用户名: 密码: 验证码:
对虾高位池水环境养殖污染和浮游微藻生态调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水环境的富营养化导致水华和赤潮频发,对水源和渔业生产活动带来严重危害。因此,水环境的富营养化是当今人类面临的重要生态学问题,治理水环境富营养化的有效方法和理论越来越受到人们的广泛关注,已成为当前学术界研究的热点问题。
     对虾养殖业是我国海洋经济发展重要的支柱产业。我国对虾养殖面积达6.67×104hm2以上,年产量超过120×104t,约占全球对虾养殖产量的38%,是世界对虾养殖年产量最高的国家。水体富营养化是对虾养殖水环境的主要污染现象,其次是重金属污染,养殖废水排放含氮化合物是近岸海洋环境氮污染和富营养化的主要原因。虾池水体溶解态氮主要有溶解态无机氮和溶解态有机氮,溶解态无机氮主要以NH4+-N.NO2--N和N03--N、N2等形式存在,溶解态有机氮主要以Urea-N、Met-N、蛋白质等形式存在。NH4+-N和NO2--N等是养殖水体中对对虾具有毒性的含氮污染物。利用虾池生物调控水质来改善养殖环境是对虾健康养殖主要途径。浮游微藻是对虾养殖系统中重要的生物因子,具有对溶解态氮吸收和重金属离子吸附的功能特性,是虾池水体中溶解态氮转化和降低重金属离子含量的主要途径。通过虾池浮游微藻群落结构的优化,建立良性的浮游微藻群落提高其对溶解态氮吸收和重金属离子吸附效率,降低虾池水体的自身污染,从而达到改善水质的目的。关于对虾高位池浮游微藻及其对溶解态氮吸收和重金属离子吸附的研究未见报道,本论文以对虾高位池为研究对象,分别从虾池养殖污染、虾池浮游微藻、虾池浮游微藻对溶解态氮的吸收规律和调控机制、虾池浮游微藻对重金属离子吸附和虾池养殖环境的生态调控等5个方面进行研究,为虾池浮游微藻群落结构的优化和改善水质环境提供科学依据,也为环境水体富营养化的治理提供理论支撑和技术参考。主要研究内容和结果如下:
     (1)通过对对虾养殖水体中各种溶解态氮变化规律的研究,发现虾池投饲量与COD呈正相关,与溶氧呈负相关,水体中的溶解态氮主要来源于投喂的人工饲料;虾池溶解态无机氮、溶解态有机氮和溶解态总氮均值分别为0.470mg·L-1、0.325mg·L-1和0.795mg·L-1,养殖后期明显高于养殖前期,均超过富营养化的阈值;养殖期间溶解态有机氮占溶解态总氮的40.88%,是虾池溶解态氮的重要组成部分。养殖过程中INT/IP平均值为5.98,IN/IP<5的时期占整个养殖过程的48%,没有出现IN/IP>30的现象;虾池水体中叶绿素a含量平均为91.6ug·L-1,与溶解态总氮之间存在显著正相关,卡尔森营养状态指数(TSI, Carlson trophic state index)平均为72.98,虾池水体处于严重的富营养化状态。水体中NH4+-N和N02--N含量均值分别为0.210mg·L-1和0.018mg·L-1,养殖后期分别为0.419mg-L-1和0.031mg·L-1,超过健康养殖的阈值。在浓度为0.040mg·L-1的NO2--N胁迫下,对虾免疫力会下降。
     (2)在广东和海南等地区的养殖中期与后期的虾池中,检测出浮游微藻优势种属于5个门共计12种,其优势度在0.12-0.99之间,优势种突出和单一;在养殖前期主要以硅藻优势种群为主,养殖的中期和后期虾池水体富营养化严重,以较喜肥或者是耐污染的绿藻和蓝藻成为优势种群。养殖期间浮游微藻的细胞数平均为19.71×107cell·L-1,香农多样性指数平均为0.56,养殖水体属重度污染状态。以波吉卵囊藻(Oocystis borgei)为优势种群控制的水质环境较为稳定,其优势种群持续时间达40d~50d;硅藻优势种群相对不稳定,持续时间仅为5d~15d;小席藻(Phormidium tenue)细胞数高达2160×107cell·L-1,容易形成赤潮。以绿藻为优势种的虾池水质较稳定,形成水环境有利于对虾生长。波吉卵囊藻是虾池中分布广和适应能力强的浮游微藻,同时还具有种群稳定和持续时间长的特点。
     (3)利用稳定同位素标记法,在不同生态条件下对虾池浮游微藻溶解态氮吸收速率的研究发现,虾池浮游微藻对NH4+-N.N02--N、NO3--N、Urea-N和Met-N吸收最适宜的温度范围为25℃~30℃,盐度范围为20~30,光照度范围为45.000μmol·m-2·s~126.000μmlo·m-2·s-1,藻浓度范围为3.222×108cell·L-1~4.784×108cell·L-1。当氮浓度为14.300mg·L-1时,浮游微藻对NH4+-N、N02--N和N03--N均具有最高的吸收速率,当Urea-N和Met-N浓度分别为48.400mg·L-1和20.900mg·L-1时,其吸收速率达到最高;高浓度溶解态氮对藻细胞氮吸收具有显著的抑制作用,高的NH4十-N浓度对MH4+-N吸收抑制要早于其他形式的溶解态无机氮。
     这些结果表明虾池浮游微藻对溶解态氮的吸收速率与温度、盐度、光照度、藻浓度和氮浓度有密切关系,这特点在亚热带海洋沿岸水域普遍存在。在高浓度溶解态氮情况下浮游微藻对氮的吸收会出现“饱和效应”。
     (4)在多种氮源共存的条件下,利用稳定同位素标记法研究了虾池水体浮游微藻在不同温度和盐度条件下对溶解态氮吸收的选择性,并通过正交实验研究影响浮游微藻溶解态氮吸收速率的生态因子。结果显示,在不同温度和盐度实验条件下,浮游微藻对NH4+-N吸收的相对优先指数(RPI)均大于对N02-_N、Urea-N和NO3--N,优先吸收NH4+-N,其次是NO2--N,最后是Urea-N和NO3--N。正交实验结果显示,在温度20℃~30℃、光照81μmol·m-2·s-1.盐度15~30、pH7.5和藻浓度4.5×108cell·L-1~5.5×108cen·L-1的条件组合下,浮游微藻对各种溶解态氮均有较高的吸收速率,影响NH4+-N和NO2--N吸收速率的主导因子是藻浓度和盐度,影响N02-N、Urea-N吸收速率的主导因子是光照。
     (5)波吉卵囊藻对NH4+-N和Urea-N吸收速率模型的预测值与实测值进行样本T检验,检验结果表明模型预测值与实测值差异不显著(P>0.05),总体均值差异不显著(P>0.05),证明模拟方程拟合度较高。
     (6)波吉卵囊藻细胞对Cu2+和Zn2+的吸附过程可分为三阶段:第一阶段吸附在30min内完成,吸附率达70%以上;第二阶段吸附速度减慢,在8h内完成;第三阶段为吸附平衡阶段。波吉卵囊藻对Cu+和Zn2+的吸附的最适温度范围为25~30℃,光照度为大于54.00μmol·m-2·s-1,盐度范围为10~30。波吉卵囊藻细胞浓度为28.91×107cell·L-1时对Cu2+的吸附率为52.52%,吸附量为9.469mg·g-1;藻细胞浓度为22.91×107cell·L-1时对Zn2+的吸附率为81.44%,吸附量为2.914mg·g-1。条纹小环藻细胞浓度为2.45×107cell·L-1时对Cu2+的吸附率为63.00%,吸附量为9.26mg·g-1;藻细胞浓度为1.75×107cell·L-1时对Zn2+的吸附率为60.52%;吸附量为20.06mg·g-1。在此藻细胞浓度下,藻细胞吸附的重金属离子不会影响波吉卵囊藻和条纹小环藻的生长。
     (7)在对虾养殖系统中引入波吉卵囊藻,不仅能提高水体溶氧的含量、调节pH、降低COD,还能有效地吸收各种溶解态氮;水体中NH4+-N含量降低了51.7%-37.8%,N02--N含量可降低30.2%-26.4%,对虾抗病能力显著提高(P<0.05)。在虾池中培养波吉卵囊藻构建以波吉卵囊藻为主要构架的微藻群落,养殖期间其平均生物量占浮游微藻总生物量的95.35%-43.95%,优势度为0.27~0.58,成为虾池水体中的绝对优势种,作为优势种其种群持续时间长达77d,水体NH4+-N和N02--N浓度较对照池分别降低了36.98%和81.16%;波吉卵囊藻能够有效地减轻养殖密度的制约作用,对虾生长速度明显加快,养殖产量提高83.78%。在培养水温为27℃~32℃和盐度20~28的条件下,波吉卵囊藻在养殖水体中呈逻辑斯谛(Lgistic)方式增长,环境容纳量K值为6899.959x105cell·L-1,瞬时增长率r近似值为0.002,最大可持续产量(MsY)为3.45×105cell·L-1·d-1。每天从虾池水体中去除3.45×105cell·L-1·d-1藻细胞可以保持波吉卵囊藻的种群稳定。
Eutrophication of surface waters can induce algal blooms and in salt water or estuarine waters, red tide can occur frequently, which can cause impairment of both the use of the water body and the local fishery. Therefore, eutrophication is an important ecological problem, and the study of how to deal with this problem has attracted extensive attention.
     Prawn aquaculture is the pillar industry of the national marine-based economy. In China, the area of prawn aquaculture exceeded6.67×104hm2, with an annual output of more than120×104t, which accounts for38%of the global output, making China the highest prawn yielding country. Eutrophication is the major pollution issue in prawn culture, the second problem is heavy metal pollution. Nitrogen compounds discharged from aquaculture waste water are the primary sources of nitrogen pollution and the resultant eutrophication in the near-shore marine environment. There are two kinds of dissolved nitrogen in prawn aquatic system. One is dissolved inorganic nitrogen in the form of ammonia nitrogen (NH4+-N), nitrite (NO2--N), nitrate (NO3--N).. The other form is dissolved organic nitrogen as Urea-N, Methyl-N and protein. Inorganic forms, NH4+-N and NO2-N, are the primary nitrogen pollutants which are harmful to prawn. The technique for maintaining healthy prawn aquaculture is to improve the culture environment by regulating the water quality through select organisms in the prawn pond. Planktonic microalgae can take up dissolved nitrogen and heavy metal ions, and can be an important biological factor in a prawn culture system. Thus, microalgae can transform dissolved nitrogen and reduce heavy metal loads. To improve prawn pond water quality, we can enhance the pollutant removal capacity of planktonic microalgae by assembling an optimum planktonic microalgae colony through enhancing the community structure of certain planktonic microalgal species. The studies on the Planktonic microalgae in the prawn high level pond and the absorption of dissolved nitrogen and heavy metal ions adsorption by them have not been reported. In this study, we chose high elevation prawn pond to study the pollution caused by prawn breeding, planktonic microalgal assemblages in prawn ponds, the ability and regulatory mechanism for planktonic microalgal uptake of dissolved nitrogen and heavy metals and the control of the prawn pond environment. This will provide a scientific basis for optimizing the community structure of planktonic microalgae and improving water quality in prawn ponds and additionally providing a theoretical and technical basis for controlling eutrophication.
