用户名: 密码: 验证码:
新型玉米矮化突变位点的鉴定及其功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合理株型是作物高产品种的形态特征和生育基础,其中矮生性状是理想株型的一个重要方面。培育矮化玉米杂交种,可以降低株高,改善株型结构,增加种植密度,提高群体光合效能,进而达到高产的目的。在玉米上共定位到了100多个和株高相关的QTL,但很少被克隆并应用于遗传改良。本研究组前期在玉米的l号染色体上1.07bin位置定位一个控制株高QTL-qph1, qph1目标区段位于玉米Br2(Brachytic2/ZmPGP1)基因的第5外显子上,SNP5259造成由精氨酸至亮氨酸的替换可能为其功能位点。该QTL产生较为温和的矮化表型,并且在育种上表现出极大的潜力。本研究在前期研究的基础上,进一步对定位到QPH1基因进行鉴定和功能分析,阐明其影响株高的分子机制,同时将SNP5259恢复突变,转化同源的拟南芥的突变体以及相应玉米材料,进一步验证其调控株高的功能位点。为理解玉米株高发育的分子机理与培育适宜株型奠定相关理论基础。研究结果如下:
     1.定位的QPH1基因为玉米Br2基因的新等位基因,编码的蛋白质含有1379个氨基酸,含有两个跨膜结构域和两个ATP结合区。克隆出该基因上游1kb的启动子区域,序列分析表明该区域含有光响应元件、激素响应元件等相关顺式作用元件。
     2.通过PromoterQPH1::GUS以及Real-time PCR分析表明QPH1基因主要在玉米的根、茎、叶器官中表达,并且两个玉米材料在不同部位的基因表达量并没有显著差异;亚细胞定位表明QPH1编码的蛋白定位在细胞膜上。采用[3H]IAA同位素示踪法测定生长素运输量表明qph1突变体材料生长素运输量降低程度小于br2的无效突变体。
     3.采用定点突变PCR将SNP5259恢复突变后的基因mqph1构建过量表达载体转化拟南芥atpgp1突变体和玉米qph1突变体RIL88材料,结果表明过量表达mqph1可以部分恢复拟南芥突变体在下胚轴长度、株高以及生长素运输量方面的缺陷,其恢复程度和QPH1基因相当,但好于qph1基因。转基因玉米也表现出了茎部粗壮,株高明显增高的表型。证实了SNP5259确实为qph1影响株高的功能位点。
     4.本研究在鉴定拟南芥三个atpgp1突变体中发现一个不同于研究报道的突变体,该突变体表现出较短的下胚轴长度和明显的矮化表型,生长素在根尖的分布和含量以及对NPA敏感性都不同于野生型,生长素运输量也低于野生型。T-DNA插在AtPGP1基因第三个外显子上,RT-PCR分析表明该突变体为一个完全突变体,之前报道研究所用的两个突变体中AtPGP1基因可以编码一个含有623个氨基酸的截短蛋白,可能并不是无效突变体。
Rational plant type is the morphological characteristics and reproductive basis of high-yield variety. Dwarfism is an important aspect of ideal plant type. Cultivating dwarf maize hybrids, can improve the structure of plants, increase planting density and improve group photosynthetic efficiency, thus to achieve the goal of high yield. Although more than100of maize plant height QTLs have been identified, few were cloned and applied to the genetic improvement. One maize plant height QTL-qphl has been identified by our study group, which was located at1.07bin chromosomes1. The confidence interval of qphl locates on the5th exon of maize Br2gene (Brachytic2/ZmPGPl); SNP5259cause an amino acid substitution from Arginine to Leucine and is proposed to be the functional site of qphl. The QTL caused moderate dwarf phenotype and exhibited great potential in breeding. This study is based on the previous studies, the QPH1gene identification and function analysis for further study and elucidated the molecular mechanism of plant height control. To further identify the functional site of SNP5259, we did back mutation of SNP5259and transformed to the Arabidopsis thaliana pgpl mutant and maize qph1mutant. These studies laid the theoretical basis of molecular mechanism of plant height growth and cultivation of suitable plant type. Results for these studies include:
     1. QPH1gene is a new allele of maize Br2gene, which encode a protein containing1379amino acids. The protein has two transmembrane domains and two nucleotide-binding domains. We cloned the1Kb promoter region of QPH1gene; sequence analysis showed that this region contained light response element and hormone response element.
     2. PromoterQPH1::GVS and Real-time PCR analysis indicated that QPH1gene express in root, stem and leaf, and there is no expression significant difference at different part between two maize lines. The protein encoded by the QPH1gene located in the cell membrane. The decreasing degree of auxin transport in qphl mutant is smaller than the br2null muatant.
