用户名: 密码: 验证码:
利用味精废水培养普通小球藻以及养藻废水的生物强化处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于微藻具有生长迅速、油脂含量高、占地面积小等优点,作为第三代生物能源正在受到广泛的关注和研究。微藻除了可以用来生产生物燃料(如生物柴油、生物乙醇等),还可以用来生产动物饲料、食品添加剂、高附加值产品等(如保健品、化妆品)。微藻生长速度快倍增时间短,它的生长速率几乎是高等植物的100倍。但是由于培养系统内部的光衰减以及CO2供应限制,微藻的光能自养生长速率要远远低于异样培养或是兼养培养的生长速率。在一般的光能自养培养条件下,微藻的生物质浓度通常都会低于1g/L。当微藻被同时供给C02和有机碳源的时候,微藻进行兼养生长。在兼养生长模式下,微藻对光线的依赖程度大大减弱,同时其生长速率得以大大提高。但是向无机培养基中直接添加有机碳源将会增加微藻培养的成本,进而制约微藻的商业化生产。为了降低生产成本,人们开始探索使用有机废水作为培养基直接培养微藻。使用该方法可以将废水中的有机物通过藻细胞转化成有用的生物质,既实现了微藻的低成本培养,又有效地处理了污水。
     在东亚和东南亚地区,味精作为一种增鲜剂被广泛地应用在食品生产当中。中国是味精生产大国,中国的味精年产量几乎占到世界总产量的一半。而味精生产会产生大量的有机废水,这种棕黑色的废水具有高COD、高NH3-N、高硫酸盐、低pH等特点。若无切实有效的处理,大量的味精废水将会引发严重的环境污染。本论文从微藻生长速率、微藻生物质组成等方面评价了使用味精废水做为培养基培养小球藻的可行性,考察了营养物质浓度、光照强度等对小球藻的影响;最后从节约水资源、降低生产成本的考虑出发,本文对养藻剩余培养液进行生物强化处理,以对其进行循环利用。论文的研究内容主要包含以下几部分:
     1.对使用味精废水培养小球藻的可行性进行评价,研究不同味精废水浓度对小球藻生物质产率和生化组分的影响。实验中将经过稀释、灭菌处理的味精废水直接用来培养小球藻,结果发现小球藻生长良好,与无机培养液培养的对照组相比,小球藻的生长得到极大的促进。当使用稀释100倍的味精废水时,最后得到的小球藻生物质浓度(1.02g/L)和生物质产率(61.47mg/L·d)最大。经过对小球藻的各项生化组分进行检测分析发现,使用味精废水培养出的小球藻蛋白含量最高(36.0-50.6%),总脂和总糖含量相对较低,分别为13.5-25.4%、8.9-20.1%。另外,小球藻蛋白质营养质量和不饱和脂肪酸含量都得到显著提高。因此,味精废水是培养小球藻的一种非常理想的培养基。
     2.光照是微藻培养中最重要的影响因子之一,不仅可以影响微藻的生长速率还可以影响微藻的生化组成。本文在实验室条件下研究了光照强度对特定培养液-味精废水中小球藻生长及生化组分的影响。直接使用稀释100倍的味精废水为培养液,设置6个不同的连续光照梯度,分别为:0μmol/m·s,30μmol/m·s,90μmol/m·s,150μmol/m·s,200μmol/m·s和300μmol/m·s。培养实验在25℃光照培养箱中进行。实验结果表明,当低于光饱和点时光照强度的增加可以极大地促进小球藻在味精废水中的生长。在150μmol/m·s光照强度下,培养7天后小球藻生物质浓度最高(1.46g/L),在培养前7天的平均比生长速率达0.79/d。在由低到高4个不同光密度下,小球藻的油脂含量分别为12.6%、17.7%、16.9%、30.5%、21.4%和23.6%。光照强度对小球藻的蛋白质和总糖含量影响正好相反。
     3.将微藻收获以后,剩余的培养液仍含有较高的营养物质,色度、浊度也都比较高,若是直接用作源水稀释味精废水可能会导致稀释后废水的色度、浊度更高,阻碍光线传递,进而影响微藻的生长。因此,本文对养藻废水进行生物强化处理,以期降低其中的有机物含量,同时降低废水的色度和浊度。经过处理的养藻废水,将被作为养藻水源重复使用。本文使用生化绵和希拉环两种填料构建海绵固定化系统,经过接种活性污泥、5天闷曝挂膜,海绵固定化微生物系统基本构建完成,该系统对污水COD去除率达90%左右,对TN、氨氮的去除率也均在50%以上。实际运行过程中,通过投加反硝化细菌LZ-4、XP-2,加快了固定化微生物系统对废水处理过程中亚硝氮的转化,降低了亚硝氮的积累浓度,进而提高了对TN的去除效果。进过46h的处理,废水色度、浊度分别降为10PCU、5NTU。
Microalgae investigation has been focused on in research all over the world. It could be used to produce animal feed, food additives, high-value added products (such as health supplements, cosmetics et al.), especially biofuels (such as biodiesel, bioethanol), due to its certain excellent advantages such as rapid growth, the least land demand, high biochemical compositions (protein, lipid). Microalgae could double their biomass within one day and their growth rate is100times that of terrestrial plants. Nonetheless, compared with heterotrophic or mixotrophic cultivation, the microalgae usually grow slowly in photoautotrophic culture due to the light attenuation. The algal biomass is usually not more than1g/L in photoautotrophic cultivation. Mixotrophic growth occurred when the microalgae are provided with CO2and organic carbon sources simultaneously. That