用户名: 密码: 验证码:
拟南芥RNA解旋酶AtHelps调控盐胁迫抗性的分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物因为其固定生长的特点而必须适应周围不同的环境胁迫条件,如干旱、低温、高盐等。当胁迫危害来临时,植物会通过复杂的信号转导来激活或抑制体内的生理生化过程,以此来达到抵御胁迫的目的,在这个过程中植物激素扮演着重要的角色。RNA解旋酶是一类利用ATP水解产生的能量催化双链RNA解旋的酶,在生物体内广泛存在。虽然RNA在体内能够形成稳定的高级结构,但是这些具有高级结构的RNA一般都不具有生物学功能。RNA解旋酶能够催化其转变为有活性的RNA,被认为是最有效的RNA分子伴侣。RNA解旋酶功能发挥涉及到RNA的转录、翻译起始、mRNA的剪接、mRNA的降解、蛋白质的翻译、rRNA加工、核糖体的组装和核mRNA输出等过程,在基因表达调控方面发挥重要作用。
     在RNA解旋酶家族中研究最清楚的是DEAD-box家族成员。自2001年拟南芥首个冷诱导型DEAD-box解旋酶FL25A发现以来,LOS4、STSR1/2、AtRH9/25等一系列的DEAD-Box成员在非生物胁迫中的功能相继被鉴定。但是对于SKI2家族在植物中的研究却相对较少,与非生物胁迫之间的关系更是鲜有报道。
     本研究利用生物信息学和芯片分析技术,分离鉴定了拟南芥中的SKI2家族成员,并根据进化关系确定AtHelps为酵母Ski2p和人类Ski2w的同源基因。利用反向遗传学的方法对AtHelps生物学功能进行了分析,主要结果如下:
     (1)拟南芥AtHelps的鉴定与表达定位特性
     拟南芥AtHelps RNA解旋酶是拟南芥的SKI2家族成员,与ScSki2p和HsSki2w高度同源,核心区氨基酸同源性分别达53%和56%,并含有具有保守的DEVH-box型解旋酶基序与结构域。
     AtHelps基因在根组织和成熟的种子中表达量最高,在萌发的第二天表达量有明显的降低,之后慢慢恢复至正常水平。AtHelps基因的转录能够受到高盐和高渗透胁迫的抑制。
     AtHelps的启动子活性分析显示在各个时期的组织中都有表达,但是表达的强度不同:AtHelps在维管束组织中转录活性强,且随着组织的成熟逐渐消失;根中的转录活性持续很高。显微切片分析发现根中高表达主要在中柱鞘内,尤其是在韧皮部的薄壁细胞中表达强烈,可能在木质部的物质装载和卸载中发挥重要作用。在幼苗期,高盐和干旱胁迫抑制AtHelps基因表达。
     利用洋葱表皮、根尖观察和稳定株系叶组织的原生质体观察的方法对AtHelps的亚细胞定位进行研究,三种方法同时显示AtHelps的蛋白定位于植物的细胞质中,原生质体观察结果还表明在叶绿体中没有表达。
     (2)AtHelps参与萌发期和萌发后期对高盐的不同响应取决于不同的ABI基因
     通过RNA干扰技术获得特异的AtHelps的突变体,结合35S驱动的超表达植株进行表型分析。发现不同基因型在200mM的NaCl中有差异萌发的表型,其中突变体萌发快,而超表达株系则变慢。同样在萌发后的子叶变绿和最终植株的成活率方面突变体也表现出较好抗性。利用相同渗透势的KCl和一定浓度的LiCl处理作对照,发现AtHelps主要是对钠离子毒害有反应。
     不同种类的ABA合成抑制剂能够消除三种基因型在盐胁迫下的萌发差异,证明AtHelps对于盐胁迫的响应依赖于植物激素ABA的。
     利用定量RT-PCR技术检测了ABA合成基因ABA2、NCED3、AAO3和降解的关键基因CYP707A3,发现突变体中合成基因下调而代谢基因上调,但总体的效果是使ABA含量下降;而ABA含量的测定结果得出相同结果,证实ABA含量高低是引发不同基因型差异萌发的原因之一。
     三种基因型表现出对于ABA的不同敏感性。Western Blot结果显示在突变体中的ABI3和ABI5的蛋白水平降低,而这种蛋白水平降低所造成的表型能够被蛋白酶体抑制剂所减弱。对ABA敏感性的改变可能是引发不同基因型差异萌发的原因。
     突变体萌发后生长阶段的耐盐性主要是通过降低体内ABI4的水平,进而影响AtHKT1;1的转录,最终优化钠离子的分配,减少钠离子产生的活性氧伤害来实现的。
     (3)AtHelps参与对胞质mRNA稳定性的调节
     AtHelps能够影响特定mRNA的稳定性。突变体通过对CYP707A3和AtHKT1;1的mRNA稳定性的调节增强了其活性形式功能的发挥,进一步强化了盐胁迫抗性。
Plants are sessile organisms capable of adapting to various environmental conditions,such as drought, cold, and high salt content in soil. When they encounter these stressfulconditions, the plant cells reprogram their cellular biochemical processes to defense it bytriggering a network of signaling events, during which phytohormone plays necessary roles.
     The RNA helicase is a kind of enzyme existed widely in all living organisms, whichcould catalyze double-stranded RNA to unwind using energy from ATP hydrolysis. And RNAhelicases convert RNA with advanced structure that makes it inactive to active functionalRNA, and is treated as the most effective RNA molecular chaperone. The function of RNAhelicase involves in RNA transcription, translation initiation, pre-mRNA splicing, mRNAdecay, protein translation, rRNA processing, assembly of ribosome and nuclear mRNA export,and so on. RNA helicase plays important roles in gene expression and regulation.
     The best known members in the RNA helicase family is the DEAD-box RNA helicases.Since the first cold induced DEAD-box helicase FL25A was studied in Arabidopsis thaliana,series of the DEAD-box helicase members were identified to function in abiotic stress, suchas LOS4, STSR1/2and AtRH9/25. But SKI2family is rarely studied in plants, and therelationship between SKI2family and abiotic stress is rarely addressed.
