Jampeetong A, Brix H. Nitrogen nutrition of Salvinia natans:Effects of inorganic nitrogen form on growth, morphology, nitrate reductase activity and uptake kinetics of ammonium and nitrate[J]. Aquatic botany,2009,90(1):67-73.
    [25]Abreu M H, Pereira R, Yarish C, et al. IMTA with Gracilaria vermiculophylla:productivity and nutrient removal performance of the seaweed in a land-based pilot scale system[J]. Aquaculture,2011,312(1): 77-87.
    [26]Ng W J, Sim T S, Ong S L, et al. The effect of Elodea densa on aquaculture water quality[J]. Aquaculture, 1990,84(3):267-276.
    [27]Tyler, A.C., McGlathery, K.J. Uptake and release of nitrogen by the macroalgae Gracilaria vermiculophylla (Rhodophyta)[J]. Journal of Phycology,2006,42(3):515-525.
    [28]Buschmann A H, Correa J A, Westermeier R, et al. Red algal farming in Chile:a review[J]. Aquaculture, 2001,194(3):203-220.
    [29]Abreu M H, Pereira R, Buschmann A H, et al. Nitrogen uptake responses of Gracilaria vermiculophylla(Ohmi) Papenfuss under combined and single addition of nitrate and ammonium[J]. Journal of Experimental Marine Biology and Ecology,2011,407(2):190-199.
    [30]Thomsen M S, McGlathery K J, Schwarzschild A, et al. Distribution and ecological role of the non-native macroalga Gracilaria vermiculophylla in Virginia salt marshes[J]. Biological Invasions,2009,11(10): 2303-2316.
    [31]Pedersen M F. Transient ammonium uptake in the macroalga Ulva lactuca (Chlorophyta):nature, regulation, and the consequences for choice of measuring technique[J]. Journal of phycology,1994,30(6): 980-986.
    [32]吴超元,李纫芷,林光恒,等.细基江蓠繁枝变型生长适宜环境条件的研究[J].海洋与湖沼,1994,25(1):60-66.
    [33]Thomsen M S, McGlathery K J, Tyler A C. Macroalgal distribution pattern in a shallow, soft-bottom lagoon, with emphasis on the non native Gracilaria vermiculophylla and Codium fragile[J]. Estuaries Coasts,2006,29:470-478.
    [34]Crab R, Avnimelech Y, Defoirdt T, et al. Nitrogen removal techniques in aquaculture for a sustainable production[J]. Aquaculture,2007,270(1):1-14.
    [35]Neori A, Chopin T, Troell M, et al. Integrated aquaculture:rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture[J]. Aquaculture,2004,231(1):361-391.
    [36]Britto D T, Kronzucker H J. NH4+toxicity in higher plants:a critical review[J]. Journal of Plant Physiology,2002,159(6):567-584.
    [37]Tylova E, Steinbachova L, Votrubova O, et al. Different sensitivity of Phragmites australis and Glyceria maxima to high availability of ammonium-N[J]. Aquatic Botany,2008,88(2):93-98.
    [38]Jiang Z J, Fang J G, Mao Y Z, et al. Eutrophication assessment and bioremediation strategy in a marine fish cage culture area in Nansha Bay, China[J]. Journal of Applied Phycology,2010,22(4):421-426.
    [39]Sousa A M M, Alves V D, Morais S, et al. Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla:Evaluation of a microwave-assisted process using response surface methodology[J]. Bioresource technology,2010,101(9):3258-3267.
    [1]Lapointe B E, Dawes C J, Tenore K R. Interactions between light and temperature on the physiological ecology of Gracilarla tikvahiae Ⅱ. nitrate uptake and levels of pigments and chemical constituents[J]. Mar Boil,1984,80:171-178.
    [2]李文权,郑爱榕,王宪.环境因子对高盒形藻生长及其生化组成的影响[J].海洋学报,1996,18(2):50-56.
    [3]李文权,黄贤芒,陈清花,等.4种海洋单胞藻生化组成的环境因子效应研究[J].海洋学报,1999, 21(3):59-65.
    [4]周慈由,陈慈美,黄晓丹.环境因子对中肋骨条藻碳水化合物、氨基酸和蛋白质含量的影响[J].海洋技术,1998,17(3):66-69.
    [5]刘长发,张泽宇,雷衍之.盐度、光照和营养盐对孔石莼光合作用的影响[J].生态学报,2001,21(5):795-798.
    [6]刘静雯,董双林.光照和温度对细基江蓠繁枝变型的生长和生化组成影响[J].青岛海洋大学学报,2001,31(3):332-338.
    [7]Mercado J M, Sanchez P, Carmona R, et al. Limited acclimation of photosynthesis to blue light in the seaweed Gracilaria tenuistipitata[J]. Physiologia plantarum,2002,114(3):491-498.
    [8]Bezerra A F, Marinho-Soriano E. Cultivation of the red seaweed Gracilaria birdiae(Gracilariales, Rhodophyta) in tropical waters of northeast Brazil[J]. Biomass and Bioenergy,2010,34(12):1813-1817.
    [9]Skriptsova A V, Yakovleva I M. The influence of variations in irradiance upon morphology in an unattached form of Gracilaria gracilis (Stackhouse) Steentoft during field cultivation, South Primorye, Russia[J]. Aquatic Ecology,2002,36(4):511-518.
    [10]Wang Z Y, Wang G C, Niu J F, et al. Optimization of conditions for tetraspore release and assessment of photosynthetic activities for different generation branches of Gracilaria lemaneiformis Bory[J]. Chinese Journal of Oceanology and Limnology,2010,28(4):738-748.
