用户名: 密码: 验证码:
多叶苜蓿种质特性及其花药培养的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国当前苜蓿青干草产量低,品质较低,育成品种数量少,远远不能满足苜蓿生产多方面的需求,因此迫切需要加强苜蓿种质资源的研究和利用,加快优良品种选育,提高苜蓿的产量和质量,以满足市场的需要。多叶苜蓿具有提高苜蓿产量和品质的潜力。
     (1)本文首先通过两年的田间试验对多叶苜蓿产草量相关性状及遗传多样性进行了分析研究。利用相关性分析研究叶茎比与产草量相关性状之间的关系,进而采用SSR分子标记的方法研究多叶苜蓿的遗传多样性。(2)通过田间调查,对多叶苜蓿的性状表达特征进行了分析;研究了多叶苜蓿各复叶节位叶面积,叶茎比、多叶率及叶面积之间关系。(3)利用光合仪研究多叶苜蓿和三叶型苜蓿的光合效率,在此基础上,利用光合仪和叶绿体超微结构研究不同复叶类型的苜蓿光合效率。(4)采用扫描电镜研究多叶苜蓿的顶端分生组织形态发育特性。比较研究了多叶苜蓿和三叶型苜蓿的复叶形态发生及苜蓿花的形态发育特征等。(5)进行多叶苜蓿花药培养的研究,筛选适合多叶苜蓿花药培养的最佳培养基,对花药培养再生植株进行倍性鉴定等工作。
     本文的主要研究结果如下:(1)多叶苜蓿WL323干草产量两年平均最高,为19551.45kg/hm2;8920MF和皇冠的平均干草产量分别为15395.23kg/hm2和15245.64kg/hm2,干草产量高于Super7、巨人、牧歌和品系GL0601等4份材料,在所有参试材料中处于较高水平。多叶苜蓿的皇冠和8920MF各茬次的叶茎比均高于三叶型苜蓿。苜蓿叶茎比与干草产量正相关,与分枝数、节间数显著负相关。利用SSR遗传多样性分析发现,具有多叶性状的各苜蓿材料间的遗传关系较近,单独聚为一类。(2)多叶苜蓿主茎中4+5叶复叶类型的最多,各材料平均为13.06%;只含4片复叶的主茎最少,各材料平均为0.01%。苜蓿4+5型多叶型复叶越多,苜蓿的多叶率越高:WL343HQ的多叶率最高,为25.71%,其4+5型复叶多叶率为13.88%。多叶苜蓿各复叶节位的叶面积均大于对照淮阴苜蓿;各节叶面积平均后发现多叶苜蓿复叶的叶面积在8.65-9.10cm2之间,而对照淮阴苜蓿仅为6.22cm2。通过多叶率、叶面积和叶茎比的相关性分析发现,多叶率与叶茎比呈显著正相关,多叶率越高,叶茎比越大,多叶率可以显著提高苜蓿的叶茎比:多叶率与苜蓿的叶面积也显著正相关,多叶率越高,叶面积也越大。叶面积和叶茎比正相关,但没有显著性。(3)通过对多叶型和三叶型苜蓿品种的光合参数分析发现,多叶苜蓿的Pn平均在25.79μmol·m-2·s-1左右,光合效率显著大于3叶型苜蓿。不同复叶类型的光合效率发现,5叶型复叶Pn最大,Pn的排列顺序是5叶型>4叶型>3叶型>6叶型>7叶型>8叶型>9叶型。5叶型复叶的叶肉中,每细胞的叶绿体数目最多,叶绿体中基粒多,基质浓厚,基粒片层堆积致密,嗜锇体数目较少、体积小,每叶绿体中的淀粉粒数目多而饱满。因此,在苜蓿多叶性状育种中,以5片复叶类型为目标,可以提高苜蓿的光合效率。(4)通过对3叶型和5叶型的复叶形态发生分析发现,苜蓿的复叶发育模式为向顶式,3叶型和5叶型茎顶端分生组织形态特征均为不规则方形结构,之后可按其形态发生分为明显的7个阶段。S0和S1阶段形态发生特征相似,形成条状共同原基;S2阶段,出现叶原基,隆起的数目不同;S3阶段,3叶型出现2个侧叶原基,而5叶型出现4个;之后的形态发育特征基本相似,由S2-S3阶段是关键阶段,决定了叶片的数目和叶片的着生方式。对苜蓿花的形态发育过程研究发现,苜蓿的花为两侧对称,为典型的21个器官。其形态发育特征与其他蝶形花亚科类似,出现初级花序分生组织和次级花序分生组织的分化,次级花序分生组织再发育成花分生组织,花分生组织发育成其他各器官,在发育过程中又有四个共同原基的划分。我们根据发育的特征不同,将其分为8个阶段,这对于研究雄性不育、花药培养花蕾的精确选择、苜蓿花发育的分子生物学机制等具有重要的意义。(5)通过对整个花器内,苜蓿的花药培养能力研究发现苜蓿现蕾后15-28d,花药培养愈伤组织诱导效果最好。愈伤组织分化的最佳培养基为改良Blaydes培养基,即Blaydes培养基添加肌醇100mg·L-1、水解酪蛋白200mg·L-1、2-IP0.5mg·L-1、NAA0.2mg·L-1、KT1.0mg·L-1时愈伤组织分化效率较高:1/2B5培养基诱导生根的效果优于1/2MS。对再生植株进行流式细胞术检测发现,花药培养后的植株,倍性比较复杂,会产生混倍体和非整倍体等,该研究对苜蓿单倍体和双单倍体育种具有重要的意义。
At present, the yield and quality of alfalfa hey are low, and the number of improved varieties is not rich. The same reason,it is far from adequate to meet the needs of alfalfa production. So, there is an urgent need to strengthen alfalfa germplasm research and utilization, speed up the breeding of superior varieties, improving yield and quality of alfalfa, so as to meet the needs of the market. Some study suggests that multifoliate alfalfa has the potential to improve the yield and quality, but there is highly controversial on if the multifoliate alfalfa has the ability to increase yield and photosynthetic efficiency.
     (1) Firstly, this study spent a two-year field experiment on alfalfa forage yield-related traits and genetic diversity analysis; and study the relationship between stem/leaf ratio and yield-related traits by correlation analysis, then multifoliate alfalfa genetic diversity can be done by SSR molecular marker methods.(2) This study analyse the trait expression characteristics of multifoliate alfalfa through field investigation;besides,the relationship between Compound leaf area, stem/leaf ratio, leafy rate and leaf area were also analysed.(3) Using a photosynthetic apparatus to study photosynthetic efficiency of multifoliate alfalfa and three-leaf alfalfa, on this basis, photosynthetic apparatus and chloroplast ultra-structure can be used to study the photosynthetic efficiency in different types of compound leaves of alfalfa.(4) Using scanning electron microscopic to study the apical meristem development characteristics of multifoliate alfalfa,and compared the morphogenesis of compound leaves and the development characteristics of flowers of multifoliate alfalfa and three-leaf alfalfa.(5) Study on anther culture of multifoliate alfalfa, filtering the best medium for anther culture of multifoliate alfalfa, doing identification of the ploidys of regenerated plants from anther culture.