     Using biological information and gene-chip analysis, we identified the members of SKI2family in Arabidopsis. And we confirmed AtHelps as the homologous gene of Ski2p in yeastand Ski2w in human according to the evolutionary relationships. Then the biological functionof AtHelps was analyzed by the method of reverse genetics, and main results are as follow:
     (1) Identification and characterization of AtHelps
     The RNA helicase AtHelps was the member of Arabidopsis SKI2family, with closestphylogenetic relationship with ScSki2p and HsSki2w (53%and56%in core region aminoacid sequence), and contains a conserved DEVH-box motif.
     AtHelps expressed highest in root tissue and the mature seed; and the transcripts reducedobviously at the second day of germination process, and slowly returned to normal level after then. The transcription of AtHelps was inhibited by high salt and osmotic stress.
     Promoter activity of AtHelps was detected in all stages of Arabidopsis, but the intensitywas different: transcriptional activity was mainly found in the vascular tissue, and graduallydisappeared as the tissue turned older; Transcriptional activity in root was high all the time. Inthe root, transcriptional activity was mainly detected in pericycle, especially in theparenchyma cells of phloem. AtHelps might play an important role in loading and unloadingnecessary material to the xylem. High salt and drought stress repressed the transcriptionalactivity of AtHelps at seedling stage.
     The protein of AtHelps localized in cytoplasm by transient transformation assay withonion epidermal cells and protoplast of homozygous lines observation. However, it does notlocalized in chloroplast.
     (2) The responses to salt stress of AtHelps in germination and postgermination phasewere depended on different ABI genes
     We got mutants by RNA interference technology and overexpression lines for furtherphenotypic analysis. The mutant germinated faster but the overexpression lines were slowerin200mM NaCl. The mutant also showed higher resistance to salt in cotyledon-greeningstage and final survival rate. The results of KCl and LiCl showed AtHelps was mainly inresponse to sodium toxicity.
     Different kinds of ABA synthesis inhibitor reduced the difference-germinationphenotype of three genotypes in salt stress. It proved AtHelps response to salt stress wasdependent on the phytohormone ABA.
     The expression of ABA synthesis key genes, ABA2, NCED3, AAO3and degradation keygene CYP707A3were detected by qRT-PCR. And synthesis key genes were reduced anddegradation key gene was induced in mutant. While the overall effect was to make the ABAcontent decrease in mutant; then the ABA content was messured and the results was in accordwith the qRT-PCR results. The difference of ABA content among genotypes was one ofreasons that caused the difference-germination.
     The sensitivity to ABA was diverse among three genotypes. Western Blot showed lowerABI3and ABI5protein levels in the mutant, and the phenotype caused by decreased proteinlevel can be reduced by proteasome inhibitors.
     In post-germination growth phase, the reduced transcripts of ABI4was the main reasonof phenotype, which directly enhanced the transcription of AtHKT1;1. AtHKT1;1can achievethe optimal allocation of sodium, which reduced active oxygen damage caused by sodium.
     (3) AtHelps participated in regulating the stabilization of mRNA in cytosol.
     AtHelps regulated the stability for some specific mRNAs, such as CYP707A3andAtHKT1;1. The active form was stabilized by protecting the mRNA from turnover, whichfurther played roles in resisting salt stress in mutant.
引文
乔慧萍,李建设,雍立华,艾凤舞。植物盐胁迫生理及其适应性调控机制的研究进展。宁夏农林科技,2007,3:34-36
    王宝山,邹琦,赵可夫。NaCl胁迫对高粱不同器官离子含量的影响。作物学报,2000,26:845-850
    吴旭红,高玉芝。盐胁迫对植物形态和生理过程的影响。高师理科学报,2002,22:51-53
    杨晓慧,蒋卫杰,魏珉。植物对盐胁迫的反应及其抗盐机理研究进展。山东农业大学学报(自然科学版),2006,37:302-305
    曾洪学,王俊。盐害生理和植物抗盐性。生物学通报,2005,40:1-3
    张其德。盐胁迫对植物及其光合作用的影响。植物杂志,1999,6:32-33
    赵可夫,范海。盐生植物及其对盐渍生境的适应生理(第一版)。北京:科学出版社,2005,131-180
    Abdelhaleem M.. RNA helicases: regulators of differentiation. Clin. Biochem.,2005,38(6):499-503
    Achard P., Cheng H., De Grauwe L., Decat J., Schoutteten H., Moritz T., Van Der Straeten D.,Peng J., and Harberd N. P.. Integration of plant responses to environmentally activatedphytohormonal signals. Science,2006,311(5757):91-94
    Alonso-Ramirez A., Rodriguez D., Reyes D., Jimenez J. A., Nicolas G., Lopez-Climent M.,Gomez-Cadenas A., and Nicolas C.. Evidence for a role of gibberellins in salicylicacid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol.,2009,150(3):1335-44
    Anderson J. S., and Parker R. P.. The3' to5' degradation of yeast mRNAs is a generalmechanism for mRNA turnover that requires the SKI2DEVH box protein and3' to5'exonucleases of the exosome complex. Embo J.,1998,17(5):1497-506
    Apone F., Alyeshmerni N., Wiens K., Chalmers D., Chrispeels M. J., and Colucci G.. TheG-protein-coupled receptor GCR1regulates DNA synthesis through activation ofphosphatidylinositol-specific phospholipase C. Plant Physiol.,2003,133(2):571-9
    Aubourg S., Kreis M., and Lecharny A.. The DEAD box RNA helicase family in Arabidopsisthaliana. Nucleic Acids Res.,1999,27(2):628-36