     The content of the major research and the results are as follows:
     (1) Through the study of dissolved nitrogen from prawn culture, we found the amount of feed showed a positive correlation with chemical oxygen demand (COD) and was negative correlated with dissolved oxygen. The dissolved nitrogen came primarily from the artificial breeding diet, with the contents of dissolved inorganic-nitrogen, dissolved organic nitrogen and the total dissolved nitrogen being0.470mg·L-1,0.325mg·L-1,0.795mg·L-1respectively. In addition, the concentrations from the late breeding stage were higher than in the early breeding stage, and the threshold of eutrophication. The content of dissolved inorganic nitrogen was40.9%of the total nitrogen, which was the major source of the dissolved nitrogen in the prawn pond during the breeding period. Over the course of the breeding period, the mean ratio of inorganic nitrogen to inorganic phosphorus (IN/IP) was5.98. It was<5at48%of time and never exceeded30. The average chlorophyll-a concentration in the pond was91.6ug·L-1, which was positively correlated with the total dissolved nitrogen. The mean value of the Carlson trophic state index (TSI) was73.0, indicating that the pond was in a state of serious eutrophication. The concentrations of NH4+-N and NO2--N during the early breeding were0.21mg·L-1and0.02mg·L-1respectively, and their concentrations in the late breeding stage were0.42mg·L-1and0.03mg-L"1. Both nitrogen species were higher than the threshold for healthy prawn breeding. Prawn immunity was reduced when NO2--N achieved a concentration of0.04mg·L-1.
     (2) In the Guangdong and Hainan provinces, the major species of planktonic microalgae belong to five phyla, including12species found during the middle and late stages of prawn breeding, with a the degree of dominance from0.12to0.99. During the early breeding stages, diatoms dominated, but with eutrophication during middle and late breeding stage becoming serious, green algae and blue-green algae became dominant. The average cell number of planktonic microalgae was19.71×107cell/L-1and the mean diversity index was0.56, indicating that the system was suffering from serious contamination. The period with Oocystis borgei as the dominant algae was relatively stable, remaining dominant for40d-50d. The period when the dominant population was diatoms proved to be unstable and only lasted for5d~15d. The cell number of Phormidium tenue was2160×107cell/·L-1, which potentially is a source of red tide. The additional stable period occurred when the dominant population was green algae, which was a benefit for the growth of the prawn. Oocystis borgei was widely spread, adaptable, with the characteristics of a stable species persisting for a long duration.
     (3) Using a stable isotope labeling technique, the uptake rate for nitrogen of planktonic microalgae in shrimp ponds was studied under different ecological conditions. The most suitable conditions for the uptake of NH4+-N, NO2--N, NO3--N, Urea-N and Met-N by microalgae in prawn pond were a temperature of25℃~30℃, a salinity of20~30, light illumination at45μmol·m-2·s-1~126μmol·m-2·s-1, and an algal density of3.222×108cell·L-1~4.784×108cell·L-1. When the nitrogen concentration was14.3mg·L-1, the uptake rate of NH4+-N, NO2--N and NO3--N by microalgae was highest. The uptake rate of Urea-N and Met-N was the highest when the Urea-N and Met-N concentrations were48.4mg-L"1and20.9mg-L"1respectively. High concentrations of dissolved nitrogen apparently inhibit the uptake of nitrogen. The inhibition of NH4+-N uptake occurred when the concentration of NH4-N was high.
     These results demonstrated the uptake rate of nitrogen by planktonic microalgae in prawn ponds was closely related to temperature, salinity, light illumination, algal concentration and nitrogen concentration, with these specific conditions commonly in found in coastal areas in subtropical regions. The "saturation effect" for nitrogen uptake by algae would exist under high dissolved nitrogen conditions.
     (4) The effect of salinity and temperature on relative preference indices (RPI) for planktonic microalgae under four dissolved inorganic nitrogen concentrations was studied using a stable isotope labeling method. The dominant factor which affected the nitrogen uptake rate of planktonic microalgae was also studied using an orthogonal experiment. The results showed that the RPI of NH4+-N of planktonic microalgae was greater than that of NO2--N, Urea-N and NO3--N. Planktonic microalgae took up NH4+-N initially and NO2--N followed, the next being Urea-N and finally NO3- -N. The orthogonal experiment showed that microalgae had a higher uptake rate for the four nitrogen sources when the temperature was20℃~30℃, the light illumination was81μmol·m-2·s-1, the salinity was15~30, the pH was7.5, and the algae density was4.5×108cell·L-1~5.5×108cell·L-1. Microalgae density and salinity were the main factors that affected the uptake rate of NH4+-N and NO2--N, while light illumination was the main factor that affected the uptake rate of NO2--N and Urea-N.
     (5) Predicted values and measured values of an uptake rate model for Oocystis bergei were examined using a t-test. The test results showed that there was not a statistically significant difference between the predicted values and the measured values, as well as the population mean, which indicated that the degree of model fit was high.
     (6) The uptake of Cu2+and Zn2+by Oocystis borgei could be divided into three steps:the first step was to complete the uptake process within30min, with an uptake rate of more than70%; in the second step, the rate decreased and the uptake process was completed within8h; in the third step, the uptake process reached equilibrium. The optimum uptake of Cu+and Zn2+by planktonic microalgae Oocystis borgei was when the temperature was25~30℃, the light illumination was greater than54.00μmol·m-2·s-1, and the salinity was10~30. When the Oocystis borgei concentration was2.9×108cell·L-1, the adsorption rate and capacity of Cu2+were52.5%and9.5mg·g-1respectively; when the algae concentration was2.3×108cell·L-1, the uptake rate and capacity of Zn2+were81.4%and2.9mg·g-1respectively; for Cyclotella striata when its concentration was2.5×107cell·L-1, the uptake rate and capacity of Cu2+were63.0%and9.3mg·g-1respectively; when its concentration was1.8×107cell·L-1, the uptake rate and capacity of Zn2+were60.5%and20.1mg·g-1respectively. Under these algae concentrations, the growth of Oocystis borgei and Cyclotella striata would not be affected.
     (7) Introducing Oocystis borgei into prawn farming systems not only improved the content of dissolved oxygen, regulated pH, reduced COD, but also effectively fixed dissolved nitrogen. Due to the introduction, NH4+-N concentration was reduced by51.7%~37.8%, NO--N concentration reduced by30.2%~26.4%, and the disease-resistance of the prawn was improved significantly (P<0.05). In the treated prawn pond, average biomass of Oocystis borgei accounted for95.86%to45.12%, The dominance is between0.27to0.58and was the dominant algae during the breeding period. As the dominant species, it persisted for about77days. Concentrations of NH4+-N and NO2- -N were reduced by37.0%and81.2%respectively. Oocystis borgei can potentially alleviate the effect of stocking-density constraints, significantly improve prawn growth, and increase aquaculture production by83.8%. With a water temperature of27℃~32℃, a salinity of20~28, Oocystis borgei showed logistic growth with a K (carrying capacity) value of6899.959×105, r (instantaneous rate of increase) approximate value of0.002, and the maximum sustainable yield (MSY) of3.45×105·L-1·d-1. Removal of3.45·105cell·L-1of algal cells every day from the shrimp pond waters can keep Oocystis borgei population stable.
引文
[1]麦贤杰,黄伟健,李卓佳,等.对虾健康养殖学[M].北京:海洋出版社,2009.
    [2]阎希柱.对虾综合养殖池塘生态系统能量生态学的研究[D].青岛:中国海洋大学,1999.
    [3]Primavera J H. Tropical shrimp farming and its sustainability[J]. Tropical mariculture,1998,8:257-289.
    [4]Funge-Smith S J, Briggs M. Nutrient budgets in intensive shrimp ponds: implications for sustainability. Aquaculture,1998,164:117-133.
    [5]Colman J A, Edwards P. Feeding pathways and environmental constrains in wasted-fed aquaculture:Balance and Optimazation. In D.J.W. Moriaity and R.S.V. Pullin(eds) Detritus and microbial ecology in aquaculture ICLARM conference Proceeding. International center for living Aquatic Tesources, Management, 1987,14:420.
    [6]Thakur D P, Lin C K. Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems [J]. Aquacultural Engineering,2003, 27:159-176.
    [7]何建国,孙成波.高位池对虾精养技术及病害防治.中山大学学报(自然科学版),2004,43(6):6-16.
    [8]苏跃朋.中国明对虾精养池塘生态系统及动力学模型的研究[D].青岛:中国海洋大学,2006.
    [9]樊祥国.水产健康养殖管理研究[D].青岛:中国海洋大学,2005.
    [10]王克行.解决大面积养虾饲料的一点设想[J].全国海水养殖增殖发展途径学术会议论文报告汇编,1980,200-203.
    [11]张扬宗.中国池塘养鱼学[M].北京:科学出版社,1989.
    [12]贾晓平,李卓佳,江世贵,等.微生物工程技术在规模化养殖虾中的应用[R].广州:中国水产科学研究院南海水产研究所,2003:119-141.
    [13]刘兴国.池塘养殖污染与生态工程化调控技术研究[D].南京:南京农业大学,2011.
    [14]袁有宪,张渡溪,王跃军,等.高分子吸附去除海水中重金属离子的研究[J].海洋水产研究,1992,13:131-138.
    [15]齐振雄,张曼平.对虾养殖池塘氮磷收支的实验研究[J].水产学报,1998,22(2):124-128.
    [16]杨逸萍,王增换.精养虾池主要水化学因子变化规律和氮的收支[J].海洋科学,1999,1:15-17.
    [17]袁有宪,崔毅,曲克明,等.对虾养殖池沉积环境中TOC、TP、TN和pH垂直分 布[J].水产学报,1999,23(4):363-368.
    [18]王彦波,岳斌,许梓荣.池塘养殖系统氮、磷收支研究进展[J].饲料工业,2005,18(26):49-51.
    [19]游奎.对虾工程化养殖系统重要元素及能量收支[D].中国科学院研究生院(海洋研究所),2005.
    [20]徐皓,刘兴国,吴凡.淡水池塘养殖生态修复技术手册[Z].中国水产科学研究院,2008,12.
    [21]雷衍之.养殖水环境化学[M].北京,中国农业出版社,2004:126-132.
    [22]李卓佳,陈永青,杨莺莺,等.广东对虾养殖环境污染及防控对策[J].广东农业科学,2006,6:68-71.
    [23]吴彰宽,陈国江.二十三种有害物质对对虾的急性致毒实验[J].海洋科学,1988(4):36-39.
    [24]陈碧鹃,陈民山.汞、砷、铬、苯酚对东方对虾幼体急性致毒的实验研究[J].海洋科学,1990(30):51-53.