     This article's main findings are as follows:(1) The average hay yield of multifoliate alfalfa WL323in two years is the highest,19551.45kg/hm2; the average hay yield of8920MF and Phabulous is15395.23kg/hm2and15245.64kg/hm2, at a high level in all participants, better than Super7, AmeriStand. GL0601and AmeriGraze. All stem/leaf ratio of multifoliate alfalfa in every stubble are higher than three-leaf alfalfa. Leaf-stem ratio of alfalfa has a positive correlation with hey yield.but significant negative correlation with branches and section number. SSR analysis of genetic diversity found that alfalfa materials with leafy traits are in the close genetic relationship,can be separately gathered as one.(2) In the main stem of multifoliate alfalfa, type of4+5compound leaves is the most, the average of each material is about13.06%; type of4compound leaves is the least, the average of each material is about0.01%; the more4+5compound leaves, the higher leafy rate; WL343HQ has the highest leafy rate,25.71%, and its' leafy rate of4+5compound leaves is13.88%.Each compound leaves' leaf area of multifoliate alfalfa is larger than the control of huaiyin; compound leaves' leaf area of multifoliate alfalfa is between8.65cm2and9.10cm2,the control material, huaiyin,is only6.22cm2.By the correlation analysis of leafy rate, leaf area and stem/leaf ratio, this study found that leafy rate had a positive correlation with stem/leaf ratio, the higher leafy rate, the higher stem/leaf ratio; as well as stem/leaf ratio, leafy rate also had a significantly positively correlation with leaf area, the higher leafy rate, the larger leaf area; Leaf area and stem/leaf ratio are related, but not significantly.(3) This study did the analysis of photosynthetic parameters of multifoliate alfalfa and three-leaf alfalfa,found that the average Pn of multifoliate alfalfa was about25.79μmol·m-2·s-1, photosynthetic efficiency was significantly greater than three-leaf alfalfa. In different types of compound leaf photosynthetic efficiency, the Pn of5-leaf leaflet was the max, the order of the Pn was quinquefoliolate alfalfa> quadrifoliate leaflets> trifoliate leaflets> six leaves type seven leaves type> eight leaves type> Nine leaves type. In the mesophyll of quinquefoliolate alfalfa, the number of chloroplasts was the most in every cell, and with many granas in chloroplasts, stroma is thick, and the grana lamella were tight; the number of Osmophilic globule was few, starch grains in chloroplast was rich and full. Therefore, in breeding of Alfalfa leafy traits, using the quinquefoliolate alfalfa as the target can improve the photosynthetic efficiency of alfalfa.(4) This study analysed the morphogenesis of3and5type of compound leaf, then found that the model of compound leaves of alfalfa was top, the apical meristem morphology characteristics of3and5type of compound leaf wre the irregular square structure, which can be classified into7stages. Morphological characteristics of SO was similar to S1, forming the common primordial; primordia appeared in stage2, the number of those uplift was different; in S3,2side leaf primordia appeared in3type of compound leaf,4side leaf primordia appeared in5type of compound leaf, the following Morphological characteristics was the similar. It was the key stage from S2to S3,it determined the number of blades and blade life. In the study of Morphological development of alfalfa, the followings were found:flower was symmetric on both sides, as typical21-organs. Its morphological characteristics were similar to other Butterfly subfamily, with the appearing of differentiation of primary inflorescence meristem and secondary inflorescence meristem, secondary inflorescence meristem then developed into floral meristem and flower meristem developed into other organs, which also has four divisions of common primordia in the development. It was divided into8stages by the different characteristics development. it was of great significance for the study of male sterile, precise selection of anther culture of flower bud,and the molecular biology mechanism of alfalfa.(5) It was found that anther culture callus induction worked the best after15-28d of alfalfa budding. The best medium for the callus differentiation was modified Blaydes medium, that was adding inositol100mg·L-1, casein hydrolysis200mg·L-1,2-IP0.5mg·L-1, NAA0.2mg·L-1and KT1.0mg·L-1to Blaydes medium, in which condition, callus differentiation was more efficient. The induction effect of1/2B5medium was better than1/2MS. Flow Cytometry was used to Detected the regenerated plants, then,it was found that plants from anther culture had a more complicated ploidy, mixoploid and aneuploid may appear. This research had a great significance to haploid and doubled haploid breeding of alfalfa.
引文
[1]Hart R H, Pearce R B, Chatterton N J, Carlson G E, Barnes D K, Hanson C H. Alfalfa yield,specific leaf weight,CO2 exchange rate and morphology[J].Crop Science.1978,18(4): 649-653.
    [2]Lamb J A F S, Sheaffer C C, Samac D A. Population density and harvest maturity effects on leaf and stem yield in alfalfa[J]. Agronomy journal,2003,95(3):635-641.
    [3]Smith J G, Mott G O, Bula R J. Ecological parameters of an alfalfa community under fields conditions. Crop Science,1964,4:577-580.
    [4]Bauder W W.Inheritence of odd-leaf character in Medicago sp.M.S.thesis[J].University Nebraska.1938.
    [5]辽宁省畜牧兽医研究所畜牧研究室饲料组.多叶苜蓿选育初报[J].辽宁畜牧兽医,1973,04:9-11.
    [6]曹致中.优质苜蓿栽培与利用.北京:中国农业出版社.2002
    [7]Juan N A, Sheaffer C C, Barnes D K. Temperature and photoperiod effects on multifoliolate expression and morphology of alfalfa[J]. Crop science,1993,33(3):573-578.
    [8]Mokeyeva E V.Biological-anatonomical studies of alfalfa. State publishing House of Agricultural Literature.Uzbek S S R,Tashkent(English translation).1940.
    [9]Bingham E T. A genetical and morphological investigation of multifoliolate leaves of alfalfa, Medicago sativa L. Ph.D. Thesis, Cornell University,1964.
    [10]Etzel M G, Volenec J J, Vorst J J. Leaf morphology, shoot growth, and gas exchange of multifoliolate alfalfa phenotypes[J]. Crop science,1988,28(2):263-269.
    [11]Volenec J J, Cherney J H. Yield components, morphology, and forage quality of multifoliolate alfalfa phenotypes[J]. Crop science,1990,30(6):1234-1238.
    [12]武自念,魏臻武,赵艳,刘高军,甘欣,雷艳芳,黎明.多叶苜蓿自交一代遗传关系的SSR分析[J].中国草地学报,2010,(06):27-33.
    [13]Bingham E T. Morphology and Petiole Vasculature of Five Heritable Leaf Forms in Medicago sativa L[J].Botanical Gazette,1966:221-225.
    [14]Bingham E T, Murphy R P. Breeding and morphological Studies on multifoliolate selections of mlfalfa, Medicago sativa L[J]. Crop Science,1965,5(3):233-235.
    [15]崔璐.多叶苜蓿自交结实率的测定(初报)[J].辽宁畜牧兽医,1980,03:1-4.
    [16]Petkova D, Panayotova G. Comparative Study of Trifoliolate and Multifoliolate Alfalfa (Medicago sativa L.) Synthetic Populations[J]. Bulgarian Journal of Agricultural Science,2007, 13(2):221.
    [17]王雯玥,韩清芳,宗毓铮,贾志宽,聂俊峰,闵安成,马晓丽.多叶型和三叶型紫花苜蓿产量与相关性状的回归分析[J].中国农业科学,2010,(14):3044-3050.
    [18]Fick G W, Holt D A, Lugg D G. Environmental physiology and crop growth[J]. Alfalfa and alfalfa improvement,1988:163-194.
    [19]Hesterman O B, Teuber L R. Effect of photoperiod and irradiance on fall dormancy of alfalfa[J]. Agronomy Abstract, American Society of Agronomy, Madison, USA,1981:87.
    [20]Sato K. Growth and development of alfalfa plant under controlled environment. III. The effects of photoperiod and temperature on the growth and anatomical features of photosynthetic tissues[C]//Proc. Crop Sci. Soc. Jap.1974,43:59-67.
    [21]Faix J J. The effect of temperature and daylength on the quality of morphological components of three legumes[M]. Cornell University,1974.