    [11]Wellburn A R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. Plant Physiol,1994,144:307-313.
    [12]Kursar T A, Alberte R S. Photosynthetic Unit Organization in a Red Alga Relationships between Light-Harvesting Pigments and Reaction Centers[J], Plant Physiology,1983,72(2):409-414.
    [13]达维斯,Dawes C J.海洋植物学[M].厦门:厦门大学出版社,1989.
    [14]张殿忠,汪沛洪,赵会贤.小麦叶片游离脯氨酸含量的测定[J].植物生理学通讯,1990,26(4):62-65.
    [15]邹崎.植物生理学实验指导[M],北京:中国农业出版社,2000,129.
    [16]Lei Y, Korpelainen H, Li C. Physiological and biochemical responses to high Mn concentrations in two contrasting Populus cathayana populations[J]. Chemosphere,2007,68(4):686-694.
    [17]Giannopolitis C N, Ries S K. Superoxide dismutases Occurrence in higher plants[J]. Plant physiology, 1977,59(2):309-314.
    [18]Kato M, Shimizu S. Chlorophyll metabolism in higher plants. Ⅶ. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation[J]. Canadian Journal of Botany,1987,65(4): 729-735.
    [19]BJONSATER B R, Wheeler P A. Effect of nitrogen and phosphorus supply on growth and tissue composition of Ulva fenestrata and Enteromorpha intestinalis (Ulvales, Chlorophyta)[J]. Journal of phycology,1990,26(4):603-611.
    [20]Menendez M. Effect of nutrient pulses on photosynthesis of Chaetomorpha linum from a shallow Mediterranean coastal lagoon[J]. Aquatic botany,2005,82(3):181-192.
    [21]Mansilla A, Palacios M, Navarro N P, et al. Growth and survival performance of the gametophyte of Gigartina skottsbergii(Rhodophyta, Gigartinales) under defined nutrient conditions in laboratory culture[J]. Journal of Applied Phycology,2008,20:889-896.
    [22]潘瑞炽.植物生理学(第四版)[M].北京:高等教育出版社,2001,57-66.
    [23]Dawes C J, Koch E W. Physiological Responses of the Red Algae Gracllarla Verrucosa and G Tikvahiae before and after nutrient enrichment [J]. Bulletin of marine science,1990,46(2):335-344.
    [24]Haglund K, Pedersen M. Outdoor pond cultivation of the subtropical marine red alga Gracilaria tenuistipitata in brackish water in Sweden:Growth, nutrient uptake, co-cultivation with rainbow trout and epiphyte control[J]. Journal of Applied phycology,1993,5(3):271-284.
    [25]Lapointe B E, Ryther J H. Some aspects of the growth and yield of Gracilaria tikvahiae in culture[J]. Aquaculture,1978,15(3):185-193.
    [26]Hanisak M D. The use of Gracilaria tikvahiae (Gracilariales, Rhodophyta) as a model system to understand the nitrogen nutrition of cultured seaweeds[C]. Thirteenth International Seaweed Symposium. Springer Netherlands,1990:79-87.
    [27]Villaresa R, Carballeira A, Seasonal variation in the concentrations of nutrients in two green macroalgae and nutrient levels in sediments in the Rias Baixas (NW Spain)[J]. Estuarine, Coastal and Shelf Science, 2003,58:887-900.
    [28]Fong P, Fong J J, Fong C R. Growth, nutrient storage, and release of dissolved organic nitrogen by Enteromorpha intestinalis in response to pulses of nitrogen and phosphorus[J]. Aquatic Botany,2004, 78(1):83-95.
    [29]邱昌恩,况琪军,刘国祥,等.不同氮浓度对绿球藻生长及生理特性的影响[J].中国环境科学,2005,25(4):408-411.
    [30]黄鹤忠,孙菊燕,申华,等.无机氮浓度及其配比对细基江蓠繁枝变型生长及生化组成的影响[J].海洋科学,2006,30(9):23-27.
    [31]张清春,于仁诚,周名江,等.不同类型含磷营养物质对微小亚历山大藻(Alexandrium minutum)生长和毒素产生的影响[J].海洋与湖沼,2005,36(5).
    [32]Harlin M M, Thorne-Miller B. Nutrient enrichment of seagrass beds in a Rhode Island coastal lagoon[J]. Marine Biology,1981,65(3):221-229.
    [33]Bogorad L. Phycobiliproteins and complementary chromatic adaptation[J]. Annual review of plant physiology,1975,26(1):369-401.
    [34]Rosenberg G, Ramus J. Ecological growth strategies in the seaweeds Gracilaria foliifera(Rhodophyceae) and Ulva sp.(Chlorophyceae):photosynthesis and antenna composition[J]. Marine ecology progress series.,1982(b),8(3):233-241.
    [35]Bird K T, Habig C, DeBusk T. Nitrogen allocation and storage patterns in Gracilaria tikvahiae (Rhodophyta)[J]. Journal of Phycology,1982,18(3):344-348.
    [36]Lapointe B E. The effect of light and nitrogen on growth, pigmenl content and biochemical composition of Gracilaria folifera v. angustissima(Gigartinales, Rhodophyta)[J]. Journal of Phycology,1981,17: 90-95.
    [37]Gerard V A. In situ water motion and nutrient uptake by the giant kelp Macrocystis gyrofera[J]. Mar Biol(Berlin),1982,69:51-54.
    [38]Costanzo S D, O'donohue M J, Dennison W C. Gracilaria edulis (Rhodophyta) as a biological indicator of pulsed nutrients in oligotrophic waters[J]. Journal of Phycology,2000,36(4):680-685.