    [25]王安利,王维娜,李铁水,等.铜、锌、锰和铬对中国对虾仔虾的急性致毒及相互关系的研究[J].海洋学报,1992,14(4):134-139.
    [26]王美珍.杭州湾南岸滩涂贝类养殖环境中污染物的调查[J].宁波大学学报(理工版),2005,18(3):323-328.
    [27]Luderitz V, Andreas N. The effect of pH on Cu toxicity to blue-green algae[J]. Int Rescue ges Hydrobiol,1989, (3):283-291.
    [28]余超,何洁仪,李迎月,等.广州市2008年部分食品重金属污染情况分析[J].华南预防医学,2009,35(3):62-65.
    [29]Jeffries M, Mills D. Freshwater ecology:principles and applications[M]. Belhaven Press,1990.
    [30]宋盛宪,何建国,翁少萍.斑节对虾养殖[M].北京:海洋出版社,1999:40-41.
    [31]陈昌生,黄标,叶兆弘,等.南美白对虾摄食、生长及存活与温度的关系[J].集美大学学报,2001,69(4):296-300.
    [32]王兴强,马牲,董双林.凡纳滨对虾生物学及养殖生态研究进展[J].海洋湖沼通报,2004,(4):94-100.
    [33]王伟定.日本对虾的温度适应性试验[J].渔业现代化,2001,(1):20-21.
    [34]鲍鹰,相建海.温度、盐度和pH对生物过滤器去除氨氮效率的影响[J].海洋科学,2001,25(6):42-43.
    [35]庄雪峰.我国对虾主要养殖种类的耐盐性[J].水产养殖,992,(5):28-29.
    [36]Bray W A, Lawrence A L, Leung J R. The effect of salinity on growth and survival of Penaeus Vannamei, with observations on the interaction of IHHN virus and salinity [J]. Aquaculture,1994,122:133-146.
    [37]林昌.日本对虾健康养殖新技术[J].动物科学,2010,(18):306-308.
    [38]Gandy R, Sloane L. Effect of salinity on oxygen consumption in postlarvae of the penaeid shrimps Penaeus monodon and Penaeus stylirostris without and with acclimation [J]. Marine Biology,1981,65:297-301.
    [39]Villareal H, Hewitt R. Effect of salinity on oxyen consumption and growth of the brown shrimp Penaeus californiensis (Abstract) [J]. World Aquacult See,1991, 22(3):62A.
    [40]荣长宽,梁素秀.虾池基础生物饵料的培养技术及其种类、数量的研究[J].水产科技情报,1994,21(5):203-206.
    [41]孙舰军.虾池生态系统中诸因子对虾体的影响[J].海洋科学,1997,(2):24-25.
    [42]陈淑吟.封闭式南美白对虾的关键水质因子分析[J].中国水产,2002,10:62-63.
    [43]雷衍之.无锡市河埒口高产鱼池水质研究Ⅰ水化学和初级生产力[J].水产学报,1983,7(3):185-199.
    [44]Aquacp. Review of ten years of experimental penaeid shrimp culture in Tahiti and New Caledonia (South Pacific) [J]. Journal of the world mariculture society, 1984,15:73-91.
    [45]Allan G L, Maguire G B. Effects of water exchange on production of Metapenacus macleayi and water quality in experimental pools [J]. Journal of the world aquaculture society,1993,24(3):321-328.
    [46]Boyd C E. Summer Algal Communities and Primary Productivity in Fish Ponds [J]. Hydrobiologia,1973,41:357-390.
    [47]王武.鱼类增养殖学[M].北京:中国农业出版社,2001.
    [48]Dunbar M J. (eds) IBP 20-Marine production mechanisms [M]. Cambridge University Press,1979.
    [49]Madenjian C P. Removal of algal by the zebra mussel (Dreissena polymorpha) population in western lake Erie:a bioenergetics approach [J]. Canadian Journal of Fisheries and Aquatic Sciences,1995,52:381-390.
    [50]Goldman C R. Primary productivity in aquatic environments [M]. California: University of California press.1969,1-464.
    [51]Lieth H, Whittaker R H. Primary productivity of the biosphere [M]. Springer Berlin Heidelberg,1975:237-263.
    [52]苏永全,蔡心一,王军,等.藻类影响虾池若干水质因子初探[J].福建水产,1994,(4):36-39.
    [53]孙耀,宋云利.虾塘养殖水环境中氮磷营养盐的存在特征与行为[J].水产学 报,1998,22(2):117-123.
    [54]赖子尼,余煜棉,庞世勋,等.鳜鱼养殖池塘水体叶绿体a与16项水生态因子的关系[J].中国水产科学,2004,11(5):426-431.
    [55]李庆彪,李美芝,王宝庭.虾池生态系的特点与虾病[J].海洋学报,1995,17(5):135-139.
    [56]林元烧,曹文清,方旅平,等.厦门及其邻近地区虾池浮游动物的组成及分布[J].海洋科学,2002,26(5):8-12.
    [57]陈济丁,任久长,蔡晓明.利用大型浮游动物控制浮游植物过量生长的研究[J].北京大学学报(自然科学版),1996,31(3):373-381.
    [58]刘国才,李德尚,徐怀恕,等.海水养虾池细菌数量动态及细菌生产力的研究[J].应用于环境生物学报,1997,3(4):340-344.
    [59]刘国才,李德尚,徐怀恕,等.对虾池悬浮颗粒附着细菌的研究[J].海洋学报.1999.21(1):97-103.
    [60]刘国才,李德尚,董双林.对虾养殖围隔生态系统浮游细菌的呼吸与生产[J].应用生态学报,2003,14(11):2079-2080.
    [61]宁修仁.微型生物食物环[J].东海海洋,1997,15(1):66-69.
    [62]张武昌,肖天,王荣.海洋微型浮游动物的丰度和生物量[J].生态学报,2001,21(11):1893-1909.
    [63]Noue D L, Laliberte G J, Pronlx D. Algae and wastewater [J]. Journal of Applied Phycology,1992, (4):247-254.
    [64]李佐荣,鲍素敏,黄祥明.水体的富营养化及其防治[J].安徽农学通报,2007,13(10):67-68.
    [65]Torres A I, Gil M N., Esteves J L. Nutrient uptake rates by the alien alga Undaria pinnatifida(Phaeophyta)(Nuevo Gulf, Patagonia, Argentina) when exposed to diluted sewage effluent [J].Hydrobiologia,2004,520:1-6.
    [66]Corredor J E, Howarth R W, Twilley R W, et al. Nitrogen cycling and anthropogenic impact in the tropical Inter-American seas [J]. Biogeochemistry, 1999,46:163-178.
    [67]潘攀.富营养化水体藻华打捞及植物修复的生态效果与影响因素研究[D].苏州:苏州大学,2010.
    [68]Azov Y, Shelef G. Effect of pH on the performance of the high-rate oxidation ponds [J]. Water Science and Technology,1987,19 (12):381-383.
    [69]Talbot P, de la Noue J. Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions [J]. Water Research, 1993,27(1):153-159.
    [70]Martinez M E, Jimenez J M, El Yousfi F. Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus [J]. Bioresource Technology,1999,67 (3):233-240.
    [71]Mallick N, Rai L C. Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolium and Chlorella vulgaris [J]. World Journal of Microbial Biotechnology, 1993,9 (2):196-201.
    [72]Yan G, Yu J, Wang Y. The effects of pH and temperature on orthophosphate removal by immobilized Chlorella vulgaris [J]. Biotechnology Letters,1996,18 (8):893-896.
    [73]Talbot P, Thebault J M., Dauta A, et al. A comparative study and mathematical modeling of temperature, light and growth of three microalgae potentially useful for wastewater treatment [J]. Water Research,1991,25 (4):465-472.
    [74]潘瑞炽.植物生理学[M].(第四版),高等教育出版社,2001.
    [75]Hanisak M D, Harlin M M. Uptake of inorganic N by Lodium fragile [J]. Journal of Phycology,1978,14:450-454.
    [76]Lavery P S, McComb A J. The nutritional ecophysiology of Chaetomorpha linum and Ulva rigida in peel inlet Western Australia [J]. Botanica Marina,1991, 34:251-260.
    [77]刘静雯,董双林.海藻的营养代谢及其对主要营养盐的吸收动力学[J].植物生理学通讯,2001,37(4):325-330.
    [78]董双林,刘静雯.海藻营养代谢研究进展——海藻营养代谢的调节[J].青岛海洋大学学报(自然科学版),2001,31(1):21-28.
    [79]Brinkhuis B H, Li Renzhi, Wu Chaoyuan, et al. Nitrite uptake transients and consequences for in vivo algal nitrate reductase assays [J]. Journal of Phycology, 1989,25:539-545.
    [80]Tischner R, Ward M R, Huffaker R C. Evidence for a plasma-membrane-bound nitrate reductase involved in nitrate uptake Of Chlorella sorokiniana [J]. Planta, 1989,178:19-24.
    [81]Lobban C S, Harrison P J. Seaweed Ecology and Physiology [M]. Cambridge University Press,1994.
    [82]Balnokin Y V, Popova L G. The ATP-driven Na(+)-pump in the plasma membrane of the marine unicellular alga, Platymonas viridis [J]. FEBS Lett,1994, 343:61-64.
    [83]Oswald W, Gotass H. Photosynthesis in sewage treatment [J]. Transactions American Society of Civil Engineers,1957,122 (1):73-105.
    [84]Abe K, Imamaki A, Hirano M. Removal of nitrate, nitrite, ammonium and phosphate ions from water by the aerial microalga Trentepohlia aurea [J]. Journal of Applied Phycology,2002,14:129-134.
    [85]张静霞.小球藻去除污水中氮磷能力的研究[J].城市环境与城市生态,2009,37(32):44-45.
    [86]Admiraal P. Effect of dissolved free amino acids (DFAA) on the biome [J]. Journal of Experimental Marine Biology and Ecology,2006,330 (34):469-481.
    [87]Paul B B, Marta P S, Marc E F, et al. Inorganic and organic nitrogen uptake by phytoplankton and heterotrophic bacteria in the stratified Mid-Atlantic Bight [J]. Estuarine, Coastal and Shelf Science,2010,88(4):429-441.
    [88]黄凯旋,谢雅慧,吕颂辉.米氏凯伦藻对氮源的吸收利用特征[J].生态环境学报,2009,18(2):453-457.
    [89]胡开辉,朱行,汪世华.小球藻对水体氮磷的去除效率[J].福建农林大学学报2006,35(6):648-672.
    [90]Li Xin, Hu H Y, Gan Ke, et al. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. [J]. Bioresource Technology,2010, 101(14):5494-5500.
    [91]Dugdale R C, Goering J J. Uptake of new and regenerated forms of nitrogen in primary productivity [J]. Limnology Oceanography.1967,12:196-206.
    [92]沙珍霞,石晓勇,张学成,等.钝顶螺旋藻营养生理的研究II.钝顶螺旋藻对无机氮的吸收利用[J].海洋水产研究,2000,21(3):17-22.