    [22]Bula R J. Morphological characteristics of alfalfa plants grown at several temperatures[J]. Crop Science,1972,12(5):683-686.
    [23]Schonhorst M H, Dobrenz A K, Thompson R K, Brick M. Registration of AZMFA-1 Non-Dormant Multifoliolate Alfalfa Germplasml (Reg. No. GP102)[J]. Crop Science,1979, 19(5):750-750.
    [24]Ferguson J E, Murphy R P. Comparison of trifoliolate and multifoliolate phenotypes of alfalfa (Medicago sativa L.)[J]. Crop Science,1973,13(4):463-465.
    [25]吴佳,韩清芳,牛山,贾志宽.苜蓿多叶性状与施肥水平关系的初步研究[J].西北林学院学报,2008,23(4):117-120.
    [26]Brick M A, Dobrenz A K, Schonhorst M H. Transmittance of the multifoliolate leaf characteristic into non-dormant alfalfa[J]. Agronomy Journal,1976,68(1):134-136.
    [27]Bingham E T. Registration of alfalfa inbred parental line MAG7[J]. Crop science,1993, 33(6):1427.
    [28]于林清,何茂泰,王照兰,张伟.多叶型苜蓿材料的稳定性及其农艺性状[J].中国草地,1998,03:6-8.
    [29]李潮流.多叶型苜蓿生产性能、抗逆性及遗传特性的研究[D].兰州:甘肃农业大学,2004.
    [30]吕林有,魏臻武,赵艳,耿小丽,刘高军,武自念.苜蓿自交亲和性、授粉方式及后代性状分离的研究[J].草业科学,2009,(04):33-36.
    [31]甘欣,魏臻武,武自念,杨云,赵艳.多叶苜蓿自交S_1代的胚挽救培养[J].草业科学,2011,(02):226-230.
    [32]杨红善,常根柱,包文生,柴小琴,周学辉.紫花苜蓿航天诱变田间形态学变异研究[J].草业学报,2012,222:228.
    [33]Liang G H L, Riedl W A. Agronomic traits influencing forage and seed yield in alfalfa[J]. Crop science,1964,4(4):394-396.
    [34]Frakes R V, Davis R L, Patterson F L. The breeding behavior of yield and related variables in alfalfa. II. Associations between characters[J]. Crop Science,1961,1(3):207-209.
    [35]朱玉铎.多叶紫花苜蓿的选育目标和方法[J].黑龙江畜牧兽医,1987,09:10-12.
    [36]毛培春,孟林,张国芳,李潮流.北京地区多叶型苜蓿生产性能的研究[J].草业科学,2006,23(7):19-22.
    [37]王志明,岳民勤,杜文华,虎凌云,郎小红.岷县高寒牧区多年生豆科牧草引种试验初报[J].草业科学,2005,22(3):40-42.
    [38]刘艺杉,刘自学,苏爱莲,李晓光.北京地区不同秋眠级苜蓿品种适应性评价[J].草业科学,2008,25(2):60-63.
    [39]海涛,齐军,王桂艳.4个多叶紫花苜蓿品种在黑龙江省西部的试验初报[J].黑龙江畜牧兽医,2009,(03):62-63.
    [40]杜亚欣,马立新,周彤.吉林省西部地区多叶紫花苜蓿引种试验报告[J].科协论坛(下半月),2010,(01):71.
    [41]Lees G L.Cutide and cell wall thickness:relation to mechanical strength of whole leaves and isolates cells from some forage iegumes[J]. Crop Science,1984,24:1077-1081.
    [42]Petkova D and Panayotova G. Comparative study of trifoliolate and Multifoliolate alfalfa(Medicago sativa L.) synthetic populations[J]. Bulgarian Journal of Agricultural Science, 2007,13:221-224.
    [43]Chatterton N J. Photosynthesis of 22 alfalfa populations differing in resistance to diseases, insect pests, and nematodes[J]. Crop Science,1976,16(6):833-834.
    [44]Delaney R H, Dobrenz A K. Morphological and anatomical features of alfalfa leaves as related to CO2 exchange[J]. Crop Science,1974,14(3):444-447.
    [45]王雯玥.多叶型紫花苜蓿生产性能与光合特性及品质的研究[D].杨凌:西北农林科技大学,2010.
    [46]Jurgens G, Mayer U, Berleth T, Misera S. Genetic analysis of pattern formation in the Arabidopsis embryo[J]. Development,1991,113(Supplement 1):27-38.
    [47]Bharathan G,Goliber T E, Moore C, Kessler S, Pham T, Sinha N R. Homologies in leaf form inferred from KNOXI gene expression during development[J]. Science, 2002,296(5574):1858-1860.
    [48]Hagemann W, Gleissberg S. Organogenetic capacity of leaves:the significance of marginal blastozones in angiosperms [J]. Plant Systematics and Evolution,1996,199(3-4):121-152.
    [49]Shani E, Ben-Gera H, Shleizer-Burko S, Burko Y, Weiss D, Ori N. Cytokinin regulates compound leaf development in tomato[J]. The Plant Cell Online,2010,22(10):3206-3217.
    [50]Bowman J L, Eshed Y. Formation and maintenance of the shoot apical meristem [J]. Trends in plant science,2000,5(3):110-115.
    [51]Efroni I, Eshed Y, Lifschitz E. Morphogenesis of simple and compound leaves:a critical review[J]. The Plant Cell,2010,22(4):1019-1032.
    [52]Hofer J M I, and Ellis T H N. The genetic control of patterning in pea leaves. Trends Plant science.1998,3:439-444.
    [53]罗江虹.百脉根复叶发育分子机制的初步研究[D].上海:中国科学院研究生院(上海生命科学研究院),2003.
    [54]Gourlay C W, Hofer J M I, Ellis T H N. Pea compound leaf architecture is regulated by interactions among the genes UNIFOLIATA, COCHLEATA, AFILA, and TENDRIL-LESS[J]. The Plant Cell Online,2000,12(8):1279-1294.
    [55]陈江华.百脉根侧生器官边界形成分子机制的初步研究[D].上海:中国科学院研究生院(上海生命科学研究院),2006.
    [56]Wang H, Chen J, Wen J, Tadege M, Li G, Liu Y, Mysore K S, Ratet P,Chen R.Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula[J].Plant physiology,2008,146(4):1759-1772.
    [57]Chen J, Yu J, Ge L, Wang H, Berbel A, Liu Y, Chen Y, Li G, Tadege M, Wen J, Cosson V, Mysore K S, Ratet P, Madueno F, Bai G, Chen R. Control of dissected leaf morphology by a Cys (2) His (2) zinc finger transcription factor in the model legume Medicago truncatula[J]. Proceedings of the National Academy of Sciences,2010,107(23):10754-10759.
    [58]Peng J, Yu J, Wang H, Guo Y, Li G, Bai G, Chen R.Regulation of compound leaf development in Medicago truncatula by fused compound leaf, a class M KNOX gene[J]. The Plant Cell Online,2011,23(11):3929-3943.
    [59]Long J A, Moan E I, Medford J I, Barton M K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis[J]. Nature,1996,379(6560): 66-69.
    [60]Parnis A, Cohen O, Gutfinger T, Hareven D, Zamir D, Lifschitz E.The dominant developmental mutants of tomato, Mouse-ear and Curl, are associated with distinct modes of abnormal transcriptional regulation of a Knotted gene[J]. The Plant Cell Online,1997,9(12): 2143-2158.
    [61]Hay A, Barkoulas M, Tsiantis M. ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis[J]. Development,2006,133(20):3955-3961.
    [62]Champagne C E M, Goliber T E, Wojciechowski M F, Meia R W, Townsleya B T, K Wangc K, Pazc M M, Geetad R, Sinhaa N R.. Compound leaf development and evolution in the legumes[J]. The Plant Cell Online,2007,19(11):3369-3378.