    [39]Lohman K, Priscu J C. Physiological indicators of nutrient deficiency in Cladophora (Chorophyta) in the Clark Fork of the Columbia River, Montana[J]. Journal of Phycology,1992,28(4):443-448.
    [40]Prasad M N V, Malec P, Waloszek A, et al. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation[J]. Plant Science,2001,161(5):881-889.
    [41]Lomas M W, Glibert P M. Interactions between NH4 and NO3 uptake an dassimilation:Comparison of diatoms and dinoflagellates at several growth temperature [J]. Mar Biol,1999,133:541-551.
    [42]Rmikil N E, Brunet C, Cabioch J, et al. Xanthophyll-cycle and photosynthetic adaptation to environment in macro-and microalgae[J]. Hydrobiologia,1996,326(1):407-413.
    [43]Gomez I, Figueroa F L, Huovinen P, et al. Photosynthesis of the red alga Gracilaria chilensis under natural solar radiation in an estuary in southern Chile[J]. Aquaculture,2005,244(1):369-382.
    [44]Pereira R, Yarish C, Sousa-Pinto I. The influence of stocking density, light and temperature on the growth, production and nutrient removal capacity of Porphyra dioica (Bangiales, Rhodophyta)[J]. Aquaculture, 2006,252(1):66-78.
    [45]Zou D H, Gao K S, Ruan Z X. Effects of elevated CO2 concentration on photosynthesis and nutrients uptake of Ulva lactuca[J]. Journal of Ocean University of Qingdao,2001,31:877-882.
    [46]Friedlander M. Inorganic nutrition in pond cultivated Gracilaria conferta (Rhodophyta):nitrogen, phosphate and sulfate[J]. Journal of Applied Phycology,2001,13:279-286.
    [47]Navarro-Angulo L, Robledo D. Effects of nitrogen source, N:P ratio and N-pulse concentration and frequency on the growth of Gracilaria cornea (Gracilariales, Rhodophyta) in culture[J]. Hydrobiologia, 1999,398:315-320.
    [48]Friedlander M, Krom M D, Ben-Amotz A. The effect of light and ammonium on growth, epiphytes and chemical constituents of Gracilaria conferta in outdoor cultures[J]. Botanica marina,1991,34(3): 161-166.
    [49]Yu J Q, Zhou Y H, Huang L F, et al. Chill-induced inhibition of photosynthesis:genotypic variation within Cucumis sativus[J]. Plant and cell physiology,2002,43(10):1182-1188.
    [50]许忠能,林小涛,林继辉,等.营养盐因子对细基江蓠繁枝变种氮、磷吸收速率的影响[J].生态学报,2002,22(3):366-374.
    [51]Diaz-Pulido G, McCook L J. Effects of nutrient enhancement on the fecundity of a coral reef macroalga[J]. Journal of Experimental Marine Biology and Ecology,2005,317(1):13-24.
    [52]Britto D T, Siddiqi M Y, Glass A D M, et al. Futile transmembrane NH4+cycling:a cellular hypothesis to explain ammonium toxicity in plants[J]. Proceedings of the National Academy of Sciences,2001,98(7): 4255-4258.
    [53]Mirto S, La Rosa T, Gambi C, et al. Nematodo community response to fish-farm impact in the western Mediterranean[J]. Environmental Pollution,2002,116:203-214.
    [54]Hanisak M D. Nitrogen limitation of Codium fragile ssp. tomentosoides as determined by tissue analysis[J]. Marine Biology,1979,50(4):333-337.
    [55]Deboer J A, Effects of nitrogen enrichment on growth rate and phycocolloid content in Gracilaria foliifera and Neoagardhjiella baileyi (Florideophyceae)[J]. Proc Int Seaweeds Symp,1979,9:263-271.
    [56]Shetty K. Role of proline-linked pentose phosphate pathway in biosynthesis of plant phenolics for functional food and environmental applications:a review[J]. Process Biochemistry,2004,39(7):789-804.
    [57]Korner S, Das S K, Veenstra S, et al. The effect of pH variation at the ammonium ammonia equilibrium in wastewater and its toxicity to Lemna gibba[J]. Aquatic botany,2001,71(1):71-78.
    [58]Nimptsch J, Pflugmacher S. Ammonia triggers the promotion of oxidative stress in the aquatic macrophyte Myriophyllum mattogrossense[J]. Chemosphere,2007,66(4):708-714.
    [59]Pearce I S K, Woodin S J, Van der Wal R. Physiological and growth responses of the montane bryophyte Racomitrium lanuginosum to atmospheric nitrogen deposition[J]. New Phytologist,2003,160(1): 145-155.
    [60]Pflugmacher S. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR[J]. Aquatic toxicology,2004,70(3): 169-178.
    [61]Foyer C H, Lopez-Delgado H, Dat J F, et al. Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling[J]. Physiologia Plantarum,1997,100(2): 241-254.
    [62]Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction[J]. Annu. Rev. Plant Biol.,2004,55:373-399.
    [63]Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review[J]. Annals of botany,2003,91(2):179-194.
    [64]饶本强,张列宇,吴沛沛,等.集球藻对盐胁迫的生理适应及细胞结构变化[J].水生生物学报,2012,36(2):299-337.
    [65]Tian J, Yu J. Changes in ultrastructure and responses of antioxidant systems of algae(Dunaliella salina)during acclimation to enhanced ultraviolet-B radiation[J]. Journal of Photochemistry and Photobiology B:Biology,2009,97(3):152-160.
    [66]Gabara B, Sklodowska M, Wyrwicka A, et al. Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill, leaves sprayed with acid rain[J]. Plant Science,2003,164(4):507-516.