    Balague C., Lin B., Alcon C., Flottes G., Malmstrom S., Kohler C., Neuhaus G., Pelletier G.,Gaymard F., and Roby D.. HLM1, an essential signaling component in the hypersensitiveresponse, is a member of the cyclic nucleotide-gated channel ion channel family. PlantCell,2003,15(2):365-79
    Berthomieu P., Conejero G., Nublat A., Brackenbury W. J., Lambert C., Savio C., Uozumi N.,Oiki S., Yamada K., Cellier F., Gosti F., Simonneau T., Essah P. A., Tester M., Very A. A.,Sentenac H., and Casse F.. Functional analysis of AtHKT1in Arabidopsis shows that Na+recirculation by the phloem is crucial for salt tolerance. EMBO J.,2003,22(9):2004-14
    Blumwald E. Sodium transport and salt tolerance in plants. Curr. Opin. Cell. Biol.,2000,12(4):431-4
    Boddeker N., Stade K., and Franceschi F.. Characterization of DbpA, an Escherichia coliDEAD box protein with ATP independent RNA unwinding activity. Nucleic Acids Res.,1997,25(3):537-45
    Cao W. H., Liu J., He X. J., Mu R. L., Zhou H. L., Chen S. Y., and Zhang J. S.. Modulation ofethylene responses affects plant salt-stress responses. Plant Physiol.,2007,143(2):707-19
    Chamot D., Magee W. C., Yu E., and Owttrim G. W.. A cold shock-induced cyanobacterialRNA helicase. J. Bacteriol.,1999,181(6):1728-32
    Chen X., Liu J., Cheng Y., and Jia D.. HEN1functions pleiotropically in Arabidopsisdevelopment and acts in C function in the flower. Development,2002,129(5):1085-94
    Cheng S. H., Willmann M. R., Chen H. C., and Sheen J.. Calcium signaling through proteinkinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol.,2002,129(2):469-85
    Chi W., He B., Mao J., Li Q., Ma J., Ji D., Zou M., and Zhang L.. The function of RH22, aDEAD RNA helicase, in the biogenesis of the50S ribosomal subunits of Arabidopsischloroplasts. Plant Physiol.,2012,158(2):693-707
    Chini A., Fonseca S., Fernandez G., Adie B., Chico J. M., Lorenzo O., Garcia-Casado G.,Lopez-Vidriero I., Lozano F. M., Ponce M. R., Micol J. L., and Solano R.. The JAZfamily of repressors is the missing link in jasmonate signalling. Nature,2007,448(7154):666-71
    Chung E., Cho C. W., Yun B. H., Choi H. K., So H. A., Lee S. W., and Lee J. H.. Molecularcloning and characterization of the soybean DEAD-box RNA helicase gene induced bylow temperature and high salinity stress. Gene,2009,443(1-2):91-9
    Colcombet J., and Hirt H.. Arabidopsis MAPKs: a complex signalling network involved inmultiple biological processes. Biochem. J.,2008,413(2):217-26
    Dalmay T., Horsefield R., Braunstein T. H., and Baulcombe D. C.. SDE3encodes an RNAhelicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J.,2001,20(8):2069-78
    De Lucas M., Daviere J. M., Rodriguez-Falcon M., Pontin M., Iglesias-Pedraz J. M., LorrainS., Fankhauser C., Blazquez M. A., Titarenko E., and Prat S.. A molecular framework forlight and gibberellin control of cell elongation. Nature,2008,451(7177):480-4
    Dharmasiri N., Dharmasiri S., and Estelle M.. The F-box protein TIR1is an auxin receptor.Nature,2005,435(7041):441-5
    Dorcey E., Rodriguez-Villalon A., Salinas P., Santuari L., Pradervand S., Harshman K., andHardtke C. S.. Context-dependent dual role of SKI8homologs in mRNA synthesis andturnover. PLoS Genet.,2012,8(4): e1002652
    Dracup M.. Increasing salt tolerance of plants through cell culture requires greaterunderstanding of tolerance mechanisms. Aus. J. Plant Physiol.,1991,18:1-15
    Endo A., Sawada Y., Takahashi H., Okamoto M., Ikegami K., Koiwai H., Seo M., ToyomasuT., Mitsuhashi W., Shinozaki K., Nakazono M., Kamiya Y., Koshiba T., and Nambara E..Drought induction of Arabidopsis9-cis-epoxycarotenoid dioxygenase occurs in vascularparenchyma cells. Plant Physiol.,2008,147(4):1984-93
    Finkelstein R. R., Gampala S. S., and Rock C. D.. Abscisic acid signaling in seeds andseedlings. Plant Cell,2002,14:15-45
    Flexas J, Bota J, and Galmés J.. Keeping a positive carbon balance under adverse conditions:responses of photosynthesis and respiration to water stress. Physiol. Plant.,2006,127:343-352
    Flynn G. E., Johnson J. P., Jr., and Zagotta W. N.. Cyclic nucleotide-gated channels: sheddinglight on the opening of a channel pore. Nat. Rev. Neurosci.,2001,2(9):643-51
    Fu Z. Q., Yan S., Saleh A., Wang W., Ruble J., Oka N., Mohan R., Spoel S. H., Tada Y.,Zheng N., and Dong X.. NPR3and NPR4are receptors for the immune signal salicylicacid in plants. Nature,2012,486(7402):228-32
    Fukuda A., Nakamura A., Tagiri A., Tanaka H., Miyao A., Hirochika H., and Tanaka Y..Function, intracellular localization and the importance in salt tolerance of a vacuolarNa+/H+antiporter from rice. Plant Cell Physiol.,2004,45(2):146-59
    Garciadeblas B., Senn M. E., Banuelos M. A., and Rodriguez-Navarro A.. Sodium transportand HKT transporters: the rice model. Plant J.,2003,34(6):788-801
    Gong Z., Dong C. H., Lee H., Zhu J., Xiong L., Gong D., Stevenson B., and Zhu J. K.. ADEAD box RNA helicase is essential for mRNA export and important for developmentand stress responses in Arabidopsis. Plant Cell,2005,17(1):256-67
    Gong Z., Lee H., Xiong L., Jagendorf A., Stevenson B., and Zhu J. K.. RNA helicase-likeprotein as an early regulator of transcription factors for plant chilling and freezingtolerance. Proc. Natl. Acad. Sci. U. S. A.,2002,99(17):11507-12
    Guan Q., Wu J., Zhang Y., Jiang C., Liu R., Chai C., and Zhu J.. A DEAD box RNA helicaseis critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance inArabidopsis. Plant Cell,2013,25(1):342-56