    [93]陈敏,黄奕普,邱雨生.白令海盆氮吸收速率的同位素示踪[J].自然科学进展,2007,12(17):1672-1684.
    [94]Lee S H, Whitledge T E, Kang Sung-Ho. Recent carbon and nitrogen uptake rates of phytoplankton in Bering Strait and the Chukchi Sea [J]. Continental Shelf Research,2007,27(17):2231-2249.
    [95]Gu B, Alexander V. Seasonal variations in dissolved nitrogen utilization by-phytoplankton in a subarctic Alaskan lake [J]. Archive fur hydrobiologie,1993, 126:273-288.
    [96]Frey C. Uptake of dissolved organic nitrogen (DON) by phytoplankton communities of the Baltic Sea [D]. Mecklenburg-states:Universitat Rostock, 2010:1-76.
    [97]McKinneya R A, Oczkowskia A J, Prezioso J, et al. Spatial variability of nitrogen isotope ratios of particulate material from Northwest Atlantic continental shelf waters [J]. Estuarine,Coastal and Shelf Science,2010,89(4):287-293.
    [98]Lee S H, Stockwell D, Terry E W. Uptake rates of dissolved inorganic carbon and nitrogen by under-ice phytoplankton in the Canada Basin in summer 2005 [J]. Polar Biology,2010,33(8):1027-1036.
    [99]Dugdale R C, Wikerson F P. The use of 15N to measure nitrogen uptake in eutrophic oceans; experimental considerations [J]. Limnology and oceanography. 1986,31(4):673-689.
    [100]Gu B, Alexander V. Dissolved Nitrogen Uptake by a Cyanobacterial Bloom (Anabaena flos-aquae) in a Subarctic Lake [J]. Applied and Environmental Microbiology,1993,59(2):422-430.
    [101]Noriko I, Osamu M, Masashi Nakayama, et al. Seasonal variation in biomass and photosynthetic activity of epilithic algae on a rock at the upper littoral area in the north basin of Lake Biwa, Japan [J]. Limnology,2006,7:175-183.
    [102]McCarthy M J, Brandes J A, Yang Longyuan, et al. Stable isotopic composition of nitrate in Lake Taihu, China, and major inflow rivers [J]. Hydrobiology,2007, 581(1):135-140.
    [103]包苑榆,钟萍,韦桂峰,等.基于15N稳定同位素技术的斜生栅藻对硝氮和氨氮吸收研究[J].水生态学杂志,2011,32(3):16-19.
    [104]Gu B, Havens K E, Schelske C L, et al. Uptake of dissolved nitrogen by phytoplankton in a eutrophic subtropical lake [J]. Journal of Plankton Research, 1997,19(6):759-770.
    [105]Bradley P B, Sanderson M P, Nejstgaard J C, et al. Nitrogen uptake by phytoplankton and bacteria during an induced Phaeocystis pouchetii bloom, measured using size fractionation and flow cytometric sorting [J]. Aquatic Microbial Ecology,2010,61(1):89-104.
    [106]HIIY S, et al. Interactive effect of ammonia and nitrate on the nitrogen uptake by Nannochloropsis sp [J]. Sustainability Science and Management,2011,6(1): 60-68.
    [107]赵晓玮.环境中不同氮磷营养盐浓度及氮源形态对米氏凯伦藻(Karenia mikimotoi)生长的影响研究[D].中国海洋大学,2010.
    [108]Yuan Xiangcheng, Gilbert P M, Xu Jie, et al. Inorganic and Organic Nitrogen Uptake by Phytoplankton and Bacteria in Hong Kong Waters [J]. Estuaries and Coasts,2012,35(2):325-334.
    [109]Paul B. Bradley, Michael W. Inorganic and Organic Nitrogen Use by Phytoplankton Along Chesapeake Bay, Measured Using a Flow Cytometric Sorting Approach [J]. Estuaries and Coasts,2010,33(4):971-984.
    [110]Xu Jie, Patricia M. Glibert, Liu Hongbin, et al. Nitrogen Sources and Rates of Phytoplankton Uptake in Different Regions of Hong Kong Waters in Summer [J]. Estuaries and Coasts,2012,35(2):559-571.
    [111]Andersson M G I, Rijswijk P Van, Middelburg J J. Uptake of dissolved inorganic nitrogen, urea and amino acids in the Scheldt estuary:comparison of organic carbon and nitrogen uptake [J]. Aquatic Microbial Ecology,2006,44(3): 303-315.
    [112]Salvatrice Vizzini, Antonio Mazzola. Feeding ecology of the sand smelt Atherina boyeri(Osteichthyes, Atherinidae) in the western Mediterranean:evidence for spatial variability based on stable carbon and nitrogen isotopes [J]. Environmental Biology of Fishes,2005,72:259-266.
    [113]Vera A, Richard C. Tracer studies of the assimilation of inorganic nitrogen. Nitrogen metabolism in lakes [J]. Limnology and Oceanography,2009,63(4): 75-79.
    [114]何洁.复合循环养殖系统氮磷的去除研究[D].大连:大连海事大学,2010.
    [115]李宵.海水养殖对浮游植物群落结构和水质的影响[D].广州:暨南大学,2009.
    [116]Jaw-Kai Wang. Conceptual design of a microalgae based recirculating oyster and shrimp system [J]. Aquaculture engineering,2003,28(122):37-46.
    [117]Benjamas Chuntapa, Sorawit Powtongsook, Piamsak Menasveta. Water quality control using Spirulina platensis in shrimp culture tanks [J]. Aquaculture,2003, 220 (1-4):355-366.
    [118]Lopes P F, Oliveira M C, Colepicolo P. Diurnal fluctuation NR activity in the marine red algae Gracilaria tenustipitata [J]. Journal of Phycology,1997,33: 225-231.
    [119]Lopointe B E, Dawes C J, Tenore K. R. Interaction between light and temperature on the physiological ecology of Gracilaria tikvahiae:NO3 uptake and levels of pigments and chemical constituents [J]. Marine Biology,1984,80:171-178.
    [120]Gerard V A. In situ water motion and nutrient uptake by the giant kelp Macrocystis pyrifera [J]. Marine Biology,1982,69:51-54.
    [121]Thoresen S S. The effect of short-term fluctuation pH on NO3 uptake and intracellular constituents in Skeletonema costatum [J]. Journal of Experimental Marine Biology and Ecology,1984,83:149-157.
    [122]Martinez M E, Sanchez S, Jimenez J M, et al. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus [J]. Bioresource Technology,2000,73(3):263-272.
    [123]Jimdnez C, Niell F X. Influence of Temperature and Salinity on Carbon and Nitrogen Content in Dunaliella viridis Teodoresco under Nitrogen Sufficiency [J]. Bioresource technology,1991,38(2-3):91-94.
    [124]Presing M, Herodek S, et al. Nitrogen uptake and the importance of internal nitrogen loading in Lake Balaton [J]. Freshwater Biology,2001,46 (1):125-139.
    [125]魏成根,杨敏,孙巍.温度对悬浮水藻去除水体中氮磷的影响研究[J].西华大学学报,2008,27(1):54-68.
    [126]焦念志.海洋浮游生物氮吸收动力学及其粒级特征[J].海洋与湖沼,1995,26(2):191-198.
    [127]Flynn K J. Algal carbon-nitrogen metabolism:A biochemical basis for modeling the interactions between nitrate and ammonium uptake [J]. Journal of Plankton Research,1991,13(2):373-397.
    [128]孙树刚.东海原甲藻(Prorocentrum donghaiense)对尿素的吸收与利用特征[D].广州:暨南大学,2010,6.
    [129]Katsuya A, Emi T, Morio H. Development of laboratory-scale photobioreactor for water purification by use of a biofilter composed of the aerial microalga Trentepohlia aurea(Chlorophyta) [J]. Journal of Applied Phycology,2008,20(3): 283-288.
    [130]欧阳峥嵘,温小斌,耿亚红,等.光照强度、温度、pH、盐度对小球藻(Chlorella)光合作用的影响[J].武汉植物学研究,2010,28(1):49-55.
    [131]王长海,贾顺义.盐度对紫球藻生长及氮磷利用的影响[J].哈尔滨工业大学学报,2009,41(12):194-197
    [132]Guckert J B, Cooksey K E. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition [J], Journal of Phycology,1990,26(1):72-79.
    [133]于媛,刘艳,韩芸芸,等.小球藻去除水产加工废水中氨态氮的初步研究[J].生物技术,2006,16(5):73-74.
    [134]De-Bashan L E, Antoun H, Bashan Y. Cultivation factors and population size control the uptake nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense [J]. Ferns Microbiology Ecology,2005,54(2):197-203.
    [135]Robinson P K. Immobilized algae:a review [J]. Process Biochemistry,1986,8: 122-127.
    [136]Garbisu C, Gil J M, Bazin M J, et al. Removal of nitrate from water by foam-immobilized Phormidium laminosum in batch and continuous-flow bioreactors [J]. Journal of Applied Phycology.1991,3:221-234.
    [137]Wilkinson S C, Goulding K H, Robinson P K. Mercury removal by immobilized algae in batch culture systems [J]. Journal of Applied Phycology,1990,2: 223-230.
    [138]Barkley N P. Extraction of mercury from groundwater using immobilized algae [J]. Journal of Air & Waste Management Association,1991,41(10):1381-1387.
    [139]李川,薛建辉,赵荣,等.4种固定化藻类对污水中氮的净化能力研究[J].环境工程学报,2009,3(12):2185-2188.
    [140]De la Noute J, Proulx D. Biological tertiary treatment of urban wastewater with chitosan-immobilized Phormidium [J]. Applied Microbiology and Biotechnology, 2003,29:292-297.
    [141]Canizares R O, et al. Free and immobilized cultures of spirulina maxima for swine waste treatment [J]. Biotechnology, Letters,1993,15(3):321-325.
    [142]Fierro S, Sanchez-Saavedra Mdel P, Copalcua C. Nitrate and phosphate removal by chitosan immobilized Scenedesmus [J]. Bioresource Technology,2008,99: 1274-1279.
    [143]Cordoba L T, Hernandez ESanchez. Final treatment for cattle manure using immobilized microalgae. I study of the support media [J]. Resources, Conservation and Recycling,1995,13(3-4):167-175.
    [144]Bily Aguilar, Pilar Sanchez-Saavedra. Growth and removal of nitrogen and phosphorus by free-living and chitosan-immobilized cells of the marine cyanobacterium Synechococcus elongates [J]. Journal of Applied Phycology, 2009,21:353-360.
    [145]M V Jimenez-Perez, P Sanchez-Castillo, O Romera, et al. Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure [J]. Enzyme and Microbial Technology,2004,34:392-398.
    [146]Kaya V M, Dela Noue J. A comparative study of four systems for tertiary wastewater treatment by Scenedesmus bicellularis:New technology for immobilization [J]. Journal of Applied Phycology,1995,7(1):85-95.