     3. Site-directed mutagenasis by PCR, mqph1(mutagenized qphl) was transformed to the Arabidopsis thaliana pgpl mutant and maize qphl mutant.Over expression of mqph1can restore the plant height,hypocotyl length and auxin transport defect, and no difference between QPH1and mqphl transgenic plants. The transgenic maize exhibit stronger stem and higher plant height. The results confirm that SNP5259is the functional site of QTL-qphl.
     4. We found a different atpgpl muant from the mutants reported before, the mutant show shorter hypocotyls length and dwarfism phenotype. The distribution and content of auxin in root tip, and the NPA sensibility are different from the wild type. The relative auxin transport is lower than wild type. The mutant contained a T-DNA insertion in the third exon and was a null mutant, the muants used in the studies before may encode a truncated protein contained623amino acids.
引文
侯丙凯,陈正华.苏云金芽孢杆菌杀虫蛋白基因克隆及油菜叶绿体遗传转化研究.遗传,2001,23:39-40.
    嵇怡,缪旻珉,陈学好.植物矮生性状的分子遗传研究进展.分子植物育种,2006,4:753-771.
    李杏普,兰素缺,李孟军.小麦矮秆基因.2010,北京:中国农业出版社,7-8.
    田齐建,乔治军,董存吉,等.玉米矮化育种研究进展及发展前景.山西农业科学,2003,31:23-26.
    王国英,张宏等.用基因枪将Bt毒蛋白转入玉米及转基因植株的再生.中国科学(B辑),1995,25(1):71-76.
    王家利,刘冬成,郭小丽,等.生长素合成途径的研究进展.植物学报,2012,47:292-301.
    王立静,哈丽旦,张素梅等.新的玉米矮秆突变基因的鉴定与遗传分析.华北农学报,2008,23:3-25.
    魏国才,常大军,刘淑玲.矮杆玉米及其应用前景.现代化农业,1999,8:24-25.
    徐相波,张爱民,李新华等.小麦矮源的利用和矮杆基因的研究进展.核农学报,2001,15:188-192.
    许新萍,卫剑文,范云六,等.用基因枪法转化籼稻胚性组织获得可育的转基因植株.植物学报,1999,26(3):219-227.
    阎淑琴.矮生玉米的遗传与育种.玉米科学,2000,8:36-37.
    张晓科.中国小麦矮秆基因和春化基因分布及小麦品质相关性状多重PCR体系建立.北京:中国农业科学院,2007.
    Abler B S, Edeards M D, Stuber C W. Isozymatic identification of quantitative trait loci in crosses of elite maize inbreds. Crop Science,1991,31:267-274.
    Ambudkar S V, Kimchi-Sarfaty C, Sauna Z E, et al. P-glycoprotein:from genomics to mechanism. Oncogene,2003,22:7468-7485.
    Anderson J C, Chow P N, et al. Phenotypes and grain yield associated with br2 gene in single cross hybrids of dent corn. Crop Science,1960,1:335-337.
    Ashikari M, Wu J Z, Yano M, et al. Rice gibberellin-insensitive dwarf mutant gene dwarf 1 encodes the α-subunit of GTP-binding protein. Proceedings of the National Academy of Sciences of the United States of America,1999,96:10284-10289.
    Austin D F, Lee M. Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize. Genome,1996,39:957-968.
    Bailly A, Sovero V, Vincenzetti V, et al. Modulation of P-glycoproteins by auxin transport inhibitors ismediated by interaction with immunophilins. Journal of Biological Chemistry,2008,283: 21817-21826.
    Bailly A, Yang H, Martinoia E, et al. Plant lessons:exploring ABCB functionality through structural modeling. Frontiers in Plant Science,2011,2:1-16.
    Bainbridge K, Guyomarc'h S, Bayer E, et al. Auxin influx carriers stabilize phyllotactic patterning. Genes and Development,2008,22:810-823.
    Bandurski R S, Cohen J D, Reineeke D M, et al. Auxin biosynthesis and metabolism. In:Davies PJ, ed. Plant Hormones, Physiology, Biochemistry and Molecular Biology. Dordrecht:Kluwer Academic Publishers.1995, pp.39-65.
    Bandyopadhyay A, Blakeslee J J, Lee O R, et al. Interactions of PIN and PGP auxin transport mechanisms. Biochemical Society Transactions,2007,35:137.
    Bayer E M, Smith R S, Mandel T, et al. Integration of transport-based models for phyllotaxis and midvein formation. Genes and Development,2009,23:373-384.
    Beardmore J, Ride J P, Granger J W. Cellular lignification as a factor in the hypersensitive resistance of wheat to stem rust. Physiological Plant Pathology,1983,22:209-210.
    Beavis W D, Grant D, Albertsen M, et al. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theoretical and Applied Genetics, 1991,83:141-145.