    [63]Hofer J, Gourlay C, Michael A, Ellis THN. Expression of a class 1 knotted1-like homeobox gene is down-regulated in pea compound leaf primordia[J]. Plant molecular biology,2001,45(4): 387-398.
    [64]Gourlay C W, Hofer J M I, Ellis T H N. Pea compound leaf architecture is regulated by interactions among the genes UNIFOLIATA, COCHLEATA, AFILA, and TENDRIL-LESS[J]. The Plant Cell Online,2000,12(8):1279-1294.
    [65]Sorina P, Oana-Maria I B. The six KNOX genes identification on tetraploid Medicago sativa, based on the model plant resources[J]. Romanian Biotechnol Lett,2010,15:32-40.
    [66]冯献忠.豆科花型发育的分子机理[D].上海:中国科学院研究生院(上海生命科学研究院),2002.
    [67]Tucker S C. Floral Development in Legumes[M]. Plant Physiology,2003,131(3):911-926.
    [68]Tucker S C. Unidirectional organ initiation in leguminous flowers [J]. American Journal of Botany,1984,71(8):1139-1148.
    [69]Tucker S C. Overlapping organ initiation and common primordia in flowers of Pisum sativum (Leguminosae:Papilionoideae)[J]. American Journal of Botany,1989,76(5):714-729.
    [70]Ferrandiz C,Navarro C,Gomez M D, Canas L A, Beltran J P. Flower development in Pisum sativum, from the war of the whorls to the battle of the common primordia[J]. The Journal of Genetics and Development,1999,25(3):280-290.
    [71]Benlloch R,Navarro C,Beltran J, Canas L A. Floral development of the model legume Medicago truncatula:ontogeny studies as a tool to better characterize homeotic mutations[J]. Sexual Plant Reproduction,2003,15(5):231-241.
    [72]董志诚.百脉根花模式建成分子机制的初步研究[D].上海:中国科学院研究生院(上海生命科学研究院),2003.
    [73]Irish V F. The flowering of Arabidopsis flower development[J]. The Plant Journal,2010, 61(6):1014-1028.
    [74]Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H. Genetic control of flower development by homeotic genes in Antirrhinum majus[J]. Science,1990,250(4983):931-936.
    [75]Langlet O F J. Beitrage zur zytologie der Ranunculazeen[J]. Svensk. Bot. Tidskr,1927, 21(1):1-17.
    [76]Matsuura H, Suto T. Contributions to the idiogram study in phanerogamous plants I[J]. Journal of the Faculty of Science, Hokkaido Imperial University. Ser.5, Botany,1935,5(1): 33-75.
    [77]Kasha K J, Maluszynsky M. Production of doubled haploids in crop plants. An introduction. In:Maluszynsky M, Kasha K J, Forster B P, Szaejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer/FAO-IAEA, Dordrecht/Vienna.2003:1-4.
    [78]Bolton J L, Greenshields J E R. A diploid form of Medicago sativa L[J]. American Association for the Advancement of Science. Science,1950,112:275-77.
    [79]Lesins K. Cytogenetic study on a tetraploid plant at the diploid chromosome level[J]. Canadian Journal of Botany,1957,35(2):181-196.
    [80]Sriwatanapongse S, Wilsie C P. Intra-and Intervariety Crosses of Medicago sativa L. and Medicago falcata L[J]. Crop Science,1968,8(4):465-466.
    [81]Bingham E T. Haploids of cultivated alfalfa (Medicago sativa)[J]. Nature,1969,22: 865-866.
    [82]Bingham E T. Isolation of Haploids of tetraploid alfalfa[J]. Crop Science,1971,11: 433-435.
    [83]Saunders J W, Bingham E T. Production of Alfalfa Plants from Callus Tissue[J]. Crop Science,1972,12(6):804-808.
    [84]徐速.苜蓿花粉植株的诱导[J].科学通报,1981,12:756-758.
    [85]Zagorska N, Dimitrov B. Induced androgenesis in alfalfa (Medicago sativa L.)[J]. Plant Cell Reports,1995,14(4):249-252.
    [86]Ravi M, Chan S W L. Haploid plants produced by centromere-mediated genome elimination[J]. Nature,2010,464(7288):615-618.
    [87]Seymour D K, Filiault D L, Henry I M, Monson-Miller J, Ravi M, Pang A, Comai L, ChanS W L, Maloofa J N.Rapid creation of Arabidopsis doubled haploid lines for quantitative trait locus mapping[J]. Proceedings of the National Academy of Sciences,2012,109(11):4227-4232.
    [88]洪绂曾,卢欣石,高洪文.苜蓿科学[M].北京:中国农业出版社,2009,186-215.
    [89]Bingham E T. Registration of Alfalfa Germplasm from CultivatedxWild Hybrids1 (Reg. Nos. GP 47 to GP 50)[J]. Crop Science,1975,15(6):889-889.
    [90]Barcaccia G, Albertini E, Lucchin M, Veronesi F. Progress in assembling a functional system of apomictic seed production in alfalfa[C]//Herbage Seed as a Key Factor for Improving Production and Environmental Quality. Proc 4th Int. Herbage Seed Conf, Perugia, Italy.1999: 198-202.
    [91]Pfeiffer T W, Bingham E T. Improvement of fertility and herbage yield by selection within two-allele populations of tetraploid alfalfa[J]. Crop science,1983,23(4):633-636.
    [92]Bingham E T. Backcrossing tetraploidy into diploid Medicago falcata L. using 2n eggs[J]. Crop science,1990,30(6):1353-1354.
    [93]McCoy T J, Rowe D E. Single cross alfalfa(Medicago sativa L.) hybrids produced via 2n gametes and somatic chromosome doubling:experimental and theoretical comparisons[J]. Theoretical and Applied Genetics,1986,72(1):80-83.
    [94]Bingham E T. Registration of WISFAL Alfalfa(Medicago sativa) subsp. falcata) Tetraploid Germplasm Derived from Diploids[J]. Crop science,1993,33(1):217-218.
    [95]Tulecke W R.A tissue derived from the pollen of Ginkgo biloba[J]. Science (New York, NY),1953,117(3048):599.
    [96]Yamada T, T Shoji Y Sinoto.. Formation of calli and free cells in the tissue culture of Tradescantia reflexa[M]. Botanical magazine, Tokyo,1963, (76):332-339.
    [97]Guha S, Maheshwari S C. In vitro production of embryos from anthers of Datura[J]. Nature, 1964,204:497.
    [98]Bourgin J P, Nitsch J P.Obtention de Nicotin haploides a partir d'etamines cultivees in vitro[J]. Ann. Physiol. Veg.,1967(9):377-382.
    [99]Niizeki H. Induction of haploid plant from anther culture[J]. Jap. Agr. Res. Quart,1968,3: 41-45.
    [100]Dunwell J M. Pollen, ovule and embryo culture,as tools in plant breeding. In:Withers L A, Alderson P G (eds) Plant tissue culture and its agricultural applications[M]. Butter worths, London,1986:375-404.
    [101]Hu H, Yang HY.Haploids in higher plants in vitro[M].China Academic Publishers/Springer, Beijing/Berlin,1986.
    [102]Forster B P, Heberle-Bors E, Kasha K J, Touraev A. The resurgence of haploids in higher plants[J]. Trends in plant science,2007,12(8):368-375.
    [103]Sangwan-Norreel BS, Sangwan R S, Pare J. Haploidie et embryogene'se provoque'e in vitro. Bull Society of Botany Fr133. Actual Bot,1986,4:7-39
    [104]Bajaj Y P S. In vitro production of haploids and their use in cell genetics and plant breeding. In:Biotechnology in agriculture and forestry, part I. Haploids in crop improvement[M]. Springer, Berlin,1990(12):1-44.