    [147]Urrutia I, et al. Nitrate removal from water by Scenedesmus obliquus in polymeric foams [J]. Enzyme Microb. Technol,1995,17(3):200-205.
    [148]Darnall D W, et al. Recovery of heavy metals by immobilized algae. Trace metal removal from aqueous solution [J]. Royal Society of Chemistry,1986,2:1-26.
    [149]颜胜华,鲁敏,陆世雄,等.固定化与游离态小球藻脱氮除磷对比以及金属镉对吸收磷速率的影响[J].纺织科技进展,2009,5:10-14.
    [150]郭燕.几种类型矿物对磷的吸附对比研究[D].合肥:合肥工业大学,2007.
    [151]Peterson B J, Fry B. Stable isotopes in ecosystem studies [J]. Annual Review of Ecology and Systematics 1987,18:293-320.
    [152]Carpenter S R, S W Chisholm, C J Krebs, et al. Ecosystem experiments [J]. Science 1995,269:324-327.
    [153]Carpenter S R, T M Frost, D Heisey. Randomized intervention analysis and the interpretation of whole-ecosystem experiments [J]. Ecology,1989,70: 1142-1152.
    [154]陈世苹,白永飞,韩兴国.稳定性碳同位素技术在生态学研究中的应用[J].植物生态学报,2002,26:549-560.
    [155]林光辉,黄建辉,陈世苹.生态学中的稳定同位素技术[M].北京:高等教育出版社,2005.
    [156]韦莉莉,张小全,侯振宏.全球气候变化研究的新技术一稳定碳同位素分析的应用[J].世界林业研究,2005,18:16-19.
    [157]沈其荣,殷士学,杨超光.13C标记技术在土壤和植物营养研究中的应用[J].植物营养与肥料学报,2000,6:98-105.
    [158]McKinney C R, J M McCrea, S Epstein, et al. Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios [J]. Review of Scientific Instruments,1950,21:724-730.
    [159]Dodds W K, M A Evans-White, N M Gerlanc, et al. Quantification of the nitrogen cycle in a prairie stream [J]. Ecosystems,2000,3:574-589.
    [160]Mulholland P J, J L Tank, D M Sanzone, et al. Food resources of stream macroinvertebrates determined by natural-abundance stable C and N isotopes and a 15N tracer addition [J]. Journal of the North American Benthological Society, 2000a,19:145-157.
    [161]Mulholland P J, J L Tank, D M Sanzone, et al. Nitrogen cycling in a forest stream determined by a 15N tracer addition [J]. Ecological Monographs,2000b,70: 471-493.
    [162]Tank J L, J L Meyer, D M Sanzone, et al. Analysis of nitrogen cycling in a forest stream during autumn using a 15N-tracer addition [J]. Limnology and Oceanography,2000,45:1013-1029.
    [163]Peterson B J, W M Wollheim, P J Mulholland, et al. Control of nitrogen export from watersheds by headwater streams [J]. Science,2001,292:86-90.
    [164]Ashkenas L R, S L Johnson, S V Gregory, et al. A Stable isotope tracer study of nitrogen uptake and transformation in an old-growth forest stream [J]. Ecology, 2004,85:1725-1739.
    [165]Hughes J E, L A Deegan, B J Peterson, et al. Nitrogen flow through the food web in the oligohaline zone of a New England estuary [J]. Ecology,2000,81: 433-452.
    [166]Holmes R M, B J Peterson, L A Deegan, et al. Nitrogen biogeochemistry in the oligohaline zone of a New England estuary [J]. Ecology,2000,81:416-432.
    [167]Gribsholt B, H T S Boschker, E Struyf, et al. Nitrogen processing in a tidal freshwater marsh:A whole-ecosystem 15N labeling study [J]. Limnology and Oceanography,2005,50:1945-1959.
    [168]Peterson B J, M Bahr, G W Kling. A tracer investigation of nitrogen cycling in a pristine tundra river [J]. Canadian Journal of Fisheries and Aquatic Science,1997, 54:2361-2367.
    [169]Hadwen W L, S E Bunn. Food web responses to low-level nutrient and 15N-tracer additions in the littoral zone of an oligotrophic dune lake [J]. Limnology and Oceanography,2005,50:1096-1105.
    [170]Rittenberg D, A S Keston, F Roseburg, et al. Studies in protein metabolism. II. The determination of nitrogen isotopes in organic compounds [J]. Journal of Biological Chemistry,1939,127:291-299.
    [171]Burris R H, C E Miller. Application of N15 to the study of biological nitrogen fixation [J]. Science,1941,93:114-115.
    [172]Dugdale R, V Dugdale, J Neess, et al. Nitrogen fixation in lakes [J]. Science,1959, 130:859-860.
    [173]Shearer G, D H Kohl. N2-fixation in field settings:Estimations based on natural 15N abundance [J]. Australian Journal of Plant Physiology,1986,13:699-756.
    [174]Gu B, V Alexander. Dissolved nitrogen utilization by a cyanobacterial bloom (Anabaena flos-aquae) in a subarctic lake [J]. Applied and Environmental Microbiology,1993a,59:422-430.
    [175]Dugdale V A, R C Dugdale. Nitrogen mtabolism in Lakes. Ⅱ. Role of ntrogen fxation in Sanctuary Lake, Pennsylvania [J]. Limnology and Oceanography,1962, 7:170-177.
    [176]Home A J, G E Fogg. Nitrogen fixation in some English lakes. Proceedings of the Royal Society of London [J]. Series B, Biological Sciences.1970,175:351-366.
    [177]Gu B, V Alexander. Estimation of N2-fixation based on differences in the natural abundance of 15N among freshwater N2-fixing and non-N2-fixing algae [J]. Oecologia,1993b,68:43-48.
    [1]林小涛,黄翔鹄,邱德全,等.水产无公害养殖原理与水环境调控技术—以对虾养殖为实例[M].北京:中国环境科学出版社,2009:2-13.
    [2]张扬宗.中国池塘养鱼学[M].北京:科学出版社,1989.
    [3]孙舰军,丁美丽.氨氮对中国对虾抗病力的影响[J].海洋与湖沼,1999,30(3):267-272.
    [4]吴维宁,郭履骥,林惠山,等.应用因子分析法分析对虾养殖水质[J].中国环境监测,1998,14(2):43-44.
    [5]吴中华,刘昌彬,刘存仁,等.中国对虾慢性亚硝酸盐和氨中毒的组织病理学研究[J].华中师范大学学报,1999,33(1):119-121.
    [6]农新闻,龚竹林,朱瑜.地膜池养殖南美白对虾水质调控技术研究[J].中国水产,2009(5):48-49.
    [7]王卫平,杨继元.南美白对虾养成过程中的水质调控[J].河北渔业,2007,5(161):22-24.
    [8]李勇.南美白对虾池塘健康养殖中水质的调控[J].内陆水产,2002,(6):15-16.
    [9]蔡志辉.养殖南美白对虾池塘水质调控技术[J].中国水产,2006,(9):38-43.
    [10]申玉春,熊邦喜,叶富良,等.凡纳滨对虾高位池养殖系统的水质理化状况[J].湛江海洋大学学报,2006,26(1):16-21.
    [11]刘志军,杨冬华.南美白对虾生态养殖的水质调控要点[J].渔业致富指南,2008,(8):46-47.
    [12]查广才.凡纳滨对虾低盐度高产虾池理化因子研究[J].韩山师范学院学报,2006,27(3):68-73.
    [13]陈伟珍,林轩,杨桂珍,等.湛江港沙湾对虾养殖场虾池水质状况分析[J].水产科学,2004,23(10):12-15.
    [14]方志山,杨圣云,许振祖.杏林虾池综合养殖系统主要环境因子的变化[J].台湾海峡,2001,20(4):496-501.
    [15]张瑜斌,章洁香,詹晓燕,等.高位虾池养殖过程主要理化因子的变化及水质评价[J].水产科学,2009,28(11):628-634.
    [16]黄翔鹄,李长玲,刘楚吾,等.两种微藻改善虾池环境增强凡纳滨对虾抗病力的研究[J].水生生物学报,2002,26(4):342-347.
    [17]杨笑波,何嘉,方彰胜,等.提高锯缘青蟹幼体成活率的微藻生态调控技术研究[J].水产养殖,2005,26(4):5-7.
    [18]海洋调查规范.中华人民共和国国家标准[M].中国标准出版社,GB17378.4-2007.
    [19]周永欣,章宗涉.水生生物毒性实验方法[M].北京:农业出版社,1989,11-27.
    [20]Zang W L. Toxic effects of Zn2+、Cu2+、Cd2+ and NH3 on Chinese prawn [J]. Chinese Journal of Oceanology Limology,1993,11 (3):95-98.
    [21]陈佳荣.水化学实验指导书[M].北京:中国农业出版社,2000,5.
    [22]管华诗.海水养殖动物的免疫、细胞培养和病害研究[M].济南:山东科学技术出版社.1999,1-31.
    [23]Ashida M. Purification and characterization of pro-phenoloxidase from hemolymph of the silkworm Bombyx morl [J]. Archives of Biochemistry and Biophysics,1971,144:749-762.
    [24]邓碧玉,袁勤生,李文杰.改良的连苯三酚自氧化测定超氧化物歧化酶活性的方法[J].生物化学与生物物理进展,1991,18(2):163-163.
    [25]陈勤.抗衰老研究实验方法[M].北京:中国医药科技出版社,1996,606-607.
    [26]王雷,李光友,毛远兴.中国对虾血淋巴中的抗菌、溶菌活力与酚氧化酶活力的测定及其特性研究[J].海洋与湖沼,1995,26(2):179-185.
    [27]鲍鹰,相建海.温度、盐度和pH对生物过滤器去除氨氮效率的影响[J].海洋科学,2001,25(6):42-43.
    [28]宋盛宪,何建国,翁少萍.斑节对虾养殖[M].北京:海洋出版社,1999:40-41.
    [29]陈昌生,黄标,叶兆弘,等.南美白对虾摄食、生长及存活与温度的关系[J].集美大学学报,2001,69(4):296-300.
    [30]王兴强,马牲,董双林.凡纳滨对虾生物学及养殖生态研究进展[J].海洋湖沼通报,2004,(4):94-100.
    [31]王伟定.日本对虾的温度适应性试验[J].渔业现代化,2001,(1):20-21.
    [32]Bray W A, Lawrence A L, Leung J R. The effect of salinity on growth and survival of Penaeus Vannamei, with observations on the interaction of IHHN virus and salinity [J]. Aquaculture,1994,122:133-146
    [33]Gandy R, Sloane L. Effect of salinity on oxygen consumption in postlarvae of the penaeid shrimps Penaeus monodon and Penaeus stylirostris without and with acclimation [J]. Marine Biology,1981,65:297-301.
    [34]Villareal H, Hewitt R. Effect of salinity on oxyen consumption and growth of the brown shrimp Penaeus califomiensis (Abstract) [J]. World Aquacult See,1991,22 (3):62A.