    Beavis W D, Smith O S, Grant D, et al. Identification of quantitative trait loci using a small sample of top crossed and F4 progeny from maize. Crop Science,1994,34:882-896.
    Bechtold N, Ellis J, Pelletier G. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Comptes rendus de l'Academie des sciences. Serie 3, Sciences de la vie,1993,316:1194-1199.
    Benjamins R, Scheres B. Auxin:the looping star in plant development. Annual Review of Plant Biology,2008,59,443-465.
    Benkova E, Michniewicz M, Sauer M, at al. Local, efflux-dependent auxin gradients as acommon module for plant organ formation. Cell,2003,115:591-602.
    Bennett M J, Marchant A, Green H, et al. Arabidopsis AUX1 gene:a permease-like regulator of root gravitropism. Science,1996,273:948-950.
    Bidney D, Scelonge C, Martich J, et al. Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Molecular Biology,1992, 18:301-313.
    Blakeslee J J, Bandyopadhyay A, Lee O R, et al. Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. The Plant Cell Online,2007,19:131-147.
    Blilou I, Xu J, Wildwater M, Willemsen V, et al. The PIN auxin efflux facilitatior net-work controls growth and patterning in Arabidopsis roots. Nature,2005,433:39-44.
    Bohn-Courseau I. Auxin:A major regulator of organogenesis. Plant Biology and Pathology,2010, 333:290-296.
    Cano-Delgado A, Yin Y, Yu C, et al. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development,2004,131:5341-5351.
    Carraro N, Forestan C, Canova S, et al. Zm PIN1a and Zm PIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize. Plant Physiology,2006,142:254-264.
    Cassani E, Villa D, Durante M, et al. The brachytic 2 and 3 maize double mutant shows alterations in plant growth and embryo development. Plant Growth Regulation,2011,64:185-192.
    Chan M T, Chang H H, Ho S L, et al. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/p-glucuronidase gene. Plant Molecular Biology,1993, 22:491-506.
    Chen J G, Ullah H, Young J C, et al. ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes & Development,2001,15:902-911.
    Cheng M, Fry J E, Pang S Z, et al. Genetic transformation of wheat mediated by Agrobactoriam tumefaciens. Plant Physiology,1997,115:971-980.
    Choi Y H, Fujioka S, Nomura T, et al. An alternative brassinolide biosynthetic pathway via late C-6 oxidation. Phytochemistry,1997,44:609-613.
    Chuang C F, Meyerowitz E M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proceedings of the National Academy of Sciences,2000,97:4985-4990.
    Cohen J D, Slovin J P, Hendrickson AM. Two genetically discrete pathways convert tryptophan to auxin:More redundancy in auxin biosynthesis. Trends in Plant Science,2003,8:197-199.
    Dalton S J. Plant regeneration from cell suspension protoplasts of Festuca arundinacea Schreb., Lolium perenne L. and L. multiflorum Lam. Springer Netherlands,1988.
    Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature,2005, 435:441-445.
    Ding Z, Wang B, Moreno I, et al. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nature,2012,3:1-9.
    Divi U K, Krishna P. Brassinosteroid:a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnology,2009,36:131-136.
    Djisbar A, Brewabaker J L. Effects of the brachytic-2 gene on maize yield and its components. Maydica,1987,32:107-123.
    Dudler R, Hertig C. Structure of an mdr-like gene from Arabidopsis thaliana. Evolutionary implications. Journal of Biological Chemistry,1992,267:5882-5888.
    Duvick D N. Genetic rates of gain in hybrid maize yields during the past 40 years. Maydica,1977, 22:187-196.
    Duvick D N. Genetic contributions to yield gains of U.S. hybrid maize,1930 to 1980. In:W.R. Fehr (Ed.), Genetic Contributions to Yield Gains of Five Major Crop Plants. CSSA Special Publication No.7. Crop Science Society of America, American Society of Agronomy, Madison, WI, USA,1984, pp:15-47.
    Duvick D N. Genetic contributions to advances in yield of U.S. maize. Maydica,1992,37:69-79.
    Duvick D N. What is yield? In:GO. Edmeades, et al. (Eds.), Developing Drought-and Low N-Tolerant Maize. Proceedings of a Symposium, March 25-29, CIMMYT, El Batan, Mexico. CIMMYT, Mexico, D.F.,1996, pp:332-335.
    Edwards K J, Thompson H, Edwards D, et al. Construction and characterisation of a yeast artificial chromosome library containing three haploid maize genome equivalents. Plant Molecular Biology,1992,19:299-308.
    Fellner M, Horton L A, Cocke A E, et al. Light interacts with auxin during leaf elongation and leaf angle development in young corn seedlings. Planta,2003,16:366-376.
    Forestan C, Farinati S, Varotto S. The maize PIN gene family of auxin transporters. Frontiers in Plant Science,2012,3:1-23.