    [105]Germana M A. Doubled haploid production in fruit crops[J]. Plant Cell, Tissue and Organ Culture,2006,86(2):131-146.
    [106]Germana M A.Haploid and doubled haploids in fruit trees.In:Touraev A, Forster B, Jain M (eds) Advances in haploid production in higher plants [M]. Springer, Heidelberg, 2009:241-263.
    [107]郭景文,曹致中,师尚礼,刘彩萍.四种豆科牧草花药和组织培养的研究[J].甘肃农业大学学报,1990,25(2):131-137.
    [108]郭景文.四种豆科牧草花药及组织培养研究的总结[J].青海草业,1998,7(02):9-13.
    [109]黄远新,玉永雄,胡艳.南方紫花苜蓿不同外植体离体培养的研究[J].中国草地,2003,25(3):42-47.
    [110]吴丽芳,毕玉芬,奎嘉祥.紫花苜蓿花药愈伤组织和幼苗诱导技术的研究[J].中国草地,2005,27(6):28-33.
    [111]马菊兰,张博.低温预处理和低温预培养对苜蓿新品系花药愈伤组织诱导的影响[J].中国草地学报,2007,29(6):59-63.
    [112]马菊兰,张博.培养基,蔗糖和激素对苜蓿花药愈伤组织诱导的影响[J].新疆农业科学,2007,44(6):839-844.
    [113]耿小丽,魏臻武,程鹏武,刘欢.苜蓿花药培养及倍性鉴定[J].草原与草坪,2008,130(5):1-5.
    [114]李增红,张博,陈爱萍,罗玉鹏.不同培养基对苜蓿花药愈伤组织继代和分化的影响[J].新疆农业科学,2008,45(5):950-955.
    [115]耿小丽,魏臻武,姚喜红,赵艳.苜蓿花药培养再生植株染色体倍性检测研究[J].草地学报,2010,18(05):714-718.
    [116]耿小丽,魏臻武,姚喜红.采用流式细胞仪鉴定紫花苜蓿花药愈伤组织的变异[J].草业学报,2011,20(3):156-161.
    [117]姚喜红,魏臻武,耿小丽.苜蓿花药悬浮培养体系的建立及其影响因素[J].草地学报,2010,18(3):358-364.
    [118]魏臻武,武自念,耿小丽,姚喜红,甘欣.苜蓿花药的细胞悬浮培养[A].中国畜牧业协会(China Animal Agriculture Association)第四届(2011)中国苜蓿发展大会论文集[C].中国畜牧业协会(China Animal Agriculture Association):,2011:5.
    [119]姚喜红,魏臻武,耿小丽,杨思维.苜蓿花药悬浮培养体系的建立[J].草原与草坪,2011,(02):53-56.
    [120]姚喜红.苜蓿花药悬浮培养体系的建立及其倍性鉴定的研究[D].兰州:甘肃农业大学,2010.
    [121]高霞,石凤翎,伊风艳,张宇.苜蓿雄性不育系花药愈伤形成及分化培养条件的研究[J].中国草地学报,2012,34(2):41-46.
    [122]Zagorska N, Abadjieva M, Georgiev C, Georgieva R. Morphogenesis and plant differentiation in anther culture of the genus Ly-copersicon Mill.,1982:539-540. In:A. Fujiwara (ed.) [M]. Plant Tissue and Cell Culture. Maruzen,Tokyo.
    [123]Chen T H H, Marowitch J, Thompson B G. Genotypic effects on somatic embryognesis and plant regeneration from callus cultures of alfalfa[J]. Plant cell, tissue and organ culture,1987, 8(1):73-81.
    [124]Zagorska N, Dimitrov B, Gadeva P, Robeva P. Regeneration and characterization of plants obtained from anther cultures in Medicago sativa L[J]. In Vitro Cellular & Developmental Biology-Plant,1997,33(2):107-110.
    [125]Sunderland N, Dunwell J M. Anther and pollen culture. In:Street HE (ed) Plant tissue and cell culture[M]. Oxford, Blackwell,1977:223-265.
    [126]Heberle-Bors E. In vitro haploid formation from pollen:a critical review[J]. Theoretical and Applied Genetics,1985,71(3):361-374.
    [127]Heberle-Bors E. Isolated pollen culture in tobacco:plant reproductive development in a nutshell[J]. Sexual Plant Reproduction,1989,2(1):1-10.
    [128]Heberle-Bors E, Reinert J. Environmental control and evidence for predetermination of pollen embryogenesis in Nicotiana tabacum pollen[J]. Protoplasma,1981,109(3-4):249-255.
    [129]Sunderland N. Anther culture:a progress report[J]. Sci. Progr,1971,59:527-549.
    [130]Dunwell J M. Stimulation of pollen embryo induction in tobacco by pretreatment of excised anthers in a water-saturated atmosphere[J]. Plant Science Letters,1981,21(1):9-13.
    [131]Foroughi-Wehr B, Mix G. In vitro responses of Hordeum vulgare L. anthers cultured from plants grown under different environments. Environ Exp Bot,1976,19:303-309.
    [132]Dunwell J M, Cornish M, De Courcel A G L. Influence of genotype, plant growth temperature and anther incubation temperature on microspore embryo production in Brassica napus ssp. oleifera[J]. Journal of experimental botany,1985,36(4):679-689.
    [133]Keller W A, Armstrong K C, De La Roche A I. The production and utilization of microspore-derived haploids in Brassica crops[J]. Plant cell culture in crop improvement,1983: 169-183.
    [134]Lazar M D, Schaeffer G W, Baenziger P S. Cultivar and cultivar x environment effects on the development of callus and polyhaploid plants from anther cultures of wheat[J]. Theoretical and Applied Genetics,1984,67(2-3):273-277.
    [135]蔡新聲.Effects of nitrogen supply to donor plants on pollen embryogenesis in cultured tobacco anthers [J].中国农业研究,1981,30(1):5-13.
    [136]Shariatpanahi M E, Bal U, Heberle-Bors E, Touraev A. Stresses applied for the reprogramming of plant microspores towards in vitro embryogenesis[J]. Physiologia Plantarum, 2006,127(4):519-534.
    [137]Dunwell J M, Cornish M, De Courcel A G L, Middlefell-Williams J E. Induction and growth of'microspore-derived'embryos of Brassica napus ssp. oleifera[J]. Journal of experimental botany,1983,34(12):1768-1778.
    [138]Osolnik B, Bohanec B, Jelaska S. Stimulation of androgenesis in white cabbage(Brassica oleracea var. capitata) anthers by low temperature and anther dissection[J]. Plant cell, tissue and organ culture,1993,32(2):241-246.
    [139]Powell W. The influence of genotype and temperature pre-treatment on anther culture response in barley(Hordeum vulgare L.)[J]. Plant cell, tissue and organ culture,1988,12(3): 291-297.
    [140]Kyo M, Harada H. Control of the developmental pathway of tobacco pollen in vitro [J]. Planta,1986,168(4):427-432.
    [141]Touraev A, Indrianto A, Wratschko I, Vicente O. Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature [J]. Sexual Plant Reproduction,1996,9(4):209-215.
    [142]Touraev A, Vicente O, Heberle-Bors E. Initiation of microspore embryogenesis by stress[J]. Trends in Plant Science,1997,2(8):297-302.
    [143]Aldemita R R. Anther culture of rice:effects of radiation and media components on callus induction and plant regeneration[J]. Los Banos, Laguna, Philippines,1988,166:1.