    Guo L., Devaiah S. P., Narasimhan R., Pan X., Zhang Y., Zhang W., and Wang X.. Cytosolicglyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Ddelta totransduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell,2012,24(5):2200-12
    Guo Y., Halfter U., Ishitani M., and Zhu J. K.. Molecular characterization of functionaldomains in the protein kinase SOS2that is required for plant salt tolerance. Plant Cell,2001,13(6):1383-400
    Halfter U., Ishitani M., and Zhu J. K.. The Arabidopsis SOS2protein kinase physicallyinteracts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci.U. S. A.,2000,97(7):3735-40
    He J., Duan Y., Hua D., Fan G., Wang L., Liu Y., Chen Z., Han L., Qu L. J., and Gong Z..DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production inArabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell,2012,24(5):1815-33
    He X. J., Mu R. L., Cao W. H., Zhang Z. G., Zhang J. S., and Chen S. Y.. AtNAC2, atranscription factor downstream of ethylene and auxin signaling pathways, is involved insalt stress response and lateral root development. Plant J.,2005,44(6):903-16
    Hartman T. R., Qian S., Bolinger C., Fernandez S., Schoenberg D. R., and Boris-Lawrie K.RNA helicase A is necessary for translation of selected messenger RNAs. Nat Struct MolBiol,2006,13(6):509-16
    Hong Y., Zhang W., and Wang X.. Phospholipase D and phosphatidic acid signalling in plantresponse to drought and salinity. Plant Cell Environ.,2010,33(4):627-35
    Horie T., Hauser F., and Schroeder J. I.. HKT transporter-mediated salinity resistancemechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci.,2009,14(12):660-8
    Horie T., Yoshida K., Nakayama H., Yamada K., Oiki S., and Shinmyo A.. Two types of HKTtransporters with different properties of Na+and K+transport in Oryza sativa. Plant J.,2001,27(2):129-38
    Hsing Y. I., Chen Z. Y., and Chow T. Y.. Nucleotide sequences of a soybean complementaryDNA encoding a50-kilodalton late embryogenesis abundant protein. Plant Physiol.,1992,99(1):354-5
    Huang C. K., Huang L. F., Huang J. J., Wu S. J., Yeh C. H., and Lu C. A.. A DEAD-boxprotein, AtRH36, is essential for female gametophyte development and is involved inrRNA biogenesis in Arabidopsis. Plant Cell Physiol.,2010,51(5):694-706
    Huang C. K., Yu S. M., and Lu C. A.. A rice DEAD-box protein, OsRH36, can complementan Arabidopsis atrh36mutant, but cannot functionally replace its yeast homolog Dbp8p.Plant Mol. Biol.,2010,74(1-2):119-28
    Hunt L., Mills L. N., Pical C., Leckie C. P., Aitken F. L., Kopka J., Mueller-Roeber B.,McAinsh M. R., Hetherington A. M., and Gray J. E.. Phospholipase C is required for thecontrol of stomatal aperture by ABA. Plant J.,2003,34(1):47-55
    Hwang I., Sze H., and Harper J. F.. A calcium-dependent protein kinase can inhibit acalmodulin-stimulated Ca2+pump (ACA2) located in the endoplasmic reticulum ofArabidopsis. Proc. Natl. Acad. Sci. U. S. A.,2000,97(11):6224-9
    Inagaki S., Suzuki T., Ohto M. A., Urawa H., Horiuchi T., Nakamura K., and Morikami A..Arabidopsis TEBICHI, with helicase and DNA polymerase domains, is required forregulated cell division and differentiation in meristems. Plant Cell,2006,18(4):879-92
    Inoue T., Higuchi M., Hashimoto Y., Seki M., Kobayashi M., Kato T., Tabata S., Shinozaki K.,and Kakimoto T.. Identification of CRE1as a cytokinin receptor from Arabidopsis.Nature,2001,409(6823):1060-3
    Jain M., and Khurana J. P.. Transcript profiling reveals diverse roles of auxin-responsivegenes during reproductive development and abiotic stress in rice. Febs J.,2009,276(11):3148-62
    Jiang C., Belfield E. J., Mithani A., Visscher A., Ragoussis J., Mott R., Smith J. A., andHarberd N. P.. ROS-mediated vascular homeostatic control of root-to-shoot soil Nadelivery in Arabidopsis. EMBO J.,2012,31(22):4359-70
    Jiang F., and Hartung W.. Long-distance signalling of abscisic acid (ABA): the factorsregulating the intensity of the ABA signal. J. Exp. Bot.,2008,59(1):37-43
    Kang J., Hwang J. U., Lee M., Kim Y. Y., Assmann S. M., Martinoia E., and Lee Y..PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid.Proc. Natl. Acad. Sci. U. S. A.,2010,107(5):2355-60
    Kant P., Kant S., Gordon M., Shaked R., and Barak S.. STRESS RESPONSESUPPRESSOR1and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNAhelicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol.,2007,145(3):814-30
    Kepinski S., and Leyser O.. The Arabidopsis F-box protein TIR1is an auxin receptor. Nature,2005,435(7041):446-51
    Kim J. S., Kim K. A., Oh T. R., Park C. M., and Kang H.. Functional characterization ofDEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. PlantCell Physiol.,2008a,49(10):1563-71
    Kim S. G., Lee A. K., Yoon H. K., and Park C. M.. A membrane-bound NAC transcriptionfactor NTL8regulates gibberellic acid-mediated salt signaling in Arabidopsis seedgermination. Plant J.,2008b,55(1):77-88
    Kiss T.. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellularfunctions. Cell,2002,109(2):145-8
    Kistler A. L., and Guthrie C.. Deletion of MUD2, the yeast homolog of U2AF65, can bypassthe requirement for sub2, an essential spliceosomal ATPase. Genes Dev.,2001,15(1):42-9