    Forestan C, Meda S, Varotto S. ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiology, 2010,152:1373-1390.
    Fraley R T, Rogers S B, Horsch R B. Use of a chimeric gene to confer antibiotic resistance to plant cells. Miami Winter Symposia,1983,20:211-221.
    Friml J. Auxin transport-shaping the plant. Current Opinion in Plant Biology,2003,6:7-12.
    Friml J, Benkova E, Blilon I, et al. AtPIN4 mediates sink driven auxin gradients and patterning in Arabidopsis roots. Cell,2002,108:661-673.
    Friml J. Subcellular trafficking of PIN auxin efflux carriers in auxin transport. European Journal of Cell Biology,2010,89:231-235.
    Friml J, Vieten A, Sauer M, et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature,2003,426:147-153.
    Friml J, Wisniewska J, Benkova E, et al. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature,2002,415:806-809.
    Fujioka S, Yamane H, Spray C R, et al. The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins. Proceedings of the National Academy of Sciences of the United States of Amertca,1988,85:9031-9035.
    Gaiweiler L, Guan C, Muiier A, et al. Regulation of polar auxin transport by AtPINl in Arabidopsis vascular tissue. Science,1998,282:2226-2230.
    Gallavotti A, Yang Y, Schmidt R J, et al. The relationship between auxin transport and maize branching. Plant Physiology,2008,147:1913-1923.
    Geisler M, Kolukisaoglu H U, Bouchard R, et al. TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Molecular Biology of the Cell,2003,14: 4238-4249.
    Gray W M, Kepinski S, Rouse D, et al. Auxin regulates SCFT1R1-dependent degradation of AUX/1AA proteins. Nature,2001,414:271-276.
    Hao J J, Yin Y H, Fei S Z. Brassinosteroid signaling network:implications on yield and stress tolerance. Plant Cell Reports,2013,1-14.
    Hartwig T, Chuck G S, Fujioka S, et al. Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Sciences of the United States of America,2011,108: 19814-19819.
    Hedden P, Phillips A L. Gibberellin metabolism:new insights revealed by the genes. Trends in Plant Science,2000,5:523-530.
    Hedden P, Proebsting W M. Genetic analysis of gibberellin biosynthesis. Plant Physiology,1999, 119:365-370.
    Henikoff S, Greene E A, Pietrokovski S, et al. Genome families; the taxanomy of protein paralogs and chimeras. Science,1997,279:609-614.
    Henrichs S, Wang B J, Fukao Y, et al. Regulation of ABCB1/PGP1-catalysed auxin ransport by linker phosphorylation. EMBO Journal,2012,31:2965-2980.
    Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice(Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 1994,6:271-282.
    Higgins C F. ABC transporters:from microorganisms to man. Annual Review of Cell and Developmental Biology,1992,8:67-113.
    Higgins C F. ABC transporters:physiology, structure and mechanism-an overview. Research in Microbiology,2001,152:205-210.
    Hochholdinger F, Wulff D, Reuter K, et al. Tissue-specific expression of AUX1 in maize roots. Plant Physiology,2000,157:315-319.
    Horsch R B, Fry J E, Hoffmann N L, et al. A simple and general method for transferring genes into plants. Science,1985,227:1229-1231.
    Hull A K, Vij R, Celenza J L. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America,2000,97:2379-2384.
    Ishida Y, Saito H, Ohta S, et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature biotechnology,1996,14:745-750.
    Itoh H, Ueguchi-Tanaka M, Sato Y, et al. The gibberellin signaling pathway is regulated by the appearance and disappearance of slender rice in nuclear. Plant Cell,2002,14:57-70.
    Jahrmann T, Bastida M, Pineda M, et al. Studies on the function of TM20, a transmembrane protein present in cereal embryos. Planta,2005,222:80-90.
    Jasinski M, Ducos E, Martinoia E, et al. The ATP-binding cassette transporters:structure, function, and gene family comparison between rice and Arabidopsis. Plant Physiology,2003, 131:1169-1177.
    Johansen L K, Carrington J C. Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiology,2001,126: 930-938.
    Jones A R, Kramer E M, Knox K, et al. Auxin transport through non-hair cells sustains root-hair development. Nature Cell Biology,2009,11:78-84.
    Jones P M, George A M. The ABC transporter structure and mechanism:perspectives on recent research. Cellular and Molecular Life Sciences,2004,61:682-699.
    Jung M, Ching A, Bhattramakki D, et al. Linkage disequilibrium and sequence diversity in a 500-kbp region around the adhl locus in elite maize germplasm. Theoretical and Applied Genetics,2004,109:681-689.