    [144]Vagera J, Novotny J, Ohnoutkova L. Induced androgenesis in vitro in mutated populations of barley, Hordeum vulgare[J]. Plant cell, tissue and organ culture,2004,77(1):55-61.
    [145]Kopecky D, Vagera J. The use of mutagens to increase the efficiency of the androgenic progeny production in Solanum nigrum[J]. Biologia plantarum,2005,49(2):181-186.
    [146]LEV AN A. A haploid sugar beet after colchicine treatment[J]. Hereditas,1945,31(3-4): 399-410.
    [147]Sanders M E, Franzke C J. Somatic reduction of tetraploid sorghum to diploid mutants following colchicine treatment[J].1962.696-698.
    [148]Simantel G M, Ross J G. Colchicine-induced somatic chromosome reduction in Sorghum IV. An Induced Haploid Mutant[J]. Journal of Heredity,1964,55(1):3-5.
    [149]Mollers C, Iqbal M C M, Robbelen G. Efficient production of doubled haploid Brassica napus plants by colchicine treatment of microspores[J]. Euphytica,1994,75(1-2):95-104.
    [150]Barnabas B, Pfahler P L, Kovacs G. Direct effect of colchicine on the microspore embryogenesis to produce dihaploid plants in wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics,1991,81(5):675-678.
    [151]Alemanno L, Guiderdoni E. Increased doubled haploid plant regeneration from rice (Oryza sativa L.) anthers cultured on colchicine-supplemented media[J]. Plant Cell Reports,1994,13(8): 432-436.
    [152]Sopory S, Munshi M. Anther culture. In:Mohan JM et al (eds) In vitro haploid production in higher plants[M], vol 1. Kluwer, Dordrecht,1996:145-176.
    [153]谷文英,祈新梅,蒋晓云,魏臻武,高洪文.离心对蒺藜苜蓿花药愈伤组织生长和分化的影响[J].中国农学通报,2011,27(18):148-152.
    [154]Grewal R K, Lulsdorf M, Croser J, Ochatt S, Vandenberg A, Warkentin T D. Doubled-haploid production in chickpea (Cicer arietinum L.):role of stress treatments. Plant cell reports,2009,28(8):1289-1299.
    [155]Reynolds T L. Pollen embryogenesis[J]. Plant molecular biology,1997,33(1):1-10.
    [156]Nitsch C. Culture of isolate microspore. In:Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue and organ culture[M]. Springer, Berlin,1977,268-278.
    [157]Maluszynski M. Doubled haploid production in crop plants:a manual[M]. Kluwer Academic Pub,2003 a.
    [158]Maluszynski M, Kasha K J, Forster B P, Szarejko I (eds) Doubled haploid production in crop plants:a manual[M]. Kluwer, Dordrecht,2003a.
    [159]Maluszynski M, Kasha K J, Szarejko I Published double haploid protocols in plant species. In:Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Haploid production in crop plants:amanual[M]. Kluwer, Dordrecht,2003b:309-335.
    [160]Cistue'L, Valles M P, Echavarri B, Sanz J M, Castillo A M. Barley anther culture. In: Maluszynsky M, Kasha K J, Forster B P, Szaejko I (eds) Doubled haploid production in crop plants[M]. A manual. Kluwer/FAO-IAEA, Dordrecht/Vienna,2003:29-34.
    [161]Jacquard C, Wojnarowiez G, Cle'ment C. Anther culture in barley. In:Maluszynsky M, Kasha K J, Forster B P, Szaejko I (eds) Doubled haploid production in crop plants:A manual[M]. Kluwer/FAO-IAEA, Dordrecht/Vienna,2003:21-27.
    [162]Reinert J, Bajaj YPS. Anther culture:haploid production and its significance. In:Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue and organ culture. Springer, Berlin,1977:251-267.
    [163]Bhojwani S S, Razdan M K. Plant tissue culture:theory and practice[M]. Elsevier science, 1986.
    [164]耿小丽.苜蓿单倍体-纯合四倍体的诱导及愈伤组织DNA含量变异的研究[D].兰州:甘肃农业大学,2010.
    [165]Palmer C E, Keller W A, Kasha K J. Haploids in Crop Improvement Ⅱ [M]. Springer, 2005.
    [166]Chu C. The N6 medium and its applications to anther culture of cereal crops. In:Proc Symp Plant Tissue Culture[J]. Science Press, Peking,1978:43-50.
    [167]Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiologia plantarum,1962,15(3):473-497.
    [168]Nitsch J P. Nitsch C. Haploid plants from pollen grains[J]. Science,1969,163(3862): 85-87.
    [169]Gamborg O L, Miller R A, Ojima K. Nutrient requirements of suspension cultures of soybean root cells[J]. Experimental cell research,1968,50(1):151-158.
    [170]Keller W A, Rajhathy T, Lacapra J. In vitro production of plants from pollen in Brassica campestris[J]. Canadian Journal of Genetics and Cytology,1975,17(4):655-666.
    [171]Wedzony M, Forster B P, Zur I, Golemiec E, Szechynska-Hebda M, Dubas, Gotebiowska G. Progress in doubled haploid technology in higher plants. In:Touraev A, Forster B P, Jain S M (eds) Advances in haploid production in higher plants[M]. Springer, Berlin,2009:1-34.
    [172]Raquin C. Utilization of different sugars as carbon source for in vitro anther culture of Petunia[J]. Zeitschrift fuer Pflanzenphysiologie,1983,111.
    [173]Germana M A, Chiancone B. Improvement of the anther culture protocol in Citrus clementina Hort. ex Tan[J]. Plant Cell Rep,2003,22:181-187.
    [174]马菊兰.苜蓿花药培养预处理方法和培养基的研究[D].乌鲁木齐:新疆农业大学,2007.
    [175]Maheshwari S C, Rashid A, Tyagi A K. Haploids from pollen grains--retrospect and prospect[J]. American Journal of Botany,1982:865-879.
    [176]Ball S T, Zhou H P, Konzak C F. Influence of 2,4-D, IAA, and duration of callus induction in anther cultures of spring wheat[J]. Plant Science,1993,90(2):195-200.
    [177]Armstrong T A, Metz S G, Mascia P N. Two regeneration systems for the production of haploid plants from wheat anther culture[J]. Plant Science,1987,51(2):231-237.
    [178]Liang G H, Xu A, Tang H. Direct generation of wheat haploids via anther culture[J]. Crop science,1987,27(2):336-339.
    [179]Vasil I K.Androgenic haploids. Int Rev Cytol Suppl 11A.1980:195-223.
    [180]Achar P N. A study of factors affecting embryo yields from anther culture of cabbage[J]. Plant cell, tissue and organ culture,2002,69(2):183-188.
    [181]Broughton S. Ovary co-culture improves embryo and green plant production in anther culture of Australian spring wheat (Triticum aestivum L.)[J]. Plant cell, tissue and organ culture, 2008,95(2):185-195.
    [182]Letarte J, Simion E, Miner M, Kasha K J. Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture[J]. Plant cell reports, 2006,24(12):691-698.
    [183]Stuart D A, Strickland S G, Walker K A. Bioreactor production of alfalfa somatic embryos[J]. Hortscience,1987,22:800-809.
    [184]Dunwell J M. Haploids in flowering plants:origins and exploitation[J]. Plant biotechnology journal,2010,8(4):377-424.
    [185]Vasil I K.Plants:haploid tissue cultures. In:Kruse P F Jr, Patterson M K Jr (eds) Tissue cultures methods and application. Academic Press, New York,1973:157-161.
    [186]Dunwell J M. Anther culture in Nicotiana tabacum:the role of the culture vessel atmosphere in pollen embryo induction and growth[J]. Journal of Experimental Botany,1979, 30(3):419-428.