    [67]Tukaj Z, Bascik-Remisiewicz A, Skowronski T, et al. Cadmium effect on the growth, photosynthesis, ultrastructure and phytochelatin content of green microalga Scenedesmus armatus:A study at low and elevated CO2 concentration[J]. Environmental and experimental botany,2007,60(3):291-299.
    [68]Yu J, Yang Y F. Physiological and biochemical response of seaweed Gracilaria lemaneiformis to concentration changes of N and P[J]. Journal of Experimental Marine Biology and Ecology,2008,367(2): 142-148.
    [69]Gupta A, Singhal G S. Inhibition of PS II activity by copper and its effect on spectral properties on intact cells in Anacystis nidulans[J]. Environmental and experimental botany,1995,35(4):435-439.
    [70]Schmidt E C, Scariot L A, Rover T, et al. Changes in ultrastructure and histochemistry of two red macroalgae strains of Kappaphycus alvanezii(Rhodophyta, Gigartinales), as a consequence of ultraviolet B radiation exposure[J]. Micron,2009,40(8):860-869.
    [71]Vosjan J H, Dohler G, Nieuwland G Effect of UV-B irradiance on the ATP content of microorganisms of the Weddell Sea (Antarctica)[J]. Netherlands journal of sea research,1990,25(3):391-393.
    [72]蔡西栗,邵曼玮,孙雪,等.龙须菜(Gracilaria lemaneiformis)中多种植物激素的[J].海洋与湖沼,2011,42(6).753-758.
    [73]Fong P, Zedler J B, Donohoe R M. Nitrogen vs. phosphorus limitation of algal biomass in shallow coastal lagoons[J]. Limnology and Oceanography,1993,38(5):906-923.
    [74]Kamer K. The influence of nitrogen enrichment and salinity reduction on the estuarine green macroalga Enteromorpha intestinalis[D]. University of California,2000.
    [75]Boyle K A. Investigating nutrient dynamics and macroalgal community structure in an eutrophic southern California estuary:results of field monitoring and microcosm experiments[D]. University of California, 2002.
    [76]Martinez M E, Sanchez S, Jimenez J M, et al. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus[J]. Bioresource Technology,2000,73(3):263-272.
    [1]Bell F G, Bullock S E T, Halbich T F J, et al. Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa[J]. International Journal of Coal Geology,2001,45(2):195-216.
    [2]Schwartz C, Gerard E, Perronnet K, et al. Measurement of in situ phytoextraction of zinc by spontaneous metallophytes growing on a former smelter site[J]. Science of the total environment,2001,279(1): 215-221.
    [3]Passariello B, Giuliano V, Quaresima S, et al. Evaluation of the environmental contamination at an abandoned mining site[J]. Microchemical Journal,2002,73(1):245-250
    [4]Chandran R, Sivakumar A A, Mohandass S, et al. Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica[J]. Comparative Biochemistry and Physiology Part C: Toxicology Pharmacology,2005,140(3):422-426.
    [5]Mokhtar M B, Praveena S M, Aris A Z, et al. Trace metal (Cd, Cu, Fe, Mn, Ni and Zn) accumulation in Scleractinian corals:A record for Sabah, Borneo[J]. Marine Pollution Bulletin,2012,64(11):2556-2563.
    [6]Cheung K C, Poon B H T, Lan C Y, et al. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China[J]. Chemosphere,2003, 52(9):1431-1440.
    [7]Prego R, Cobelo-Garcia A. Twentieth century overview of heavy metals in the Galician Rias (NW Iberian Peninsula)[J]. Environmental Pollution,2003,121(3):425-452.
    [8]Grimanis A P, Zafiropoulos D, Vassilaki-Grimani M. Trace elements in the flesh and liver of two fish species from polluted and unpolluted areas of the Aegean Sea[J]. Environmental Science Technology, 1978,12(6):723-726.
    [9]Adams W J, Kimerle R A, Barnett Jr J W. Sediment quality and aquatic life assessment[J]. Environmental science technology,1992,26(10):1864-1875.
    [10]Ermosele C O, Ermosele I C, Muktar S A, et al. Metals in fish from the upper Benue River and lakes Geryo and Njuwa in northern Nigeria[J]. Bull. Environ. Contam. Toxicol,1995,54:8-14.
    [11]尹平河,赵玲,Qi-ming Y U, et al.海藻生物吸附废水中铅、铜和镉的研究[J].海洋环境科学,2000,19(3):11-15.
    [12]马卫东,Yu Q M,顾国维.海洋巨藻(Durvillaea potatorum)生物吸附剂对Hg2+的吸附动力学研究[J].应用与环境生物学报,2001,7(4):344-347.
    [13]冯咏梅,王文华,常秀莲,等.马尾藻对水中重金属Ni2+的吸附研究[J].烟台大学学报(自然科学 与工程版),2004,17(1):28-32.
    [14]Hussein H, Farag S, Kandil K, et al. Tolerance and uptake of heavy metals by Pseudomonads[J]. Process biochemistry,2005,40(2):955-961.
    [15]Donmez G, Aksu Z. Bioaccumulation of copper (II) and nickel (Ⅱ) by the non-adapted and adapted growing Candida sp.[J]. Water Research,2001,35(6):1425-1434.
    [16]Garcia-Rios V, Freile-Pelegrin Y, Robledo D, et al. Cell wall composition affects Cd2+accumulation and intracellular thiol peptides in marine red algae[J]. Aquatic toxicology,2007,81(1):65-72.
    [17]Fang R. Application of atomic absorption spectroscopy in sanitary test[J].1991,148-158.
    [18]郝晓敏,林海生,许金涛,等.超声酸提江蓠硫酸酯多糖工艺及其性质研究[J].食品科技(提取物与应用),2008,6:171-174.