    Kaczorowski K A, Kim K S, Diers B W, et al. Microarray-based genetic mapping using soybean near-isogenic lines and generation of SNP markers in the Ragl aphid-resistance Interval. Plant Genome-US,2008,1:89-98.
    Kang J, Park J, Choi H, et al. Plant ABC transporters. The Arabidopsis Book/American Society of Plant Biologists,2011,9.
    Karabaghli D C, Sotta B, Bonnet M, et al. The auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits the stimulation of in vitro lateral root formation and the colonization of ectomycorrhizal fungus Laccaria bicolor. New Phytologist,1998,140:723-733.
    Karper R E. A dominant mutation of frequent recurrence in Sorghum. American Naturalist,1932, 46:511-529.
    Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature,2005, 435:446-451.
    Kepinski S, Leyser O. Ubiquitination and auxin signaling a degrading story. The Plant Cell Online, 2002,14:S81-S95.
    Khairallah M M, Bohn M, Jiang C, et al. Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breeding,1998,117:309-318.
    Khush G S. Green revolution:the way forward. Nature Reviews Genetics,2001,2:815-822.
    Kim TW Wang ZY. Brassinosteroid signal transduction from receptor kinases to transcription factors. Annual Review of Plant Biology,2010,61:681-704
    Kinoshita T. Report of committee on gene symbolization, nomenclature and linkage groups. Rice Genetics Newsleter,1986,3:4-19.
    Klahre U, Noguchi T, Fujioka S, et al. The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. Plant Cell,1998,10:1677-1690.
    Klein T M, Fromm M, Weissinger A, et al. Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proceedings of the National Academy of Sciences,1988,85: 4305-4309.
    Knoller A S, Blakeslee J J, Richards E L, et al. Brachytic2/ZmABCB1 functions in IAA export from intercalary meristems. Journal of Experimental Botany,2010,61:3689-3696.
    Koga J. Structure and function of indolepyruvate decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis. Biochimica et Biophysica Acta,1995,1249:1-13.
    Koraiem Y S, Bary A A, Shalaby A A, et al. Effect of brachytic-2 dwarfing gene on some corn populations (Zea mays L.). Alexandria Journal of Agricultural Rresearch,1978,26:73-78.
    Laxmi A, Pan J, Morsy M, et al. Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLoS ONE,2008,3:1510.
    Lee C, Chronis D, Kenning C, et al. The novel cyst nematode effector protein 19C07 interacts with une Araoiaopsis auxin mnux transporter LAA3 to control feeding site development. Plant Physiology,2011,155:866-880.
    Lewis D R, Muday G K. Measurement of auxin transport in Arabidopsis thaliana. Nature Protocols, 2009,4:437-451.
    Li J, Chory J. A putative leucine-richrepeat receptor kinase involved in brassinosteroid signal transduction. Cell,1997,90:929-938.
    Li J, Nagpal P, Vitart V, et al. A role for brassinosteroids in light-dependent development of Arabidopsis. Science,1996,272:398-401.
    Li J M, Nam K H. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science, 2002,295:1299-1301.
    Lin R, Wang H. Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. Plant Physiology,2005,138:949-964.
    Lin Y R, Schertz K F, Patemon A H, et al. Comparative analysis of QTLs affecting plant height and maturity across the poaceae, in reference to an interspecific sorghum population. Genetics,1995,141:391-411.
    Ma H L, Zhang S B, Ji L, et al. Fine mapping and in silico isolation of the euilgene controlling upper internode elongation in rice. Plant Molecular Biology,2006,60:87-94.
    Marchant A, Bhalerao R, Casimiro I, et al. AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell,2002,14:589-597.
    Matsuo T, Futsuhara Y, Kikuchi F, et al. Science of the rice plant.1997, Nobunkyo, Tokyo, Volume 3, pp.301-317.
    Ma X, Tang J, Teng W, et al. Epistatic interaction is an important genetic basis of grain yield and its components in maize. Molecular Breeding,2007,20:41-51.
    Men S, Boutte Y, Ikeda Y, et al. Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nature Cell Biology,2008,10:237-244.
    Ming X T, Yuan H Y, Wang L J, et al. Agrobacterium-mediated transformation of rice with help of bombardment. Acta Botanica Sinica,2001,43:72-76.
    Mitchell J W, Mandava N B, Worley J F, et al. Brassins:A new family of plant hormones from rape pollen. Nature,1970,225:1065-6.
    Mockaitis K, Estelle M. Auxin receptors and plant development:a new signaling paradigm. Annual Review of Cell and Developmental Biology,2008,24:55-80.
    Mora-Garcia S, Vert G, Yin Y, et al. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Development,2004, 18:448-460.
    Mori M, Nomura T, Ooka H, et al. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiology,2002,130:1152-1161.
    Mravec J, Kubes M, Bielach A, et al. Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development,2008,135:3345-3354.