    Kobayashi K., Otegui M. S., Krishnakumar S., Mindrinos M., and Zambryski P..INCREASED SIZE EXCLUSION LIMIT2encodes a putative DEVH box RNA helicaseinvolved in plasmodesmata function during Arabidopsis embryogenesis. Plant Cell,2007,19(6):1885-97
    Kohler D., Schmidt-Gattung S., and Binder S.. The DEAD-box protein PMH2is required forefficient group II intron splicing in mitochondria of Arabidopsis thaliana. Plant Mol.Biol.,2010,72(4-5):459-67
    Kumar S., Dhingra A., and Daniell H.. Plastid-expressed betaine aldehyde dehydrogenasegene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. PlantPhysiol.,2004,136(1):2843-54
    Kuromori T., Miyaji T., Yabuuchi H., Shimizu H., Sugimoto E., Kamiya A., Moriyama Y.,and Shinozaki K.. ABC transporter AtABCG25is involved in abscisic acid transport andresponses. Proc. Natl. Acad. Sci. U. S. A.,2010,107(5):2361-6
    Lange H., Sement F. M., and Gagliardi D.. MTR4, a putative RNA helicase and exosomeco-factor, is required for proper rRNA biogenesis and development in Arabidopsisthaliana. Plant J.,2011,68(1):51-63
    Leng Q., Mercier R. W., Yao W., and Berkowitz G. A.. Cloning and first functionalcharacterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol.,1999,121(3):753-61
    Li D., Liu H., Zhang H., Wang X., and Song F.. OsBIRH1, a DEAD-box RNA helicase withfunctions in modulating defence responses against pathogen infection and oxidative stress.J. Exp. Bot.,2008,59(8):2133-46
    Liao X. R., He P. C., and Zhu X. C.. Effect of zeatin on H2O2scavenging system of Vitisvulpina leaf disks under salt stress. Acta. Botanica. Sinica.,1997,39:641-646
    Linder P., and Owttrim G. W.. Plant RNA helicases: linking aberrant and silencing RNA.Trends Plant Sci.,2009,14(6):344-52
    Link V. L., Hofmann M. G., Sinha A. K., Ehness R., Strnad M., and Roitsch T.. Biochemicalevidence for the activation of distinct subsets of mitogen-activated protein kinases byvoltage and defense-related stimuli. Plant Physiol.,2002,128(1):271-81
    Liu H. H., Liu J., Fan S. L., Song M. Z., Han X. L., Liu F., and Shen F. F.. Molecular cloningand characterization of a salinity stress-induced gene encoding DEAD-box helicase fromthe halophyte Apocynum venetum. J. Exp. Bot.,2008,59(3):633-44
    Liu J., Ishitani M., Halfter U., Kim C. S., and Zhu J. K.. The Arabidopsis thaliana SOS2geneencodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. U. S. A.,2000,97(7):3730-4
    Liu J., and Zhu J. K.. Proline accumulation and salt-stress-induced gene expression in asalt-hypersensitive mutant of Arabidopsis. Plant Physiol.,1997,114(2):591-6
    Liu M., Shi D. Q., Yuan L., Liu J., and Yang W. C.. SLOW WALKER3, encoding a putativeDEAD-box RNA helicase, is essential for female gametogenesis in Arabidopsis. J. Integr.Plant Biol.,2010,52(9):817-28
    Lohman T. M.. Helicase-catalyzed DNA unwinding. J. Biol. Chem.,1993,268(4):2269-72
    Lohman T. M., and Bjornson K. P.. Mechanisms of helicase-catalyzed DNA unwinding. Annu.Rev. Biochem.,1996,65:169-214
    Lopez-Molina L., Mongrand S., and Chua N. H.. A postgermination developmental arrestcheckpoint is mediated by abscisic acid and requires the ABI5transcription factor inArabidopsis. Proc. Natl. Acad. Sci. U. S. A.,2001,98(8):4782-7
    Lu Y.. Effet of NaCl stress on water and phytosynthetis gas exchange of spinach leaves. PlantPhysiol. Commu.,1999:35-38
    Ma S. Y., and Wu W. H.. AtCPK23functions in Arabidopsis responses to drought and saltstresses. Plant Mol. Biol.,2007,65(4):511-8
    Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A., and Grill E.. Regulatorsof PP2C phosphatase activity function as abscisic acid sensors. Science,2009,324(5930):1064-8
    Mahajan S, and Tuteja N.. Cold, salinity and drought stress. Arch. Biochem. Biophys. Res.Commun.,2005,444:139-45
    Mandhania S, Madnan S, and Sawhney V.. Antioxidant defense mechanism under salt stressin wheat seedlings. Biologia. Plantarum.,2006,50:227~231
    Marschner H.. Mineral Nutrition in Higher Plants. San Diego: Academic Press,1995,60:324-326.
    Maruta T., Inoue T., Tamoi M., Yabuta Y., Yoshimura K., Ishikawa T., and Shigeoka S..Arabidopsis NADPH oxidases, AtrbohD and AtrbohF, are essential for jasmonicacid-induced expression of genes regulated by MYC2transcription factor. Plant Sci.,2011,180(4):655-60
    Maser P., Hosoo Y., Goshima S., Horie T., Eckelman B., Yamada K., Yoshida K., Bakker E. P.,Shinmyo A., Oiki S., Schroeder J. I., and Uozumi N.. Glycine residues in potassiumchannel-like selectivity filters determine potassium selectivity in four-loop-per-subunitHKT transporters from plants. Proc. Natl. Acad. Sci. U. S. A.,2002,99(9):6428-33
    Mason M. G., Jha D., Salt D. E., Tester M., Hill K., Kieber J. J., and Schaller G. E.. Type-Bresponse regulators ARR1and ARR12regulate expression of AtHKT1;1andaccumulation of sodium in Arabidopsis shoots. Plant J.,2010,64(5):753-63
    Miura K., Lee J., Jin J. B., Yoo C. Y., Miura T., and Hasegawa P. M.. Sumoylation of ABI5bythe Arabidopsis SUMO E3ligase SIZ1negatively regulates abscisic acid signaling. Proc.Natl. Acad. Sci. U. S. A.,2009,106(13):5418-23
    Moran J.F, Becana M., Iturbe-Ormaetxe I, Frechilla S, Klucas R. V, and Aparicio-Tejo P..Drought induces oxidative stress in pea plants. Planta,1994,94:346-352
    Munns R, and Termaat A.. Whole plant responses to salinity Aus. J. Plant Physiol.,1986,13:143-160
    Munns R.. Comparative physiology of salt and water stress. Plant Cell Environ.,2002,25(2):239-250