    [35]庄雪峰.我国对虾主要养殖种类的耐盐性[J].水产养殖,1992,(5):28-29.
    [36]林昌.日本对虾健康养殖新技术[J].动物科学,2010,(18):306-308.
    [37]雷衍之.养殖水环境化学[M].北京,中国农业出版社,2004.
    [38]麦贤杰,黄伟健,李卓佳,等.对虾健康养殖学[M].北京:海洋出版社,2009.
    [39]McGraw W, Teichert-Coddington D R, Rouse D B, et al. Higher minimum dissolved oxygen concentrations increase penaeid shrimp yields in earthen ponds[J]. Aquaculture,2001,199(3):311-321.
    [40]荣长宽,梁素秀.虾池基础生物饵料的培养技术及其种类、数量的研究[J].水产科技情报,1994,21(5):203-206.
    [41]孙舰军.虾池生态系统中诸因子对虾体的影响[J].海洋科学,1997,(2):24-25.
    [42]陈淑吟.封闭式南美白对虾的关键水质因子分析[J].中国水产,2002,10:62-63.
    [43]刘健康.高级水生生物学[M].北京:科学出版社,1999.
    [44]William M G, David R T C, David C, et al. Higher minimum dissolved oxygen concentration increase period shrimp yields in earthen ponds [J]. Aquaculture, 2001(199):311-321.
    [45]方志山,杨圣云,许振祖.杏林虾池综合养殖系统主要环境因子的变化[J].台湾海峡,2001,20(4):496-501.
    [46]王小谷,胡锡钢.杭州湾淡化对虾养殖池水中氮磷营养盐的存在特征[J].东海海洋,2004,22(3):56-61.
    [47]邹景忠,董丽萍,秦保平,等.渤海富营养化和赤潮问题的初步探讨[J].海洋环境科学,1983,2(2):45-54.
    [48]Darley W M. Algal Biology:A physiological approach oxford [M]. London: Black-well scientific publication,1982,9:168.
    [49]周光正.氨和亚硝酸盐对于对虾幼虫的毒性[J].海洋湖沼通报,1991,(2):95-98
    [50]潘鲁青,姜令绪.盐度、pH突变2种养殖对虾免疫力的影响[J].青岛海洋大学学报,2002,32(6):903-910.
    [51]Cheng S Y, Chen J C. The time-course changes of nitrogenous excretion in the kuruma shrimp Penaeus japonicus following nitrite exposure [J].Aquatic Toxicology,2001,51(4):443-454
    [52]罗杰,钟志华,罗伟林.凡纳滨对虾高位池养殖中几个单项因子试验[J].海洋湖沼通报,2005(3):38-43.
    [53]刘淑梅,孙振中,戚隽渊,等.亚硝酸盐氮对罗氏沼虾幼体的毒性实验[J].水产科技情报,1999,26(6):281-283.
    [54]黄琪炎.水产动物疾病学[M].上海:上海科学技术出版社,1993:163-165
    [55]吴中华,刘昌彬,刘存仁,等.中国对虾慢性亚硝酸盐和氨中毒的组织病理学研究[J].华中师范大学学报,1999,33(1):119-122
    [56]宁修仁.微型生物食物环[J].东海海洋,1997,15(1):66-69.
    [57]Schell D M. Uptake and regeneration of free amino acids in marine watersof Southeast Alaska [J]. Limnology and Oceanography 1974,2(19):260-270.
    [58]陆田生,纪明侯.小角刺藻生长过程中溶解游离氨基酸含量在海水中的变化[J]. 海洋与湖沼,1997,28(3):256-259.
    [59]Admiraal P. Effect of dissolved free amino acids (DFAA) on the biome [J]. Journal of Experimental Marine Biology and Ecology,2006,330 (34):469-481.
    [60]Dugdale R, Goering J. Uptake of new and regenerated forms of nitrogen in primary productivity[J]. Limnology and Oceanography 1967,2(12):196-206.
    [61]Binhe G, Alexander V. Seasonal variations in dissolved nitrogen utilization by-phytoplankton in a subarctic Alaskan lake [J]. Archive fur hydrobiologie,1993, 126:273-288.
    [62]Berman T, Bronk D A. Dissolved organic nitrogen:a dynamic participant in aquatic ecosystems [J]. Aquatic Microbial Ecology.2003,3(31),279-305.
    [63]Glibert P M, Harrison J. Heil C. Escalating worldwide use of Urea-a global change contributing to coastal eutrophication [J]. Biogeochemistry.2006,3(77): 441-463.
    [64]Fan C, Glibert P M, Burkholder J M. Characterization of the affinity for nitrogen uptake kinetics, and environmental relationships for Prorocentrum minimum in natural blooms and laboratory cultures [J]. Harmful Algae.2003,4(2):283-299.
    [65]Collos Y, Vaquer A, Laabir M, et al. Contribution of several nitrogen sources to growth of Alexandrium catenella during blooms in Thau lagoon, Southern France [J]. Harmful Algae.2007,6(6),781-789.
    [66]Gu B, Alexander V. Dissolved Nitrogen Uptake by a Cyanobacterial Bloom (Anabaena flos-aquae) in a Subarctic Lake [J]. Applied and Environmental Microbiology,1993,59(2):422-430.
    [67]王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分级标准[J].中国环境监测,2002,5(18):47-50.
    [68]Cheng S Y, Chen J C. The time course changes of nitrogenous excretion i n the kuruma shrimp Penaeus japonicus following nitrite exposure [J]. Aquatic Toxicology,2001,51:443-454.
    [69]Cheng S Y, Chen J C. Effects of nitrite exposure on the haemolymph electrolyte respiratory protein and free amino acid levels and water content of Penaeus japonicus [J]. Aquatic Toxicology,1998,44:129-139.
    [70]Cheng W, Liu C H, Chen J C. Effects of nitrite on interaction beteen the giant freshwater prawn Macrobrachium rosenbergii and its pathogen Lactococcus [J]. Diseases of Aquatic Organisms,2002,50:189-197.
    [1]刘健康.高级水生生物学[M].北京:科学出版社,1999.
    [2]麦贤杰,黄伟健,李卓佳,等.对虾健康养殖学[M].北京:海洋出版社,2009.
    [3]成永旭,蒋霞敏,陈学豪,等.生物饵料培养学[M].北京:中国农业出版社,2005:75-84.
    [4]王崇明,张岩,麻次松.对虾池塘浮游植物与主要水质因子的关系[J].海洋科学,1993,4:10-12.
    [5]曾呈奎,相建海.海洋生物技术[M].山东科学技术出版社,1998.
    [6]海洋调查规范.中华人民共和国国家标准[M].中国标准出版社,GB-12763,2007:6-91.
    [7]Berger W H, Parker F L. Diversity of planktonic foraminifera in deep-sea sediments [J]. Science,1970,168:1345-1347.
    [8]孙儒泳,李庆芬,牛翠娟,等.基础生态学[M].高等教育出版社,2002.
    [9]查广才.凡纳滨对虾低盐度高产虾池理化因子研究[J].韩山师范学院学报,2006,27(3):68-73.
    [10]况琪军,夏宜琤,吴振斌.人工模拟生态系统中水生植物与藻类的相关性研究[J].水生生物学报,1997,1(21):90-93.
    [11]刘孝竹,李卓佳,曹煜成,等.珠江三角洲低盐度虾池秋冬季浮游微藻群落结构特征的研究[J].农业环境科学学报,2009,28(5):1010-1018.
    [12]李永祺.海水养殖生态环境的保护与改善[M].山东科学技术出版社,1999.
    [13]孙耀,李锋,李健,等.虾塘水体中浮游植物群落特征及其与营养状况的关系[J].海洋水产研究,1998,19(2):47-50.
    [14]姚泊,何建国,莫福,等.虾塘浮游动物种类的调查[J].中山大学学报(增刊),2000(39):224-228.
    [15]B.福迪.藻类学[M].上海科学技术出版社,1980.
    [16]何青,孙军.长江口及其邻近水域网采浮游植物群落[J].生态学报,2009,29(7):3928-3939.
    [17]柳丽华,左涛,陈瑞盛,等.2004年秋季长江口海域浮游植物的群落结构和多样性[J].海洋水产研究,2007,28(3):112-119.
    [18]孙儒泳,李博,诸葛阳,等.普通生态学[M].高等教育出版社,1994.
    [19]张岩,王崇明,麻次松,等.中国对虾池浮游生物与对虾养殖的关系[J].海洋科学,1993,6:6-9.
    [20]何志辉.从“看水”经验论养鱼水质的生物指标[J].水生生物学报,1985,9(1):89-98.
    [21]Shannon C E, Wiener W. The Mathematical Theory of Communication [M]. Urbana:University of Illinois Press,1949,125.
    [22]Danilov R, Ekelund N G A. The efficiency of seven diversity and one similarity indices based on phytoplankton data for assessing the level of eutrophication in lakes in central Sweden [J]. The Science of the Total Environment,1999,234: 15-23.
    [23]宋辞,于洪贤.镜泊湖浮游植物多样性分析及水质评价[J].东北林业大学学报,2009,37(4):40-42.
    [24]Karydis M, Tsirtsis G. Ecological indices:a biometric approach for assessing eutrophication levels in the marine environment [J]. Science of the Total Environment,1996,186:209-219.
    [25]Kitsiou D, Karydis M. Categorical mapping of marine eutrophication based on ecological indices[J]. Science of the total environment,2000,255(1):113-127.
    [26]张婷,李林,宋立荣.熊河水库浮游植物群落结构的周年变化[J].生态学报,2009,29(6):2971-2979.
    [27]杨震,童家明,唐学玺,等.海洋单细胞藻对紫外线吸收的比较[J].海洋通报,1999,18(5):93-96.
    [28]苏秀榕,刘照彬,迟庆宏,等.单细胞吸收Ca2+,Zn2+,Se4+,Cd2+的扫描电镜X射线能谱分析[J].海洋科学,1999,3:60-62.
    [29]何志辉,李永函.论白鲢的食物问题[J].水生生物学报,1975,5(4):542-546.
    [1]Racotta I S, Hernandez-Herrera R. Metabolic responses of the white shrimp, Penaeus vannamei, to ambient ammonia [J]. Comparative Biochemistry Physiology,2000,125 (4):437-443.
    [2]Roselien C, Yoram A, Tom D, et al. Nitrogen removal techniques in aquaculture for a sustainable production [J]. Aquaculture,2007,270 (1-4):1-14.
    [3]Joel C G. Phytoplankton response to waste-water nutrient enrichment in continuous culture [J]. Journal of Experimental Marine Biology and Ecology, 1976,23(1):31-43.
    [4]Benjamas C, Sorawit P, Piamasak M. Water quality control using Spirulina Platensis in shrimp culture tanks [J]. Aquaculture,2003,220 (1-4):355-366.
    [5]Dugdale V A, Dugdale R C. Nitrogen metabolism in lakes III. Tracer studies of the assimilation of inorganic nitrogen sources [J]. Limnology Oceanography, 1965,10 (1):53-57.