    Mravec J, Skupa P, Bailly A, et al. ER-localizedPIN5 auxin transporter mediates subcellular homeostasis of phytohormone auxin. Nature,2009,439:1136-1140.
    Mravec J, Skupa P, Bailly A, et al. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature,2009,459:1136-1140.
    Muller J. Mycorrhizal fungal structures are stimulated in wild-type peas and in isogenic mycorrhiza-resistant mutants by triiodobenzoic acid (TIBA), an auxin transport inhibitor. Symbiosis,1999,26:379-389.
    Multani D S, Briggs S P, Chamberlin M A, et al. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science,2003,302:81-84.
    Nam K H, Li J M. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell,2002, 110:203-212.
    Napier R M, David K M, Perrot-Rechenmann C. A short history of auxin-binding proteins. Plant Molecular Biology,2002,49:339-348
    Nemhauser J L, Mockler T C, Chory J. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biology,2004,2:e258.
    Noguchi T, Fujioka S, Choe S, et al. Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiology,2000,124:201-209.
    Noh B, Murphy A S, Spalding E P. Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell,2001,13:2441-2454.
    Okada K, Ueada J, Komaki M K, et al. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell,1991,3:677-684.
    Ottenschlager I, Wolff P, Wolverton C, et al. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proceedings of the National Academy of Sciences of the United States of America,2003,100:2987-2991.
    Ouyang J, Shao X, Li J. Indole-3-glycerol phosphate, a branch point of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant Journal, 2000,24:327-333.
    Parry G, Marchant A, May S, et al. Characterization of a family of plant auxin influx carriers: Recent advances in auxin biology. Journal of Plant Growth Regulation,2001,20:217-225.
    Peer W A, Blakeslee J J, Yang H, et al. Seven things we think we know about auxin transport. Molecular Plant,2011,4:487-504.
    Peng J R, Harberd N P. Gibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome deficient mutants of Arabidopsis. Plant Physiology,1997, 113:1051-1058.
    Peng J R, Harberd N P. The role of GA-mediated signalling in the control of seed germination. Current Opinion of Plant Biology,2002,5:376-381.
    Peng J R, Richards D E, Hartley N M, et al. "Green revolution" genes encode mutant gibberellin response modulators. Nature,1999,400:256-261.
    Perez-Perez J M, Ponce M R, Micol J L. The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Developmental Biology,2002,242:161-173.
    Petrasek J, Friml J. Auxin transport routes in plant development. Development,2009, 136:2675-2688.
    Petrasek J, Mravec J, Bouchard R, et al. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science,2006,312:914-918.
    Petroski M D, Deshaies R J. Function and regulation of Cullin-RING ubiquitin ligases. Nature Reviews Molecular Cell Biology,2005,6:9-20.
    Pilu R, Cassani E, Curiale S, et al. Isolation and characterization of a new mutant allele of brachytic 2 maize gene. Molecular Breeding,2007,20:83-9.
    Piovarci A. Dwarfing gene brachytic-2 in modifying plant architecture of corn (Zea mays L.). Ⅸ. Meeting of Eucarpia maize and sorghum section, USSR, Krasnodar. I. Development and improvement of initial stock for maize breeding,1977, pp:35-36.
    Pollmann S, Diichting P, Weiler E W. Tryptophan-dependent indole-3-acetic acid biosynthesis by '1AA-synthase' proceeds via indole-3-acetamide. Phytochemistry,2009,70:523-531.
    Pollmann S, Neu D, Weiler E W. Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry,2003,62:293-300.
    Quinby J R, Karper R E. Inheritance of height in sorghum. Agronomy Journal,1954,46:211-216.
    Quint M, Gray W M. Auxin signaling. Current Opinion in Plant Biology,2006,9:448-453.
    Quittenden L J, Davies N W, Smith J A, et al. Auxin biosynthesis in pea:Characterization of the tryptamine pathway. Plant Physiology,2009,151:1130-1138.
    Ragot M, Sisco P H, Hoisington D A, et al. Molecular-marker-mediated characterization of favorable exotic alleles at quantitative trait loci in maize. Crop science,1995,35:1306-1315.
    Raja ram S, van Ginkel M. Increasing the yield potential in wheat:Breaking the barriers (eds Reynolds, M. P., Rajaram, S.& McNab, A.) 11-18 (CIMMYT, Mexico D.F.),1996.
    Rashid H, Yokoi S, Toriyama K, et al. Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Reports,1996,15:727-730.
    Rashotte A M, Brady S, Reed R, et al. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiology,2000,122:481-490.
    Rashotte A M, Poupart J, Waddell C S, et al. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis. Plant Physiology,2003,133:761-772.
    Raven J A. Transport of indolacetic acid in plant cells in relation to pH and electrical potential grandients, and its significance for polar IAA transport. New Phytologist,1975,74:163-172.