    Nielsen P. J.., McMaster G. K., and Trachsel H. Cloning of eukaryotic protein synthesisinitiation factor genes: isolation and characterization of cDNA clones encoding factoreIF-4A. Nucleic Acids Res.,1985,13(19):6867-80
    Nishimura K., Ashida H., Ogawa T., and Yokota A.. A DEAD box protein is required forformation of a hidden break in Arabidopsis chloroplast23S rRNA. Plant J.,2010,63(5):766-77
    Pandey S., Nelson D. C., and Assmann S. M.. Two novel GPCR-type G proteins are abscisicacid receptors in Arabidopsis. Cell,2009,136(1):136-48
    Park J., Kim Y. S., Kim S. G., Jung J. H., Woo J. C., and Park C. M.. Integration of auxin andsalt signals by the NAC transcription factor NTM2during seed germination inArabidopsis. Plant Physiol.,2011,156(2):537-49
    Park S. Y., Fung P., Nishimura N., Jensen D. R., Fujii H., Zhao Y., Lumba S., Santiago J.,Rodrigues A., Chow T. F., Alfred S. E., Bonetta D., Finkelstein R., Provart N. J.,Desveaux D., Rodriguez P. L., McCourt P., Zhu J. K., Schroeder J. I., Volkman B. F., andCutler S. R.. Abscisic acid inhibits type2C protein phosphatases via the PYR/PYL familyof START proteins. Science,2009,324(5930):1068-71
    Parre E., Ghars M. A., Leprince A. S., Thiery L., Lefebvre D., Bordenave M., Richard L.,Mazars C., Abdelly C., and Savoure A.. Calcium signaling via phospholipase C isessential for proline accumulation upon ionic but not nonionic hyperosmotic stresses inArabidopsis. Plant Physiol.,2007,144(1):503-12
    Perruc E., Kinoshita N., and Lopez-Molina L.. The role of chromatin-remodeling factor PKLin balancing osmotic stress responses during Arabidopsis seed germination. Plant J.,2007,52(5):927-36
    Pham X. H., and Tuteja N.. Potent inhibition of DNA unwinding and ATPase activities of peaDNA helicase45by DNA-binding agents. Biochem. Biophys. Res. Commun.,2002,294(2):334-9
    Phan T. N., Ehtesham N. Z., Tuteja R., and Tuteja N.. A novel nuclear DNA helicase withhigh specific activity from Pisum sativum catalytically translocates in the3'-5' direction.Eur. J. Biochem.,2003,270(8):1735-45
    Pitman M.G... Transport across the root and shoot/root interactions. In Salinity tolerance inplant-strategies for crop improvement.1984,21:93-112.
    Platten J. D., Cotsaftis O., Berthomieu P., Bohnert H., Davenport R. J., Fairbairn D. J., HorieT., Leigh R. A., Lin H. X., Luan S., Maser P., Pantoja O., Rodriguez-Navarro A.,Schachtman D. P., Schroeder J. I., Sentenac H., Uozumi N., Very A. A., Zhu J. K., DennisE. S., and Tester M.. Nomenclature for HKT transporters, key determinants of plantsalinity tolerance. Trends Plant Sci.,2006,11(8):372-4
    Qiu Q. S., Guo Y., Dietrich M. A., Schumaker K. S., and Zhu J. K.. Regulation of SOS1, aplasma membrane Na+/H+exchanger in Arabidopsis thaliana, by SOS2and SOS3. Proc.Natl. Acad. Sci. U. S. A.,2002,99(12):8436-41
    Quan R., Lin H., Mendoza I., Zhang Y., Cao W., Yang Y., Shang M., Chen S., Pardo J. M.,and Guo Y.. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinaseSOS2to protect Arabidopsis shoots from salt stress. Plant Cell,2007,19(4):1415-31
    Quintero F. J., Martinez-Atienza J., Villalta I., Jiang X., Kim W. Y., Ali Z., Fujii H., MendozaI., Yun D. J., Zhu J. K., and Pardo J. M.. Activation of the plasma membrane Na/Hantiporter Salt-Overly-Sensitive1(SOS1) by phosphorylation of an auto-inhibitoryC-terminal domain. Proc. Natl. Acad. Sci. U. S. A.,2011,108(6):2611-6
    Ranjbarfordoei A, Samson R, and Lemeur R.. Effects of osmotic drought stress induced bycombination of NaCl and polyethylene glycol on leaf water status, photosynthetic gasexchange, and water use efficiency of Pistacia khinjuk and Pmutica. Photosynth.,2002,40:165-169
    Rasmussen S. G., Choi H. J., Rosenbaum D. M., Kobilka T. S., Thian F. S., Edwards P. C.,Burghammer M., Ratnala V. R., Sanishvili R., Fischetti R. F., Schertler G. F., Weis W. I.,and Kobilka B. K.. Crystal structure of the human beta2adrenergic G-protein-coupledreceptor. Nature,2007,450(7168):383-7
    Ray S., Agarwal P., Arora R., Kapoor S., and Tyagi A. K.. Expression analysis ofcalcium-dependent protein kinase gene family during reproductive development andabiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol. Genet. Genomics,2007,278(5):493-505
    Rocak S., and Linder P.. DEAD-box proteins: the driving forces behind RNA metabolism.Nat. Rev. Mol. Cell Biol.,2004,5(3):232-41
    Rodriguez F. I., Esch J. J., Hall A. E., Binder B. M., Schaller G. E., and Bleecker A. B.. Acopper cofactor for the ethylene receptor ETR1from Arabidopsis. Science,1999,283(5404):996-8
    Rogers G. W., Jr., Komar A. A., and Merrick W. C.. eIF4A: the godfather of the DEAD boxhelicases. Prog. Nucleic Acid Res. Mol Biol,2002,72:307-31
    Saneoka H., Nagasaka C., Hahn D. T., Yang W. J., Premachandra G. S., Joly R. J., and RhodesD.. Salt Tolerance of Glycinebetaine-Deficient and-Containing Maize Lines. PlantPhysiol.,1995,107(2):631-638
    Santner A., and Estelle M.. Recent advances and emerging trends in plant hormone signalling.Nature,2009,459(7250):1071-8
    Schachtman D. P., and Goodger J. Q.. Chemical root to shoot signaling under drought. TrendsPlant Sci.,2008,13(6):281-7
    Schachtman D. P., and Schroeder J. I.. Structure and transport mechanism of a high-affinitypotassium uptake transporter from higher plants. Nature,1994,370(6491):655-8