    [19]徐敏,裴文武,王平,等.江蓠多糖除蛋白的方法研究[J].食品科技(工艺技术),2007,9:119-120.
    [20]万建华,顾正彪,洪雁.马铃薯渣果胶多糖分离纯化及结构初探[J].安徽农业科学,2008,36(19):7970-7973.
    [21]Chipasa K B. Accumulation and fate of selected heavy metals in a biological wastewater treatment system[J]. Waste management,2003,23(2):135-143.
    [22]Cobbett C S. Phytochelatin biosynthesis and function in heavy-metal detoxification[J]. Current opinion in plant biology,2000,3(3):211-216.
    [23]Crist R H, Oberholser K, Shank N, et al. Nature of bonding between metallic ions and algal cell walls[J]. Environmental Science Technology,1981,15(10):1212-1217.
    [24]Schiewer S, Wong M H. Ionic strength effects in biosorption of metals by marine algae[J]. Chemosphere, 2000,41(1):271-282.
    [25]Baumann H A, Morrison L, Stengel D B. Metal accumulation and toxicity measured by PAM-chlorophyll fluorescence in seven species of marine macroalgae[J]. Ecotoxicology and Environmental Safety,2009, 72(4):1063-1075.
    [26]Chen B, Huang Q, Lin X, et al. Accumulation of Ag, Cd, Co, Cu, Hg, Ni and Pb in Pavlova viridis Tseng (Haptophyceae)[J]. Journal of Applied phycology,1998,10(4):371-376.
    [27]Munda I M, Hudnik V. Growth Response of Fucus vesiculosus to Heavy Metals, Singly and in Dual Combinations, as Related to Accumulation[J]. Botanica marina,1986,29:401-412.
    [28]Yu R Q, Wang W X. Kinetic uptake of bioavailable cadmium, selenium, and zinc by Daphnia magna[J]. Environmental toxicology and chemistry,2002,21(11):2348-2355.
    [29]Munda I M. Differences in heavy metal accumulation between vegetative parts of the thalli and receptacles in Fucus spiralis L[J]. Botanica marina,1986,29(4):341-350.
    [30]Varma R, Turner A, Brown M T. Bioaccumulation of metals by Fucus ceranoides in estuaries of South West England[J]. Marine pollution bulletin,2011,62(11):2557-2562.
    [31]Pavasant P, Apiratikul R, Sungkhum V, et al. Biosorption of Cu2+, Cd 2+,Pb2+, and Zn2+using dried marine green macroalga,Caulerpa lentillifera [J]. Bioresource Technology,2006,97(18):2321-2329.
    [32]Munda I M. Temperature Dependence of Zinc Uptake in Fucus virsoides (Don.) J. Ag. and Enteromorpha prolifera (OF Mull.) J, Ag. from the Adriatic Sea[J]. Botanica Marina,1979,22(3):149-152.
    [33]Prosi F. Heavy metals in aquatic organisms[M]. Metal pollution in the aquatic environment. Springer Berlin Heidelberg,1981:271-323.
    [34]Rand G M. Fundamentals of aquatic toxicology:effects, environment fate, and risk assessment[M]. Taylor Francis,1995,1012-1051
    [35]Genter R B. Ecotoxicology of inorganic chemical stress to algae[J]. Algal ecology:Freshwater benthic ecosystems. Academic,1996:403-468.
    [36]Eklund B T, Kautsky L. Review on toxicity testing with marine macroalgae and the need for method standardization-exemplified with copper and phenol[J]. Marine pollution bulletin,2003,46(2):171-181.
    [37]Tobin J M, Cooper D G, Neufeld R J. Uptake of metal ions by Rhizopus arrhizus biomass[J]. Applied and Environmental Microbiology,1984,47(4):821-824
    [38]Mattuschka B, Straube G. Biosorption of metals by a waste biomass[J]. Journal of Chemical Technology and Biotechnology,1993,58(1):57-63.
    [39]Wang N X, Li Y, Deng X H, et al. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes[J]. Water Research,2013,47(7):2497-2506
    [40]Mitchelmore C L, Verde E A, Weis V M. Uptake and partitioning of copper and cadmium in the coral Pocillopora damicornis[J]. Aquatic Toxicology,2007,85(1):48-56.
    [41]张玲,王焕校.镉胁迫下小麦根系分泌物的变化[J].生态学报,2002,22(4):496-502.
    [1]Howe G, Merchant S. Heavy metal-activated synthesis of peptides in Chlamydomonas reinhardtii[J]. Plant physiology,1992,98(1):127-136.
    [2]Rauser W E. Structure and function of metal chelators produced by plants:the case fur organic acids, amino acids, phytin and metallothioneins[J]. Cell Biochem Biophys,1999,31:19-48.
    [3]Sheoran V, Sheoran A S, Poonia P. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites:A review[J]. Critical Reviews in Environmental Science and Technology,2010, 41(2):168-214.
    [4]Davies A G, Sleep J A. Photosynthesis in some British coastal waters may be inhibited by zinc pollution[J]. Nature,1979,227:192.
    [5]罗通,邓骛远,曾妮.Ag+、Pb2+对轮藻生理生化指标的影响[J].四川师范大学学报(自然科学版),2005,28(6):723-726.
    [6]孔繁翔,陈颖,章敏.镍、锌、铝对羊角月芽藻(Selenastrum capricornutum)生长及酶活性影响研究 [J].环境科学学报,1997,17(2):193-198.
    [7]Wang N X, Li Y, Deng X H, et al. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes[J]. Water Research,2013,47(7):2497-2506.