    Register J C, Peterson D J, Bell P J. Structure and function of selectable and non-selectable in maize after introduction by particle bombardment. Plant Molecular Biology,1994,25:951.
    Reinhardt D. Vascular patterning:More than just auxin. Current Biology,2003,13:485-487.
    Ren Y G, Zhang Z L, Zou Z R, et al. Construction of plastid transformation vectors of Bt toxin genes and their insecticidal toxicity test. Journal of Agriculture Biotechnology,1996,4:23-27.
    Robertson, D S. A possible technique for isolating genie DNA for quantitative traits in plants. Journal of Theoretical Biology,1985,117:1-10.
    Ross J J, O-Neill D P, Wolbang C M, et al. Auxin-gibberellin interactions and their role in plant growth. Journal of Plant Growth Regulation,2001,20:336-353.
    Rubery, Sheldrake R. Carrier-mediated auxin transport. Planta,1974,118:101-121.
    Sakamoto T, Miura K, Itoh H, et al. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiology,2004,134:1642-1653.
    Salamini F. Hormones and the green revolution. Science,2003,302:71-72.
    Sandra E D, Robert C E, Chris A, et al. The pea gene NA encodes ent-kaurenoic acid oxidase. Plant Physiology,2003,131:335-344.
    Sari-Gorla M, Krajewski P, Di Fonzo N, et al. Genetic analysis of drought tolerance in maize by molecular markers. Ⅱ. Plant height and flowering. Theoretical and Applied Genetics,1999, 99:289-295.
    Sasaki A. Green revolution:a mutant gibberellin synthesis gene in rice new insight into the rice variant that helped to avert famine over thirty years ago. Nature,2002,416:701-702.
    Sasaki A, Itoh H, Gomi K, et al. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science,2003,299:1896-1898.
    Scarpella E, Marcos D, Friml J, et al. Control of leaf vascular patterning by polar auxin transport. Genes and Development,2006,20:1015-1027.
    Schell J, Montagu M V, Holsters M, et al. Ti plasmids as experimental gene vectors for plants. Miami Winter Symposia,1983,20:191-209.
    Schon C C, Lee M, Melchinger A E, et al. Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity,1993,70:648-659.
    Schon C C, Melchiger A E, Boppknmaier J, et al. RFLP mapping in maize:quantitative trait loci affecting testcross performance of elite European flint lines. Crop Science,1994,34:378-389.
    Schwuchow J, Michalke W, Hertel R. An auxin transport inhibitor interferes with unicellar gravitropism in protonemata of the moss Ceratodon purpureus. Plant Biology,2001,3:357-363.
    Souza Jr C L, Zinsly J R. Relative genetic potential of brachytic maize (Zea mays Z..)varieties as breeding populations. Revista Brasileira de Genetica,1985,3:523-533.
    Spiehneyer W. Semidwarf (sd-1), green revolution rice, contains defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of the United States of America,2002, 99:9043-9048.
    Stepanova AN, Robertson-Hoyt J, Yun J et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell,2008,133:177-191.
    Strader L C, Bartel B. A new path to auxin. Nature Chemical Biology,2008,4:337-339.
    Suh H S, Hue M H. The segregation mode of plant height in the cross of rice varieties XI. Linkage analysis of the semi-dwarfness of the rice variety'Tongil'. Korean Journal of Breeding,1978, 10:1-6.
    Sugawara S, Hishiyama S, Jikumaru Y, et al. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America,2009,106:5430-5435.
    Sun T P. Gibberellin-GID1-DELLA:A pivotal regulatory module for plant growth and development. Plant Physiology,2010,154:567-570.
    Swarup R, Friml J, Marchant A, et al. Localisation of the auxin permease AUX1 in the Arabidopsis root apex reveals two novel functionally distinct hormone transport pathways. Genes Development,2001,15:2648-2653.
    Swarup R, Kargul J, Marchant A, et al. Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell,2004,16:3069-3083.
    Swarup R, Marchant A, Bennett M J. Auxin transport:providing a sense of direction during plant development. Biochemical Society Transactions,1999,28:481-485.
    Szekere M, Koncz C. Biochemical and genetic analysis of brassinosteroid metabolism and function in Arabidopsis. Plant Physiology and Biochemistry,1998,36:145-155.
    Taiz L, Zeiger E. Plant Physiology.3rd ed. Sunderland:Sinauer Associates Inc,2002.
    Tang J, Ma X, Teng W, et al. Detection of quantitative trait loci and heterotic loci for plant height using an immortalized F2 population in maize. Chinese Science Bulletin,2007,52:477-483.
    Tang J, Teng W, Yan J, et al. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica,2007,155:117-124.
    Teng F, Zhai L, Liu R, et al. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. The Plant Journal,2013,73:405-416.