    [6]Gu B, Alexander V. Seasonal variations in dissolved nitrogen utilization by phytoplankton in a subarctic Alaskan lake [J]. Archiv fuer Hydrobiologie,1993, 126 (3):273-288.
    [7]Berman T, Bronk D A. Dissolved organic nitrogen:a dynamic participant in aquatic ecosystems [J]. Aquatic Microbial Ecology.2003,3(31),279-305.
    [8]Glibert P M, Harrison J. Heil C. Escalating worldwide use of Urea-a global change contributing to coastal eutrophication [J]. Biogeochemistry.2006,3(77): 441-463.
    [9]Collos Y, Vaquer A, Laabir M. et al. Contribution of several nitrogen sources to growth of Alexandrium catenella during blooms in Thau lagoon, Southern France [J]. Harmful Algae.2007,6(6),781-789.
    [10]Schell D M. Uptake and regeneration of free amino acids 232 in marine waters of Southeast Alaska [J]. Limnology Oceanography,1974,19:260-270.
    [11]Mallick N, Rai L C. Influence of culture density, pH, organic acid and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolium and Chlorella vulgaris [J]. World Journal of Microbiology and Biotechnology,2007,9:196-201.
    [12]Talbot P, Nouedela J. Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions [J]. Water Research, 1993,27(1):153-159.
    [13]Presing M, Herodek S, Preston T, et al. Nitrogen uptake and the importance of internal nitrogen loading in Lake Balaton[J]. Freshwater Biology,2001,46 (1): 125-139.
    [14]胡鸿均.中国淡水藻类[M].上海科学技术出版社,1980:83-327.
    [15]黄翔鹄,李长玲,刘楚吾,等.两种微藻改善虾池环境增强凡纳对虾抗病力的研究[J].水生生物学报.2002,4(26):342-347.
    [16]Hu H J. Chinese freshwater algae [M]. Shanghai Science and Technology Press, Shanghai.2006.
    [17]Dugdale R C, Wilkerson F P. The use of 15N to measute nitrogen uptake in eutrophic oceans:Experimental considerations [J]. Limnology Oceanography, 1986,31(4):673-689.
    [18]成永旭,蒋霞敏,陈学豪.生物饵料培养学[M].北京:中国农业出版社,2005:75-84.
    [19]王正方,张庆,吕海燕.温度、盐度、光照强度和pH对海洋原甲藻增长的效应[J].海洋与湖沼,2001,32(1):15-18.
    [20]Tonis P, Serge Y M. The role of inorganic and organic nutrients on the development of phytoplankton along atransect from the Daugava River mouth to the Open Baltic, in spring and summer [J]. ICES Journal of Marine Science,2003, 60 (4):827-835.
    [21]陈炳章,王宗灵,朱明远,等.温度、盐度对具齿原甲藻生长的影响及其与中肋骨条藻的比较[J].海洋科学进展,2005,23(1):60-64.
    [22]茅华,许海,刘兆普.温度、光照、盐度及pH对旋链角毛藻生长的影响[J].生态科学,2007,26(5):432-436.
    [23]Julien L, Amy N, Bethany L, et al. The impact of salinity fluctuations on net oxygen production and inorganic nitrogen uptake by Ulvalactuca (Chlorophyceae) [J]. Aquatic Botany,2003,75 (4):339-350.
    [24]姜宏波.鼠尾藻生态学的初步研究[D].青岛:中国海洋大学,2007.
    [25]Hanisak M D, Harlin M M. Uptake of inorganic N by Lodium fragile [J]. Phycology,1978,14 (4):450-454.
    [26]Harris G P. Photosynthesis, productivity and growth:the physiological ecology and phytoplankton [M]. Schweizerbart (Stuttgart),1978,171.
    [27]Mallick N. Rai L C. Influence of culture density, pH、organic acid and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolium and Chlorella vulgaris [J]. World Journal of Microbial Biotechnology, 2007,9:196-201.
    [28]潘瑞炽.植物生理学[M].(第四版).高等教育出版社,2001.
    [29]Dugdale R. Goering J. Uptake of new and regenerated forms of nitrogen in primary productivity [J]. Limnology and Oceanography 1967,2(12):196-206.
    [30]Fan C, Glibert P M, Burkholder J M. Characterization of the affinity for nitrogen uptake kinetics, and environmental relationships for Prorocentrum minimum in natural blooms and laboratory cultures [J]. Harmful Algae.2003,4(2):283-299.
    [31]Noriko I, Osamu M, Masashi N. et al. Seasonal variation in biomass and photosynthetic activity of epilithic algae on a rock at the upper littoral area in the north basin of Lake Biwa, Japan [J]. Limnology.2006,3(7):175-183.
    [32]陆田生,纪明侯.小角刺藻生长过程中溶解游离氨基酸含量在海水中的变化[J].海洋与湖沼,1997,28(3):256-259.
    [33]Admiraal P. Effect of dissolved free amino acids (DFAA) on the biome [J]. Journal of Experimental Marine Biology and Ecology,2006,330 (34):469-481.
    [1]Mallick N, Rai L C. Influence of culture density, pH, organic acid and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolium and Chlorella vulgaris [J]. World Journal of Microbiology and Biotechnology,2007,9:196-201.
    [2]Talbot P, Noiiedela J. Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions [J]. Water Research, 1993,27(1):153-159.
    [3]Gu B, Alexander V. Seasonal variations in dissolved nitrogen utilization by phytoplankton in a subarctic Alaskan lake [J]. Archiv fuer Hydrobiologie,1993, 126 (3):273-288.
    [4]Presing M, Herodek S, Preston T, et al. Nitrogen uptake and the importance of internal nitrogen loading in Lake Balaton [J]. Freshwater Biology,2001,46 (1): 125-139.
    [5]Dugdale V A, Dugdale R C. Nitrogen metabolism in lakes III. Tracer studies of the assimilation of inorganic nitrogen sources [J]. Limnology Oceanography, 1965,10 (1):53-57.
    [6]成永旭.生物饵料培养学[M].第二版.北京:中国农业出版社,2005:8-79.
    [7]Mecarthy J J, Taylor W R, Taft J L. Nitrogenous nutrition of the plankton in the Chesapeake Bay:Nutrient availahility and phytoplankton preferences [J]. Limonology And Oceanography,1977,22(6):996-1011.
    [8]Dugdale R. Goering J. Uptake of new and regenerated forms of nitrogen in primary productivity [J]. Limnology and Oceanography 1967,2(12):196-206.
    [9]Schell D M. Uptake and regeneration of free amino acids 232 in marine waters of Southeast Alaska [J]. Limnology Oceanography,1974,19:260-270.
    [10]Berges J A, Mulholland M R. Enzymes and Nitrogen Cycling [M]. Nitrogen in the Marine Environment. Elsevier Press,2008:1385-1444.
    [Ⅱ]Gu B H, Alexander V. Dissolved Nitrogen Uptake by a Cyanobacterial Bloom (Anabaena flos-aquae) in a Subarctic Lake [J]. Applied and environmental microbiology,1993,59(2):422-430.
    [12]吕颂辉,黄凯旋.米氏凯伦藻在三种无机氮源的生长情况[J].生态环境,2007,16(5):1337-1341.
    [13]Fan C, Glibert P M, Burkholder J M. Characterization of the affinity for nitrogen, uptake kinetics, and environmental relationships for Prorocentrum minimum in natural blooms and laboratory cultures [J]. Harmful Algae,2003,2(4):283-299.
    [14]陈敏,黄奕普,邱雨生.白令海盆氮吸收速率的同位素示踪[J].自然科学进展,2007,17(12):1672-1684.
    [15]王培磊,刘明河,张学成,等.盐生杜氏藻对不同氮源吸收规律的比较研究[J].海洋水产研究,2007,28(6):56-60.
    [16]Burford M A. Relative uptake of urea and ammonium by dinoflagellates or cyanobactoria in shrimp mesocosms [J]. Hydrobiologia,2005,549(1):297-303.
    [17]Twomey L J, Piehler M F, Paerl H W. Phytoplankton uptake of ammonium, nitrate and urea in the Neuse River Estuary, NC, USA [J]. Hydrobiologia,2005, 533(1):123-134.
    [18]Mckinney C R, Mccrea J M, Epstein S, et al. Improvements in Mass Spectrometers for the Measurement of Small Differences in Isotope Abundance Ratios[J]. Review of Scientific Instruments,1950,21(8):724-730.
    [19]Dugdale R C, Wilkerson F P. The use of 15N to measute nitrogen uptake in eutrophic oceans:Experimental considerations [J]. Limnology Oceanography, 1986,31(4):673-689.
    [20]张汉华,李卓佳,郭志勋,等.有益微生物对海水养虾浮游生物生态特征的影响研究[J].南方水产,2005,1(2):7-14.
    [21]Nurdogan Y, Oswald W J. Enhanced nutrient removal in high-rate ponds [J]. Water Science Technology,1995,12 (31):33-43.
    [22]王崇明,张岩,麻次松.对虾池塘浮游植物与主要水质因子的关系[J].海洋科学,1993(4):10-12.
    [23]孙勉英.扁藻降氨氮作用的试验[J].水产科学,1985,4(2):7-9.
    [24]黄翔鹄,李长玲,郑莲,等.固定化微藻对虾池弧菌数量动态的影响[J].水生生物学报,2005,29(6):684-688.
    [25]王志红,崔福义,韦朝海,等.局部湖区两种藻类藻生物量的综合因子预测模型[J].环境科学学报,2006,26(8):1379-1385.
    [26]邹万生,张景来,刘良国,等.固定化藻菌去除淡水养殖废水氨氮效果及模型拟建[J].安徽农业科学,2010,38(23):12650-12652.
    [1]李卓佳,陈永青,杨莺莺,等.广东对虾养殖环境污染及防控对策[J].广东农业科学,2006,6:68-71.
    [2]王美珍.杭州湾南岸滩涂贝类养殖环境中污染物的调查[J].宁波大学学报(理工版),2005,18(3):323-328.
    [3]Luderitz V, Andreas N. The effect of pH on Cu toxicity to blue-green algae [J].International Revue der gesamten Hydrobiologie and Hydrographie,1989,(3):283-291.
    [4]余超,何洁仪,李迎月,等.广州市2008年部分食品重金属污染情况分析[J].华南预防医学,2009,35(3):62-65
    [5]李英敏,杨海波,吕福荣,等.叉鞭金藻对微量锌、镉的吸附效应研究[J].环境污染与防治,2004,26(5):396-398.
    [6]陈广,黄翔峰,何少林,等.高效藻类塘系统处理太湖地区农村生活污水的中试研究[J].中国给水排水,2006,32(2):37-40.
    [7]刘长发,晏再生,张俊新.养殖水处理技术的研究进展[J].大连水产学院报,2005,20(2):142-146.
    [8]李坤,李琳.淡水小球藻清除Cu2+、Cd2+、Zn2+污染能力的研究[J].中国微生态学杂志,2006,18(3):194-198.