    [8]Baker A J M, Brooks R R. Terrestrial higher plants which hyper accumulate metallic elements review of their distribution, ecology and photochemistry[J]. Biorecovery,1989,1:81-126.
    [9]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology,1981,22(5):867-880.
    [10]Sgherri C L M, Loggini B, Puliga S, et al. Antioxidant defense system in Sporobolus stapfianus:changes in response to dessication and rehydration[J]. Phytochemistry 1994,33,561-568.
    [11]Talarico L. Fine structure and X-ray microanalysis of a red macrophyte cultured under cadmium stress[J]. Environmental Pollution,2002,120(3):813-821.
    [12]Gantt E. Pigment protein complexes and the concept of the photosynthetic unit:Chlorophyll complexes and phycobilisomes[J]. Photosynthesis research,1996,48(1):47-53.
    [13]余江,杨宇峰.龙须菜对重金属和有机物联合毒性的响应[J].深圳大学学报(理工版),2009,4:343-350.
    [14]Somashekaraiah B V, Padmaja K, Prasa R K. Phytotoxicity of cadmium ions germination seedling of mung bean (Phaseolus vulgarize):Involvement of lipid peroxides in chlorophyll degradation[J]. Physiol Plant,1992,85:85-89.
    [15]Pettersson O. Differences in cadmium uptake between plant species and cultivars (cereals, vegetables)[J]. Swedish Journal of Agricultural Research,1977,7:21-24.
    [16]Choudhary M, Jetley U K, Abash Khan M, et al. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5[J]. Ecotoxicology and environmental safety,2007,66(2):204-209.
    [17]Shetty K. Role of proline-linked pentose phosphate pathway in biosynthesis of plant phenolics for functional food and environmental applications:a review[J]. Process Biochemistry,2004,39(7):789-804.
    [18]Moradas-Ferreira P, Costa V, Piper P, et al. The molecular defences against reactive oxygen species in yeast[J]. Molecular microbiology,1996,19(4):651-658.
    [19]Bai Z, Harvey L M, McNeil B. Oxidative stress in submerged cultures of fungi[J]. Critical reviews in biotechnology,2003,23(4):267-302.
    [20]Datta K, Sinha S, Chattopadhyay P. Reactive oxygen species in health and disease[J]. National Medical Journal of India,2000,13(6):304-310.
    [21]Gabbita S P, Robinson K A, Stewart C A, et al. Redox regulatory mechanisms of cellular signal transduction[J]. Archives of biochemistry and biophysics,2000,376(1):1-13.
    [22]Hancock J T, Desikan R, Neill S J. Role of reactive oxygen species in cell signalling pathways[J]. Biochemical Society Transactions,2001,29(2):345-349.
    [23]Luis A, Sandalio L M, Corpas F J, et al. Reactive oxygen species and reactive nitrogen species in peroxisomes, production, scavenging, and role in cell signaling[J]. Plant Physiology,2006,141(2): 330-335.
    [24]Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science,2004,9(10):490-498.
    [25]Elbaz A, Wei Y Y, Meng Q, et al. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii[J].Ecotoxicology,2010,19(7):1285-1293.
    [26]Wang B S. Biological free radicals and membrane damage of plants[J]. Plant Physiology Communications, 1988,2:12-16.
    [27]Wang Y, Fang J, Leonard S S, et al. Cadmium inhibits the electron transfer chain and induces reactive oxygen species[J]. Free Radical Biology and Medicine,2004,36(11):1434-1443.
    [28]Scandalios J G Oxygen stress and super oxide disputes[J]. Plantphysiol,1993,101:7-12.
    [29]Willekens H, Langebartels C, Tire C, et al. Differential expression of catalase genes in Nicotiana plumbaginifolia (L.)[J]. Proceedings of the National Academy of Sciences,1994,91(22):10450-10454.
    [30]Creissen C P, Edwards E A, Mullineaux P M. Glutathione reductase and ascorbate peroxidase. In:Foyer, CH, Mullineaux, PM (Eds.), Cause of Photoxidative Stress and Amelioration of Defense Systems in Plants[M]. CRC Press, Boca Raton,1994.
    [31]Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry,2010,48(12):909-930.
    [32]Anjum N A, Umar S, Chan M T. Ascorbate-glutathione pathway and stress tolerance in plants[M]. Springer, Dordrecht, The Netherlands,2010.
    [33]Anjum N A, Umar S, Ahmad A. Oxidative stress in plants:causes, consequences and tolerance[M]. IK International, New Delhi,2011.
    [34]Anjum N A, Umar S, Iqbal M, et al. Cadmium causes oxidative stress in moongbean [Vigna radiata (L.) Wilczek] by affecting antioxidant enzyme systems and ascorbate-glutathione cycle metabolism[J]. Russ J Plant Physiol,2011,58:92-99.
    [35]Leon A M, Palma J M, Corpas F J, et al. Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium[J]. Plant Physiology and Biochemistry,2002,40(10):813-820.
    [36]Skorzynska-Polit E, Drazkiewicz M, Krupa Z. The activity of the antioxidative system in cadmium-treated Arabidopsis thaliana[J]. Biologia plantarum,2003,47(1):71-78.
    [37]Mobin M, Khan N A. Photosynthetic activity, pigment composition and antioxidative response of two mustard(Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress[J]. Journal of Plant Physiology,2007,164(5):601-610.
    [38]Anjum N A, Umar S, Ahmad A, et al. Ontogenic variation in response of Brassica campestris L. to cadmium toxicity[J]. Journal of Plant Interactions,2008,3(3):189-198.
    [39]Diwan H, Khan I, Ahmad A, et al. Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments[J]. Plant Growth Regulation,2010,61(1): 97-107.