    Theodoulou F L. Plant ABC transporters. Biochimica et Biophysica Acta (BBA)-Biomembranes,2000, 1465:79-103.
    Tzfira T, Citovsky V. Agrobacterium-mediated genetic transformation of plants:Biology and biotechnology. Current Opinion in Biotechnology,2006,17:147-154
    Ugartechea-Chirino Y, Swarup R, Swarup K, et al. The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Annals of Botany,2010,105:277-289.
    Vasil V, Castillo A M, Fromm M E, et al. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nature Biotechnology.1992, 10:667-674.
    Veldboom LR, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments:Ⅱ. Plant height and flowering. Crop Science,1996,36:1320-1327.
    Veldboom LR, Lee M. Molecular-marker-facilitated studies of morphological traits in maize. Ⅱ: Determination of QTLs for grain yield and yield components. Theoretical and Applied Genetics, 1994,89:451-458.
    Viaene T, Delwiche C F, Rensing S A, et al. Origin and evolution of PIN auxin transporters in the green lineage. Trends in Plant Science,2013,18:5-10
    Wang B, Bailly A, Zwiewka M, et al. Arabidopsis TWISTED DWARF1 functionally interacts with auxin exporter ABCB1 on the root plasma membrane. Plant Cell,2013,25:202-214.
    Wang X F, Goshe M B, Soderblom E J, et al. Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Plant Cell,2005,17:1685-1703
    Wang Z Y, Seto H, Fujioka S, et al. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature,2001,410:380-383.
    Wipf D, Loque D, Lalonde S, et al. Amino acid transporter inventory of the Selaginella genome. Frontiers in Plant Science,2012,3:1-6
    Wu G S, Cameron J N, Ljung K, et al. A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B. Plant Journal, 2010,62:179-191
    Yamaguchi S. Gibberellin metabolism and its regulation. Annual Review of Plant Biology,2008, 59:225-251
    Yamaguchi S, Sun T, Kawaide H, et al. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiology,1998,116:1271-1278.
    Yamamoto M, Yamamoto K. Differential effects of 1-naphthaleneacetic acid, indole-3-acetic acid and 2:4-dichloro-phenoxyacetic acid on the gravitropic response of roots in an auxin resistant mutant of Arabidopsis, auxl. Plant Cell Physiology,1998,39:660-664.
    Yamamuro C, Ihara Y, Wu X. Loss of function of a rice brassinosteroid insensitive homolog prevents internode enlongation and bending of the lamina joint. Plant Cell,2000, 191:1591-1606.
    Yang H, Murphy A S. Functional expression and characterization of Arabidopsis ABCB, AUX1 and PIN auxin transporters in Schizosaccharomyces pombe. The Plant Journal,2009,59:179-191.
    Yan J, Tang H, Huang Y, et al. Genomic analysis of plant height in maize through molecular marker. Agricultural Sciences in China,2003,10:1069-1075.
    Young G B, Jack D L, Smith W et al. The amino acid/auxin:proton symport permease family. Biochimica et Biophysica Acta,1999,1415:306-322.
    Zaenen I, Van Larebeke N, Teuchy H, et al. Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. Journal of molecular biology,1974,86:109-127
    Zazimalova E, Krecek P, Skupa P, et al. Polar transport of the plant hormone auxin-the role of PIN-FORMED (PIN) proteins. Cellular and Molecular Life Sciences,2007,64:1621-1637
    Zeevaart J A D, Talon M. Gibberellin mutants in Arabidopsis thaliana "Progress in plant growth regulation. Springer Netherlands,1992:34-42.
    Zhang R, Wang B, Ouyang J, et al. Arabidopsis indole synthase, a homolog of tryptophan synthase alpha, is an enzyme involved in the Trp-independent indole-containing metabolite biosynthesis. Journal of Integrative Plant Biology,2008,50:1070-1077.
    Zhang Y, Li Y, Wang Y, et al. Correlations and QTL detection in maize family per se and testcross progenies for plant height and ear height. Plant Breeding,2011,130:617-624.
    Zhao Y. Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology,2010, 61:49-64.
    Zhao Y D, Christensen S K, Fankhauser C, et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science,2001,291:306-309.
    Zhao Y D, Hull A K, Gupta N R, et al. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Development,2002, 16:3100-3112.
    Zheng N, Schulman B A, Song L, et al. Structure of the Cull-Rbxl-Skpl-F-box-Skp2 SCF ubiquitin ligase complex. Nature,2002,416:703-709.
    Zhi H, Ueguchi-Tanaka M, Umemura K, et al. A rice brassinosteroid-deficient mutant,ebisu dwarf (d2), is caused by a loss of a new member of cytochrome P450. Plant Cell,2003,15:2900-2910

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700