    Schaller G. E., and Bleecker A. B.. Ethylene-binding sites generated in yeast expressing theArabidopsis ETR1gene. Science,1995,270(5243):1809-11
    Schmitt C., von Kobbe C., Bachi A., Pante N., Rodrigues J. P., Boscheron C., Rigaut G.,Wilm M., Seraphin B., Carmo-Fonseca M., and Izaurralde E.. Dbp5, a DEAD-box proteinrequired for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complexvia a conserved interaction with CAN/Nup159p. EMBO J.,1999,18(15):4332-47
    Schuurink R. C., Shartzer S. F., Fath A., and Jones R. L.. Characterization of acalmodulin-binding transporter from the plasma membrane of barley aleurone. Proc. Natl.Acad. Sci. U. S. A.,1998,95(4):1944-9
    Shen Y. Y., Wang X. F., Wu F. Q., Du S. Y., Cao Z., Shang Y., Wang X. L., Peng C. C., Yu X.C., Zhu S. Y., Fan R. C., Xu Y. H., and Zhang D. P.. The Mg-chelatase H subunit is anabscisic acid receptor. Nature,2006,443(7113):823-6
    Shi H, Wu S J, and Zhu J.K.. Over expression of a plasma membrane Na+/H+antiporterimproves salt tolerance in Araidopsis. Nature Biotech.,2003a,21:81~85
    Shi H., Ishitani M., Kim C., and Zhu J. K.. The Arabidopsis thaliana salt tolerance geneSOS1encodes a putative Na+/H+antiporter. Proc. Natl. Acad. Sci. U. S. A.,2000,97(12):6896-901
    Shi H., Lee B. H., Wu S. J., and Zhu J. K.. Overexpression of a plasma membrane Na+/H+antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol.,2003b,21(1):81-5
    Shkolnik-Inbar D., Adler G., and Bar-Zvi D.. ABI4downregulates expression of the sodiumtransporter HKT1;1in Arabidopsis roots and affects salt tolerance. Plant J.,2013,73(6):993-1005
    Shkolnik-Inbar D., and Bar-Zvi D.. ABI4mediates abscisic acid and cytokinin inhibition oflateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell,2010,22(11):3560-73
    Shono M, Wada M, and Hara Y.. Molecular cloning of Na+-ATPase cDNA from a marine alga,Heterosinma akashiwo. Biochim. Biophys. Acta.,2001,1511:193~199
    Soderman E. M., Brocard I. M., Lynch T. J., and Finkelstein R. R.. Regulation and function ofthe Arabidopsis ABA-insensitive4gene in seed and abscisic acid response signalingnetworks. Plant Physiol.,2000,124(4):1752-65
    Song C. P., Guo Y., Qiu Q., Lambert G., Galbraith D. W., Jagendorf A., and Zhu J. K.. Aprobable Na+(K+)/H+exchanger on the chloroplast envelope functions in pH homeostasisand chloroplast development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A.,2004,101(27):10211-6
    Stonebloom S., Burch-Smith T., Kim I., Meinke D., Mindrinos M., and Zambryski P.. Loss ofthe plant DEAD-box protein ISE1leads to defective mitochondria and increasedcell-to-cell transport via plasmodesmata. Proc. Natl. Acad. Sci. U. S. A.,2009,106(40):17229-34
    Svitkin Y. V., Ovchinnikov L. P., Dreyfuss G., and Sonenberg N.. General RNA bindingproteins render translation cap dependent. EMBO J.,1996,15(24):7147-55
    Tanner N. K., Cordin O., Banroques J., Doere M., and Linder P.. The Q motif: a newlyidentified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol.Cell,2003,11(1):127-38
    Tanner N. K., and Linder P.. DExD/H box RNA helicases: from generic motors to specificdissociation functions. Mol. Cell,2001,8(2):251-62
    Teige M., Scheikl E., Eulgem T., Doczi R., Ichimura K., Shinozaki K., Dangl J. L., and HirtH.. The MKK2pathway mediates cold and salt stress signaling in Arabidopsis. Mol. Cell,2004,15(1):141-52
    Thines B., Katsir L., Melotto M., Niu Y., Mandaokar A., Liu G., Nomura K., He S. Y., HoweG. A., and Browse J.. JAZ repressor proteins are targets of the SCF(COI1) complexduring jasmonate signalling. Nature,2007,448(7154):661-5
    Tseng S. S., Weaver P. L., Liu Y., Hitomi M., Tartakoff A. M., and Chang T. H.. Dbp5p, acytosolic RNA helicase, is required for poly(A)+RNA export. EMBO J.,1998,17(9):2651-62
    Tuteja N.. Plant DNA helicases: the long unwinding road. J. Exp. Bot.,2003,54(391):2201-14
    Tuteja N., and Phan T. N.. A chloroplast DNA helicase II from pea that prefers fork-likereplication structures. Plant Physiol.,1998,118(3):1029-38
    Tuteja N., and Tuteja R.. Unraveling DNA helicases. Motif, structure, mechanism andfunction. Eur. J. Biochem.,2004,271(10):1849-63
    Ueguchi-Tanaka M., Ashikari M., Nakajima M., Itoh H., Katoh E., Kobayashi M., Chow T. Y.,Hsing Y. I., Kitano H., Yamaguchi I., and Matsuoka M.. GIBBERELLIN INSENSITIVEDWARF1encodes a soluble receptor for gibberellin. Nature,2005,437(7059):693-8
    Umate P., Tuteja R., and Tuteja N.. Genome-wide analysis of helicase gene family from riceand Arabidopsis: a comparison with yeast and human. Plant Mol. Biol.,2010,73(4-5):449-65
    Uozumi N., Kim E. J., Rubio F., Yamaguchi T., Muto S., Tsuboi A., Bakker E. P., NakamuraT., and Schroeder J. I.. The Arabidopsis HKT1gene homolog mediates inward Na+currents in xenopus laevis oocytes and Na+uptake in Saccharomyces cerevisiae. PlantPhysiol.,2000,122(4):1249-59
    Veronigue H, Yosh I.I, and Jared J.. Localization, ion channel regulation, and genetic interactions during abscisic acid signaling of the nuclear mRNA cap-binding protein ABH1.Plant Physiol. Commu.,2002,130:1276~1287
    Wang L., Lewis M. S., and Johnson A. W.. Domain interactions within the Ski2/3/8complexand between the Ski complex and Ski7p. RNA,2005a,11(8):1291-302