    [40]Drazkiewicz M, Skorzynska-Polit E, Krupa Z. Response of the ascorbate-glutathione cycle to excess copper in Arabidopsis thaliana (L.)[J]. Plant Science,2003,164(2):195-202.
    [41]Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction[J]. Annu. Rev. Plant Biol.,2004,55:373-399.
    [42]Pourahmad J, O'Brien P J. A comparison of hepatocyte cytotoxic mechanisms for Cu2+and Cd2+[J]. Toxicology,2000,143(3):263-273.
    [43]Nagalakshmi N, Prasad M N V. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus[J]. Plant science,2001,160(2):291-299.
    [44]Zhang C H, Ge Y. Response of glutathione and glutathione S-transferase in rice seedlings exposed to cadmium stress[J]. Rice Science,2008,15(1):73-76.
    [45]Noctor G, Gomez L, Vanacker H, et al. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling[J]. Journal of experimental botany,2002,53(372): 1283-1304.
    [46]Milla M A R, Maurer A, Huete A R, et al. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways[J]. The Plant Journal,2003,36(5): 602-615.
    [47]Dixit V, Pandey V, Shyam R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad)[J]. Journal of Experimental Botany,2001,52(358):1101-1109.
    [48]Caregnato F F, Koller C E, MacFarlane G R, et al. The glutathione antioxidant system as a biomarker suite for the assessment of heavy metal exposure and effect in the grey mangrove, Avicennia marina(Forsk.) Vierh[J]. Marine pollution bulletin,2008,56(6):1119-1127.
    [49]Scarano G, Morelli E. Characterization of cadmium-and lead-phytochelatin complexes formed in a marine microalga in response to metal exposure[J]. Biometals,2002,15(2):145-151.
    [50]Rogers K R, Albert F, Anderson A J. Lipid peroxidation is a consequence of elicitor activity[J]. Plant physiology,1988,86(2):547-553.
    [51]Nouet C, Motte P, Hanikenne M. Chloroplastic and mitochondrial metal homeostasis[J]. Trends in plant science,2011,16(7):395-404.
    [52]He Q B, Singh B R. Crop uptake of cadmium from phosphorus fertilizers:I. Yield and cadmium content[J]. Water, air, and soil pollution,1994,74(3):251-265.
    [53]杨志敏,郑绍健.不同磷水平和介质pH对玉米和小麦镉积累的影响[J].南京农业大学学报,1999,22(1):46-50.
    [54]Panwar B S, Singh J P, Laura R D. Cadmium uptake by cowpea and mungbean as affected by Cd and P application[J]. Water Air and Soil Pollution,1999,112(1):163-169.
    [55]杨志敏,郑绍建,胡霭堂,等.镉磷在小麦细胞内的积累和分布特性及其交互作用[J].南京农业大学学报,1998,21(2):54-58.
    [1]Kim J K, Han T. Effects of inorganic nutrients and heavy metals on growth and pigmentation of the green alga, Ulva pertusa Kjellman[J]. Korean J Environ Biol,1999,17:427-438.
    [2]Brown M T, Newman J E. Physiological responses of Gracilariopsis longissima (SG Gmelin) Steentoft, LM Irvine and Farnham (Rhodophyceae) to sub-lethal copper concentrations[J]. Aquatic toxicology,2003, 64(2):201-213.
    [3]Ho Y B. Metals in 19 intertidal macroalgae in Hong Kong waters[J]. Marine Pollution Bulletin,1987, 18(10):564-566.
    [4]Nor Y M. Ecotoxicology of copper to aquatic biota:a review. Environment Research[J].1987,43: 274-282.
    [5]Woo Lee K, Seong Kang H, Hyung Lee S. Trace elements in the Korean coastal environment[J]. Science of the total environment,1998,214(1):11-19.
    [6]Callow M E, Callow J A. Marine biofouling:a sticky problem[J]. Biologist,2002,49(1):1-5.
    [7]Boyd C E, Massaut L. Risks associated with the use of chemicals in pond aquaculture[J]. Aquacultural Engineering,1999,20(2):113-132.
    [8]Gledhill M, Nimmo M, Hill S J, et al. The release of copper complexing ligands by the brown alga Fucus vesiculosus (Phaeophyceae) in response to increasing total copper levels[J]. Journal of phycology,1999, 35(3):501-509.
    [9]Vinit-Dunand F, Epron D, Alaoui-Sosse B, et al. Effects of copper on growth and photosynthesis of mature and expanding leave sincucumber plants[J]. Plant Science,2002,163:53-58.
    [10]Andrade L R, Farina M, Amado Filho G M. Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro[J]. Ecotoxicology and environmental safety,2004,58(1):117-125.
    [11]Overnell J. The effect of heavy metals on photosynthesis and loss of cell potassium in two species of marine algae, Dunaliella tertiolecta and Phaeodactylum tricornutum[J]. Marine Biology,1975,29(1): 99-103.
    [12]Xia J R, Tian Q R. Early stage toxicity of excess copper to photosystem II of Chlorella pyrenoidosa-OJYP chlorophyll a fluorescence analysis[J]. Journal of Environmental Sciences,2009,21:1569-1574.
    [13]Nielsen H D, Nielsen S L. Adaptation to high light irradiances enhances the photosynthetic Cu2+ resistance in Cu2+ tolerant and non-tolerant populations of the brown macroalgae Fucus serratus[J]. Marine Pollution Bulletin,2010,60(5):710-717.
    [14]Nielsen H D, Brownlee C, Coelho S M, et al. Interpopulation differences in inherited copper tolerance involve photosynthetic adaptation and exclusion mechanisms in Fucus serratus[J]. New phytologist,2003, 160(1):157-165.