    [187]Misoo S, Yokota F, Matsubayashi M. Effects of inoculation-ways of anthers on the pollen mitosis and plantlet formation in tobacco anther culture[J]. Rep Soc Crop Sci Breed, Kinki,1981, 26:44-48.
    [188]Sopory S K, Maheshwari S C. Development of pollen embryoids in anther cultures of Datura innoxia I. General observations and effects of physical factors[J]. Journal of Experimental Botany,1976,27(1):49-57.
    [189]Yang H Y, Zhou C. Experimental research on the two pathways of pollen development in Oryza sativa L[J]. Act. Bot. Sin,1979,21:345-351.
    [190]Shannon P R M, Nicholson A E, Dunwell J M, Davies D R. Effect of anther orientation on microspore-callus production in barley (Hordeum vulgare L.)[J]. Plant cell, tissue and organ culture,1985,4(3):271-280.
    [191]Hosp J, de Maraschin S F, Touraev A, Boutilier K. Functional genomics of microspore
    [192]Segui-Simarro J M, Nuez F. How microspores transform into haploid embryos:changes associated with embryogenesis induction and microspore-derived embryogenesis [J]. Physiologia plantarum,2008,134(1):1-12.
    [193]Huang B. Genetic manipulation of microspores and microspore-derived embryos[J]. In Vitro-Plant,1992,28(2):53-58.
    [194]Hoekstra S, Zijderveld M H, Louwerse J D, Heidekamp F, Mark F. Anther and microspore culture of Hordeum vulgare L. cv. Igri[J]. Plant Science,1992,86(1):89-96.
    [195]Maraschin S F, Lamers G E M, de Pater B S, Spaink H P, Wang M.14-3-3 isoforms and pattern formation during barley microspore embryogenesis[J]. Journal of experimental botany,2003,54(384):1033-1043.
    [196]Touraev A, Pfosser M, Heberle-Bors E. The microspore:a haploid multipurpose cell[J]. Advances in botanical research,2001,35:53-109.
    [197]Zaki M, Dickinson H. Modification of cell development in vitro:the effect of colchicine on anther and isolated microspore culture in Brassica napus[J]. Plant Cell, Tissue and Organ Culture,1995,40(3):255-270.
    [198]Obert B, Barnabas B. Colchicine induced embryogenesis in maize [J]. Plant cell, tissue and organ culture,2004,77(3):283-285.
    [199]Smykal P. Pollen embryogenesis-the stress mediated switch from gametophytic to sporophytic development. Current status and future prospects [J]. Biologia Plantarum,2000, 43(4):481-489.
    [200]Raghavan V. Molecular embryology of flowering plants[M]. Cambridge University Press, 1997.
    [201]Tupy J. Manipulation of division symmetry and developmental fate in cultures of potato microspores[J]. Plant cell, tissue and organ culture,1999,59(2):135-145.
    [202]Hause B, Veenendaal W L H, Hause G, Lammeren A V. Expression of polarity during early development of microspore-derived and zygotic embryos of Brassica napus L. cv. Topas[J]. Botanica Acta,1994.
    [203]Dpoolezel J, Binarova P, Lcretti S. Analysis of nuclear DNA content in plant cells by flow cytometry[J]. Biologia Plantarum,1989,31(2):113-120.
    [204]Ochatt S J. Flow cytometry (ploidy determination, cell cycle analysis, DNA content per nucleus)[J]. Medicago truncatula handbook,2006.
    [205]Sangwan-Norreel B S. Male gametophyte nuclear DNA content evolution during androgenic induction in Datura innoxia Mill[J]. Zeitschrift fur Pflanzenphysiologie,1983, 111(1):47-54.
    [206]Bouvier L, Guerif P H, Djulbic M, Durel C E, Chevreau E, Lespinasse Y. Chromosome doubling of pear haploid plants and homozygosity assessment using isozyme and microsatellite markers[J]. Euphytica,2002,123(2):255-262.
    [207]Hofer M, Grafe C. Preliminary evaluation of doubled haploid-material in apple[C]//Eucarpia symposium on Fruit Breeding and Genetics 538.1999:587-592.
    [208]徐振南,万蜀渊.草莓花药培养技术的改进及再生植株的同工酶分析[A].中国科学技术协会第二届青年学术年会园艺学论文集[C],1995.
    [209]郭丽娟,陶自荣.离体培养的玉米花药及花粉植株后代过氧化物酶同工酶的分析[J].遗传,1981,5:008.
    [210]姚焱,卢永根,刘向东,冯九焕,张桂权.SSR标记鉴定栽培稻杂种F1花粉愈伤组织基因型的偏态分离[J].中国农业科学,2003,36(12):1427-1431.
    [211]Martin B, Widholm J M. Ploidy of small individual embryo-like structures from maize anther cultures treated with chromosome doubling agents and calli derived from them[J]. Plant Cell Reports,1996,15(10):781-785.
    [212]Skrzypek E, Czyczylo-Mysza I, Marcinska I, Wedzony M. Prospects of androgenetic induction in Lupinus spp[J]. Plant Cell, Tissue and Organ Culture,2008,94(2):131-137.
    [213]徐斌,杨秀春,白可喻,陈仲新,覃志豪,邱建军.中国苜蓿综合气候区划研究[J].草地学报,2007,15(4):316-321,324.
    [214]吴仁润,余礼乐,吴越.武汉地区苜蓿栽培试验初步总结报告[J].华中农业科学,1956,4:208-217.
    [215]姚爱兴,梁祖择,王槐三.淮阴苜蓿主要种质特性研究[J].草业科学[J],1990,7(6):25-29.
    [216]何亚丽,常青,陈鲁勇,许宝刚.上海地区高产优质紫花苜蓿品种的筛选[J].草业科学,2004,21(9):25-32.
    [217]戚志强,傅反生,胡跃高.18个紫花苜蓿育种材料在苏南丘陵区的适应性比较[J].草业科学,2006,23(3):35-38.
    [218]李志华,沈益新,刘信宝,丁立人.几个紫花苜蓿品种在南京地区的生产性能和品质表现[J].中国草地学报,2006,28(1):36-40.
    [219]鲍明道,陈维虎,陈景葳,王亚琴,董路,江峰.江南地区紫花苜蓿品种的适应性研究[J].浙江农业科学,2009,5:1025-1027.
    [220]莫本田,罗天琼谢继石,吴启进.美国紫花苜蓿引种试验[J].贵州农业科学,1996,24(2):6-13.
    [221]罗旭辉,李春燕.应朝阳,林永生.福建中亚热带区紫花苜蓿的引种筛选研究[J].草业科学,2007,24(1):31-35.
    [222]张健,黄勇富,粟剑,王有国,黎远伦,吴晓宏.阿尔冈金紫花苜蓿在三峡库区的适应研究[J].草业科学,2003,6(20):9-11.
    [223]魏臻武,符昕,曹致中,王晓俊,耿小丽,赵艳,朱铁霞.苜蓿生长特性和产草量关系的研究[J].草业学报,2007,(04):1-8.
    [224]魏臻武,武自念,雷艳芳,屠德鹏,甘欣,刘高军,杨云.江淮地区苜蓿的生长特性及生产性能的研究[A].中国畜牧业协会(China Animal Agriculture Association)第四届(2011)中国苜蓿发展大会论文集[C].中国畜牧业协会(China Animal Agriculture Association): 2011:7.
    [225]杨占花,魏臻武,雷艳芳,张丽芳.两类SSR对苜蓿属种质遗传多样性和亲缘关系的比较研究[J].草地学报,2008,(06):559-565.