    Wang N. N., Shih M. C., and Li N.. The GUS reporter-aided analysis of the promoteractivities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7induced byhormones and stresses. J. Exp. Bot.,2005b,56(413):909-20
    Wang W., Vinocur B., and Altman A.. Plant responses to drought, salinity and extremetemperatures: towards genetic engineering for stress tolerance. Planta,2003,218(1):1-14
    Wang Y., Liu C., Li K., Sun F., Hu H., Li X., Zhao Y., Han C., Zhang W., Duan Y., Liu M.,and Li X.. Arabidopsis EIN2modulates stress response through abscisic acid responsepathway. Plant Mol. Biol.,2007,64(6):633-44
    Wang Y. N, Zhang W. S, and Li K. X.. Salt-induced plasticity of root hair development iscaused by ion disequilibrium in Arabidopsis thaliana. Plant Research,2008,121:87-96
    Wang Z. Y., Seto H., Fujioka S., Yoshida S., and Chory J.. BRI1is a critical component of aplasma-membrane receptor for plant steroids. Nature,2001,410(6826):380-3
    Wasilewska A., Vlad F., Sirichandra C., Redko Y., Jammes F., Valon C., Frei dit Frey N., andLeung J.. An update on abscisic acid signaling in plants and more. Mol. Plant,2008,1(2):198-217
    Western T. L., Cheng Y., Liu J., and Chen X.. HUA ENHANCER2, a putative DExH-boxRNA helicase, maintains homeotic B and C gene expression in Arabidopsis. Development,2002,129(7):1569-81
    Wilkinson S., and Davies W. J.. ABA-based chemical signalling: the co-ordination ofresponses to stress in plants. Plant Cell Environ.,2002,25(2):195-210
    Winicov I.. New molecular approaches to improving salt tolerance in crop plants. Annals ofBotany,,1998,82:703-710
    Wu C. A., Yang G. D., Meng Q. W., and Zheng C. C.. The cotton GhNHX1gene encoding anovel putative tonoplast Na+/H+antiporter plays an important role in salt stress. PlantCell Physiol.,2004,45(5):600-7
    Xiao Y., Savchenko T., Baidoo E. E., Chehab W. E., Hayden D. M., Tolstikov V., Corwin J. A.,Kliebenstein D. J., Keasling J. D., and Dehesh K.. Retrograde signaling by the plastidialmetabolite MEcPP regulates expression of nuclear stress-response genes. Cell,2012,149(7):1525-35
    Xiong L., Schumaker K. S., and Zhu J. K.. Cell signaling during cold, drought, and salt stress.Plant Cell,2002,14Suppl: S165-83
    Xu J., Tian Y. S., Peng R. H., Xiong A. S., Zhu B., Jin X. F., Gao F., Fu X. Y., Hou X. L., andYao Q. H.. AtCPK6, a functionally redundant and positive regulator involved insalt/drought stress tolerance in Arabidopsis. Planta,2010,231(6):1251-60
    Yamaguchi T., Aharon G. S., Sottosanto J. B., and Blumwald E.. Vacuolar Na+/H+antiportercation selectivity is regulated by calmodulin from within the vacuole in a Ca2+-andpH-dependent manner. Proc. Natl. Acad. Sci. U. S. A.,2005,102(44):16107-12
    Yamaguchi T., Apse M. P., Shi H., and Blumwald E.. Topological analysis of a plant vacuolarNa+/H+antiporter reveals a luminal C terminus that regulates antiporter cation selectivity.Proc. Natl. Acad. Sci. U. S. A.,2003,100(21):12510-5
    Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., and Somero G. N.. Living with waterstress: evolution of osmolyte systems. Science,1982,217(4566):1214-22
    Yang D. L., Yao J., Mei C. S., Tong X. H., Zeng L. J., Li Q., Xiao L. T., Sun T. P., Li J., DengX. W., Lee C. M., Thomashow M. F., Yang Y., He Z., and He S. Y.. Plant hormonejasmonate prioritizes defense over growth by interfering with gibberellin signalingcascade. Proc. Natl. Acad. Sci. U. S. A.,2012,109(19): E1192-200
    Yoine M., Ohto M. A., Onai K., Mita S., and Nakamura K.. The lba1mutation of UPF1RNAhelicase involved in nonsense-mediated mRNA decay causes pleiotropic phenotypicchanges and altered sugar signalling in Arabidopsis. Plant J.,2006,47(1):49-62
    Yokoi S., Quintero F. J., Cubero B., Ruiz M. T., Bressan R. A., Hasegawa P. M., and Pardo J.M.. Differential expression and function of Arabidopsis thaliana NHX Na+/H+antiportersin the salt stress response. Plant J.,2002,30(5):529-39
    Yoo S. D., Cho Y. H., Tena G., Xiong Y., and Sheen J.. Dual control of nuclear EIN3bybifurcate MAPK cascades in C2H4signalling. Nature,2008,451(7180):789-95
    Yunus A. A., and Lima C. D.. Structure of the Siz/PIAS SUMO E3ligase Siz1anddeterminants required for SUMO modification of PCNA. Mol. Cell,2009,35(5):669-82
    Zagotta W. N., and Siegelbaum S. A.. Structure and function of cyclic nucleotide-gatedchannels. Annu. Rev. Neurosci.,1996,19:235-63
    Zhang Q., Lin F., Mao T., Nie J., Yan M., Yuan M., and Zhang W.. Phosphatidic acidregulates microtubule organization by interacting with MAP65-1in response to salt stressin Arabidopsis. Plant Cell,2012,24(11):4555-76
    Zhang X., Garreton V., and Chua N. H.. The AIP2E3ligase acts as a novel negative regulatorof ABA signaling by promoting ABI3degradation. Genes Dev.,2005,19(13):1532-43
    Zhong X., and Safa A. R.. RNA helicase A in the MEF1transcription factor complexup-regulates the MDR1gene in multidrug-resistant cancer cells. J. Biol. Chem.,2004,279(17):17134-41
    Zhu J. K.. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol.,2002,53:247-73
    Zhu S. Y., Yu X. C., Wang X. J., Zhao R., Li Y., Fan R. C., Shang Y., Du S. Y., Wang X. F.,Wu F. Q., Xu Y. H., Zhang X. Y., and Zhang D. P.. Two calcium-dependent proteinkinases, CPK4and CPK11, regulate abscisic acid signal transduction in Arabidopsis.Plant Cell,2007,19(10):3019-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700