    [15]Nielsen H D, Brown M T, Brownlee C. Cellular responses of developing Fucus serratus embryos exposed to elevated concentrations of Cu2+[J]. Plant Cell Environment,2003,26(10):1737-1747.
    [16]Eklund B T, Kautsky L. Review on toxicity testing with marine macroalgae and the need for method standardization-exemplified with copper and phenol[J]. Marine pollution bulletin,2003,46(2):171-181.
    [17]Cid A, Herrero C, Torres E, et al. Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters[J]. Aquatic Toxicology,1995,31(2):165-174.
    [18]Deng H, Ye Z H, Wong M H. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China[J]. Environmental Pollution,2004,132(1):29-40.
    [19]Han T, Kang S H, Park J S, et al. Physiological responses of Ulva pertusa and U. armoricana to copper exposure[J]. Aquatic Toxicology,2008,86(2):176-184.
    [20]Farias W R L, Valente A P, Pereira M S, et al. Structure and anticoagulant activity of sulfated galactans[J]. Journal of Biological Chemistry,2000,275(38):29299-29307.
    [21]Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide[J]. Journal of experimental botany, 2000,51(345):659-668.
    [22]Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J]. Photosynthesis research,1986,10(1-2):51-62.
    [23]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology,1981,22(5):867-880.
    [24]Sgherri C L M, Loggini B, Puliga S, et al. Antioxidant defense system in Sporobolus stapfianus:changes in response to dessication and rehydration[J]. Phytochemistry 1994,33,561-568.
    [25]Axelsson B, Axelsson L. A rapid and reliable method to quantify environmental effects on Laminaria based on measurements of ion leakage[J]. Botanica marina,1987,30(1):55-61.
    [26]Burnat M, Diestra E, Esteve I, et al. Confocal laser scanning microscopy coupled to a spectrofluorometric detector as a rapid tool for determining the in vivo effect of metals on phototrophic bacteria[J]. Bulletin of environmental contamination and toxicology,2010,84(1):55-60.
    [27]Collen J, Pinto E, Pedersen M, et al. Induction of oxidative stress in the red macroalga Gracilaria tenuistipitata by pollutant metals[J]. Archives of Environmental Contamination and Toxicology,2003, 45(3):337-342.
    [28]Evans L V. Marine algae and fouling:a review, with particular reference to ship-fouling[J]. Bot Mar,1981, 24:167-171.
    [29]Van Heerden P D R, Robertson B L, De Kock L. Inhibition of Ectocarpus siliculosus infestations with copper chloride in tank cultures of Gracilaria gracilis[J]. Journal of applied phycology,1997,9(3): 255-259.
    [30]Macfie S M, Welbourn P M. The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae) [J]. Archives of environmental contamination and toxicology,2000,39(4):413-419.
    [31]Martins C D M G, Barcarolli I F, Menezes E J, et al. Acute toxicity, accumulation and tissue distribution of copper in the blue crab Callinectes sapidus acclimated to different salinities:In vivo and in vitro studies[J]. Aquatic Toxicology,2011,101(1):88-99.
    [32]Yun Y S, Park D, Park J M, et al. Biosorption of trivalent chromium on the brown seaweed biomass[J]. Environmental science technology,2001,35(21):4353-4358.
    [33]Ata A, Nalcaci O O, Ovez B. Macro algae Gracilaria verrucosa as a biosorbent:A study of sorption mechanisms[J]. Algal Research,2012,1(2):194-204.
    [34]Andrade L R, Leal R N, Noseda M, et al. Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity[J]. Marine pollution bulletin,2010,60(9): 1482-1488.
    [35]Hashim M A, Chu K H. Biosorption of cadmium by brown, green, and red seaweeds[J]. Chemical Engineering Journal,2004,97(2):249-255.
    [36]Stengel D B, Macken A, Morrison L, et al. Zinc concentrations in marine macroalgae and a lichen from western Ireland in relation to phylogenetic grouping, habitat and morphology [J]. Marine pollution bulletin, 2004,48(9):902-909.
    [37]Bolhar-Nordenkampf H R, Long S P, Baker N R, et al. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field:a review of current instrumentation[J]. Functional Ecology,1989:497-514.
    [38]Yu J Q, Zhou Y H, Huang L F, et al. Chill-induced inhibition of photosynthesis:genotypic variation within Cucumis sativus[J]. Plant and cell physiology,2002,43(10):1182-1188.
    [39]Mal T K, Adorjan P, Corbett A L. Effect of copper on growth of an aquatic macropbyte Elodea canadensis [J]. Environmental Pollution,2002,120(2):307-311.
    [40]Prasad M N V, Malec P, Waloszek A, et al. Physiological responses of Lemna trisulca L.(duckweed) to cadmium and copper bioaccumulation[J]. Plant Science,2001,161(5):881-889.
    [41]Deckert J. Cadmium toxicity in plants:is there any analogy to its carcinogenic effect in mammalian cells?[J]. Biometals,2005,18(5):475-481.
    [42]Sudhakar C, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity[J]. Plant Science,2001,161(3): 613-619.
    [43]Jimenez A, Hernandez J A, del Rio L A, et al. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves[J]. Plant physiology,1997,114(1):275-284.
    [44]Stauber J L, Florence T M. Mechanism of toxicity of ionic copper and copper complexes to algae[J]. Marine Biology,1987,94(4):511-519.
    [45]Kupper H, Setlik I, Spiller M. et al. Heavy metal induced inhibition of photosynthesis:targets of in vivo heavy metal chlorophyll formation[J]. Journal of Phycology,2002,38(3):429-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700