    [226]屠德鹏.蒺藜苜蓿SSR标记遗传图谱的构建及部分农艺性状的QTL定[D].扬州:扬州大学,2011.
    [227]Brouwer D J, Osborn T C. A molecular marker linkage map of tetraploid alfalfa (Medicago sativa L.)[J]. Theoretical and Applied Genetics,1999,99(7-8):1194-1200.
    [228]魏臻武,符听,耿小丽,赵艳,曹致中,胡自治.苜蓿遗传多样性和亲缘关系的SSR和ISSR分析[J].草地学报,2007,15(2):118-123.
    [229]Cortese L M, Honig J, Miller C, Bonos S A. Genetic diversity of twelve switchgrass populations using molecular and morphological markers[J]. Bioenergy Research,2010,3(3): 262-271.
    [230]徐春波,于林清,王勇,萨仁.中国苜蓿审定登记品种叶形态特征及变异分析[J].草地学报,2007,15(03):243-246,268.
    [231]崔永实,郑丽君,黄文.大豆多叶性状观察[J].中国油料,1997,19(2):10-11.
    [232]王红梅,王俊杰,云锦凤,刘亚玲,高雪芹.二倍体和四倍体野生黄花苜蓿形态特征比较研究[J].草地学报,2009,17(4):464-469.
    [233]McKell C M, Whalley R D, Brown V. Yield, survival, and carbohydrate reserve of hardinggrass in relation to herbage removal[J]. Journal of range management,1966,19(2):86-89.
    [234]Nelson C J, Asay K H, Sleper D A. Mechanisms of canopy development of tall fescue genotypes[J]. Crop science,1977,17(3):449-452.
    [235]Carlson G E, Hart R H, Pearce R B. Overcoming barriers to higher forage yield through breeding for physiological and morphological characteristics [J].INT Grassland Congr. Pron.,1970,11:248-251.
    [236]陈托兄,郝文军,陈小兵,卢欣石.10个紫花苜蓿品种光合特性的比较[J].中国草地学报,2009,31(2):41-45.
    [237]Ge L, Chen J, Chen R. Palmate-like pentafoliatal encodes a novel Cys (2) His (2) zinc finger transcription factor essential for compound leaf morphogenesis in Medicago truncatula[J]. Plant signaling & behavior,2010,5(9):1134-1137.
    [238]Zhou C, Han L,Hou C, Metelli A, Qi L, Tadege M, Mysore K S,Wang Z Y. Developmental analysis of a Medicago truncatula smooth leaf margin1 mutant reveals context-dependent effects on compound leaf development[J]. The Plant Cell Online,2011,23(6), 2106-2124.
    [239]Eckardt N A. Evolution of compound leaf development in legumes:evidence for overlapping roles of KNOX1 and FLO/LFY genes[J]. The Plant Cell Online,2007,19(11): 3315-3316.
    [240]Bharathan G, Sinha N R. The regulation of compound leaf development[J]. Plant Physiology,2001,127(4):1533-1538.
    [241]崔大方,羊海军,赵业彬,李庆艳,陈考科.紫花苜蓿复合体(Medicago sativa complex)叶片形态特征及数量分类研究[J].植物资源与环境学报,2010,(03):1-9.
    [242]邓超宏,崔大方,羊海军,李飞飞,方颖.苜蓿属和胡卢巴属植物的形态特征及数量分类研究[J].植物资源与环境学报,2010,(04):1-11.
    [243]Yaxley J L, Jablonski W, Reid J B. Leaf and Flower Development in Pea (Pisum sativum L.):Mutants cochleata andunifoliata[J]. Annals of Botany,2001,88(2):225-234.
    [244]Marx G A. A suite of mutants that modify pattern formation in pea leaves[J]. Plant Molecular Biology Reporter,1987,5(3):311-335.
    [245]Sawa S, Ito T, Shimura Y, Okada K. FILAMENTOUS FLOWER controls the formation and development of Arabidopsis inflorescences and floral meristems[J]. The Plant Cell Online, 1999,11(1):69-86.
    [246]Dong Z C, Zhao Z, Liu C W, Luo J H, Yang J, Huang W H, Hu X H, Wang T L, Luo D. Floral patterning in Lotus japonicus[J]. Plant physiology,2005,137(4):1272-1282.
    [247]Movafeghi A, Dadpour M R, Naghiloo S, Farabi S, Omidi Y. Floral development in Astragalus caspicus Bieb.(Leguminosae:Papilionoideae:Galegeae)[J]. Flora-Morphology, Distribution, Functional Ecology of Plants,2010,205(4):251-258.
    [248]Movafeghi A, Naghiloo S, Dadpour M R. Inflorescence and floral development in Astragalus lagopoides Lam.(Leguminosae:Papilionoideae:Galegeae)[J]. Flora-Morphology, Distribution, Functional Ecology of Plants,2011,206(3):219-226.
    [249]Coen E S, Meyerowitz E M. The war of the whorls:genetic interactions controlling flower development[J]. Nature,1991,353(6339):31-37.
    [250]G. Erdtman.王伏雄译.花粉形态与植物分类[M].北京:科技出版社,1962:32.
    [251]Teixeira S D,Ranga N T,Tucker S C. Inflorescence and floral development of Dahlstedtia species (Leguminosae:Papilionoideae:Millettieae) [J]. Flora,2009,204(10):769-781.
    [252]Prenner G. New Aspects in Floral Development of Papilionoideae:Initiated but Suppressed Bracteoles and Variable Initiation of Sepals[J]. Annals of Botany,2004,93(5): 537-545.
    [253]Tucker S C, Stirton C H. Development of the cymose inflorescence, cupulum and flower of Psoralea pinnata(Leguminosae:Papilionoideae:Psoraleeae) [J]. Botanical Journal of the Linnean Society,1991,106(3):209-227
    [254]Pennington R T,Lavin M, Irelnad H. Phylogenetic relationships of basal papilionoid legumes based upon sequences of the chloroplast trnL intron [J]. Systematic Botany, 2001,26(3):537-556.
    [255]Dobrenz A K, Massengale M A, Phillips W S. Floral initiation in alfalfa (Medicago sativa L.)[J]. Crop Science,1965,5(6):572-575.
    [256]Sokoloff D,Rudall P J,Remizowa M. Flower-like terminal structures in racemose inflorescences:a tool in morphogenetic and evolutionary research[J]. Journal of Experimental Botany,2006,57(13):3517-3530.
    [257]Prenner G. Floral ontogeny in Lespedeza thunbergii(Leguminosae:Papil-ionoideae: Desmodieae):variations from the unidirectional mode of organ formation[J]. Journal of Plant Research,2004,117(4):297-302.
    [258]李红,石凤翎,崔秀萍,高翠萍.苜蓿雄性不育系花柱与柱头形态结构观察研究[J].内蒙古大学学报:自然科学版,34(6):671-673.
    [259]Bingham E T, McCoy T J. Cultivated Alfalfa at the Diploid Level:Origin, Reproductive Stability, and Yield of Seed and Forage[J]. Crop Science,1979,19(1):97-100.
    [260]Ferrie A M R, Caswell K L. Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production[J]. Plant Cell,Tissue and Organ Culture,2011, 104(3):301-309.
    [261]郭景文.四种豆科牧草花药及组织培养研究的总结[J].青海草业,1998,7(02):9-13.
    [262]李海营,乔桂荣,刘明英,蒋晶,张玲,卓仁英.麻竹花药诱导再生植株的染色体倍性分析[J].植物学报,2011,46(1):74-78.
    [263]Bolibok H, Rakoczy-Trojanowska M. Genetic mapping of QTLs for tissue-culture response in plants[J]. Euphytica,2006,149(1-2):73-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700