    [9]Li K, Li L, Houh S. Study on toxicity of heavy metal ions to two species of marine unicellular algae [J]. Chinese Journal of Applied envionmental Biology, 2002,8(4):395-398.
    [10]成永旭,蒋霞敏,陈学豪,等.生物饵料培养学[M].北京:中国农业出版社,2005:75-84.
    [11]Kumar D, Jha M, Kumar H D. Heavy metal toxicity in the cyanobacterium Nostoc tinckia [J]. Aquatic Botany,1982,22(4):101-105.
    [12]杨智宽,单崇新,苏帕拉.甲基壳聚糖对水中Cd2+的絮凝处理研究[J].环境科学与技术,2000,88(1):10-12.
    [13]文竹青,高伟,何少华.藻类吸附法去除废水中的重金属[J].江苏环境科技,2006,19(2):49-51.
    [14]Fisber N S. On the reactivity of metals for marine phytoplankton [J]. Limnology Oceanagraphy,1986,31:443-449.
    [15]李志勇,郭祀远,李琳,等.钝顶螺旋藻生物富集影响因素的研究[J].生物工程学报,2000,16(1):108-112
    [16]李国栋.球等鞭金藻与重金属离子的相互作用[D].烟台:烟台大学,2005.
    [17]Henry C. Lukaski. Chromium as a Supplement [J]. Annual Reviews Nutrition, 1999,19(2):279-302.
    [18]林荣根,周俊良,黄朋林.螺旋藻吸附水溶液中铜离子的初步研究[J].海洋环境科学,1998,17(2):8-11.
    [19]张永亮,张浩江,谢水波.藻类吸附重金属的研究进展[J].铀矿冶,2009,28(1):31-37.
    [20]Nakajima A., Horikoshi T., Sakaguchi T. Reeovery of uranium by immobilized microorganisms [J]. European Journal of Applied Microbiology and Biotechnology,1982,16(1):88-91.
    [21]潘进芬.海藻对水中重金属的吸附研究[D].青岛:中国科学院海洋研究所,2000.
    [22]孙传范.微藻水环境修复及研究进展[J].中国农业科技导报,2011,13(3):92-96.
    [23]CAI Zhuo-ping, DUAN Shun-shan. Microalgal biosorption on the heavy metals in polluted waters [J].2008,27(6):499-505.
    [24]Chen J P, Tendeyong F, Yiaeoumi S. Equilibrium and kinetic studies of copper ion Uptake by calcium alginate [J]. Environmental Science Technology,1997, 31(3):1433-1439.
    [25]陈正佳,李晓凡,施定基,等.集胞藻类金属硫蛋白的纯化、性质和溶液构象的研究[J].植物学报,1999,41(2):150-155
    [26]Lasheen M R, Shehata S A. Effect of Cd, Cu and Cr on the growth of Nile water algae [J]. Water Air and Soil Pollation,1990,50(1-2):19-30.
    [27]董庆霖,林碧琴.铅对羊角月芽藻的毒性及吸收作用的研究[J].辽宁大学学报,1997,24(8):94.
    [28]Joseph W R, Thomas E J, Barbara W. The toxicological response of the algae AnaKaena flos-aquae to cadmium [J]. Archives of Environmental Contamination and Toxicology,1984,33(5):143-151.
    [29]Marshall S M. Respiration and feeding in indepods [J]. Advance. Marine Biology, 1973,11:57-120.
    [1]Azov Y, Shelef G. Effect of pH on the performance of the high-rate oxidation ponds [J]. Water Science and Technology,1987,19 (12):381-383.
    [2]Talbot P, de la Noue J. Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions [J]. Water Research 1993,27 (1):153-159.
    [3]Martinez M E, Jimenez J M, El Yousfi F. Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus [J]. Bioresource Technology,1999,67 (3):233-240.
    [4]Mallick N, Rai L C. Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolium and Chlorella vulgaris [J]. World Journal of Microbial Biotechnology, 1993,9 (2):196-201.
    [5]Yan G, Yu J, Wang Y. The effects of pH and temperature on orthophosphate removal by immobilized Chlorella vulgaris [J]. Biotechnology Letters,1996,18 (8):893-896.
    [6]Talbot P, Thebault J M, Dauta A, et al. A comparative study and mathematical modeling of temperature, light and growth of three microalgae potentially useful for wastewater treatment [J]. Water Research,1991,25 (4):465-472.
    [7]Torres A I, Gil M N, Esteves J L. Nutrient uptake rates by the alien alga Undaria pinnatifida(Phaeophyta)(Nuevo Gulf, Patagonia, Argentina) when exposed to diluted sewage effluent [J]. Hydrobiologia,2004,520:1-6.
    [8]Corredor J E, Howarth R W, Twilley R W, et al. Nitrogen cycling and anthropogenic impact in the tropical Inter-American seas [J]. Biogeochemistry, 1999,46:163-178.
    [9]潘攀.富营养化水体藻华打捞及植物修复的生态效果与影响因素研究[D].苏州:苏州大学,2010.
    [10]陈广,黄翔峰,何少林,等.高效藻类塘系统处理太湖地区农村生活污水的中试研究[J].中国给水排水,2006,32(2):37-40.
    [11]刘长发,晏再生,张俊新.养殖水处理技术的研究进展[J].大连水产学院报,2005,20(2):142-146.
    [12]李静红,黄翔鹄,李色东.波吉卵囊藻对弧菌生长的影响[J].广东海洋大学学报,2010,30(3):33-38.
    [13]李静红,黄翔鹄,李色东.不同环境条件下无菌和自然带菌波吉卵囊藻生长的比较[J].广东海洋大学学报,2010,30(1):88-92.
    [14]李静红,黄翔鹄,刘慧玲.波吉卵囊藻对抗生素的敏感性及其无菌化培养[J].广东海洋大学学报,2009,29(3):37-41.
    [15]海洋调查规范.中华人民共和国国家标准[M].中国标准出版社,GB12763,2007:6-91.
    [16]雷衍之.养殖水环境化学,北京,中国农业出版社,2004:126-132.
    [17]张扬宗.中国池塘养鱼学.北京:科学出版社,1989.
    [18]Dugdale R, Goering J. Uptake of new and regenerated forms of nitrogen in primary productivity [J]. Limnology and Oceanography 1967,2(12):196-206.
    [19]Binhe G, Alexander V. Seasonal variations in dissolved nitrogen utilization by phytoplankton in a subarctic Alaskan lake [J]. Archive fur hydrobiologie,1993, 126:273-288.
    [20]Schell D M. Uptake and regeneration of free amino acids in marine watersof Southeast Alaska [J]. Limnology and Oceanography 1974,2(19):260-270.
    [21]陆田生,纪明侯.小角刺藻生长过程中溶解游离氨基酸含量在海水中的变化[J].海洋与湖沼,1997,28(3):256-259.
    [22]Admiraal P. Effect of dissolved free amino acids (DFAA) on the biome[J] Journal of Experimental Marine Biology and Ecology,2006,330(34):469-481.
    [23]荣长宽,梁素秀.虾池基础生物饵料的培养技术及其种类、数量的研究[J].水产科技情报,1994,21(5)203-206.
    [24]孙舰军.虾池生态系统中诸因子对虾体的影响[J].海洋科学,1997,(2):24-25.
    [25]刘志军.杨冬华.南美白对虾生态养殖的水质调控要点[J].渔业致富指南,2008,(8):46-47.
    [26]蔡志辉.养殖南美白对虾池塘水质调控技术[J].中国水产,2006,(9):38-43.
    [27]罗杰,钟志华,罗伟林.凡纳滨对虾高位池养殖中几个单项因子试验[J].海洋湖沼通报,2005(3):38-43.
    [28]刘淑梅,孙振中,戚隽渊,等.亚硝酸盐氮对罗氏沼虾幼体的毒性实验[J].水产科技情报,1999,26(6):281-283.
    [29]王小谷,孙浩波,杨丹,等.凡纳对虾淡养过程中虾池水质测定与分析[J].东海海洋,2002,20(3):41-43.
    [30]马悦欣,李华,陈营.1993年中国对虾爆发性流行病细菌病原学研究[J].大连水产学院学报,1995,10(2):1-8.
    [31]丁美丽,林林,李光友,等.有机污染对中国对虾体内外环境影响的研究[J].海洋与湖沼,1997,28(1):7-12.
    [32]林林,丁美丽,孙舰军,等.有机污染提高对虾对病原菌敏感性实验[J].海洋学报1998,20(1):90-93.
    [33]孙舰军,丁美丽.氨氮对中国对虾抗病力的影响[J].海洋与湖沼,1999,30(3):267-272.
    [34]王崇明,张岩,麻次松.对虾池塘浮游植物与主要水质因子的关系[J].海洋科学,1993,4:10-12.
    [36]管华诗.海水养殖动物的免疫,细胞培养和病害研究[M].济南:山东科学技术出版社.1999.1-31.
    [37]邓碧玉,袁勤生,李文杰.改良的连苯三酚自氧化测定超氧化物歧化酶活性的方法[J].生物化学与生物物理进展,1991,18(2):163-165.
    [38]Ashida M. Purification and characterization of pro-phenoloxidase from hemolymph of the silkworm Bombyx morl [J]. Archives of Biochemistry Biophysics,1971,144:749-762.
    [39]王雷,李光友,毛远兴.中国对虾血淋巴中的抗菌、溶菌活力与酚氧化酶活力的测定及其特性研究[J].海洋与湖沼,1995,26(2):179-185.
    [40]姚泊,何建国,莫福,等.虾塘浮游动物种类的调查[J].中山大学学报(增刊),2000(3):224-228.
    [41]彭聪聪,李卓佳,曹煜成,等.粤西凡纳滨对虾海水滩涂养殖池塘浮游微藻群落结构特征[J].渔业科学进展,2011,32(4):117-125.
    [42]胡晓娟,李卓佳,曹煜成,等.强降雨对粤西凡纳滨对虾养殖池塘微生物群落的影响[J].中国水产科学,17(5):987-995.
    [43]严国安,李益健.固定化小球藻净化污水的初步研究[J].环境科学研究,1994,7(1):39-42.
    [44]吴维宁,郭履骥,林惠山,等.应用因子分析法分析对虾养殖水质[J].中国环境监测,1998,14(2):43-44.
    [45]张华军,李卓佳,张家松,等.凡纳滨对虾免疫指标变化与其养殖环境理化因子的关系[J].大连海洋大学学报.2011,26(4):356-361.
    [46]Cheng W, Liu C H, Chen J C. Effects of nitrite on interaction beteen the giant freshwater prawn Macrobrachium rosenbergii and its pathogen Lactococcus [J]. Diseases of Aquatic Organisms,2002,50:189-197.
    [47]李桂生,何建国,李桂峰,等.斑节对虾杆状病毒感染与水体理化因子[J].中山大学学报论丛(增刊),1996,26-30.
    [48]何志辉,李永函.论白鲢的食物问题[J].水生生物学报,1975,5(4):542-546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700