could greatly reduce the dependence on light needed for pure photoautotrophic growth, stimulate the algal growth and increase the cells density significantly. However, the high cost of adding organic carbon to the medium will make mixotrophic cultivation uneconomical, In order to reduce the product cost, many researchers have explored techniques to culture microalgae with organic wastewater. By this means, nutrients from wastewaters are transferred to algal biomass, achieving economical microalgae cultivation and efficient wastewater treatment simultaneously. Because of the good performance of Chlorella vulgaris in mixotrophic cultivation, it was chosen as the model organism in this study.
     Monosodium glutamate (MSG) as a flavor enhancer is extensively used in food products throughout east and south-east Asia. The MSG production in China accounts for about half of world's total output. After extraction of MSG from fermentation liquor the residual dark brown wastewater and effluent have high concentrations of COD, NH3-N, sulfate and a strong acidity. Without reasonable treatment the monosodium glutamate wastewater (MSGW) would cause serious pollution to the environment and damage to the ecology. As MSGW contains abundant nutrient substance, it could be feasible to reuse these organic substances using ecotechnological methods. The main works of this study were as follows:
     This paper seeks to evaluate the feasibility of growing Chlorella vulgaris with MSGW and assess the influence of MSGW concentration on the biomass productivity and biochemical compositions. The MSGW diluted in different concentrations was prepared for microalga cultivation. C. vulgar is growth was greatly promoted with MSGW compared with the inorganic BG11medium. C. vulgaris obtained the maximum biomass concentration (1.02g/L) and biomass productivity (61.47mg/L-d) with100-time diluted MSGW. The harvested biomass was rich in protein (36.01-50.64%) and low in lipid (13.47-25.4%) and carbohydrate (8.94-20.1%). The protein nutritional quality and unsaturated fatty acids content of algal increased significantly with diluted MSGW. These results indicated that the MSGW is a feasible alternative for mass cultivation of C. vulgaris.
     Light is one of the most important factors affecting microalgae growth and biochemical composition. The influence of illumination intensity on the biomass productivity and main composition of Chlorella vulgaris cultivated in diluted MSGW was investigated in laboratory. The Chlorella vulgaris was cultivated aseptically in100-fold diluted MSGW at four continuous illumination intensities (0,30,90,150,200and300μ mol/m2-s) at25℃. The growth of Chlorella vulgaris was stimulated greatly by the increasing of illumination intensity. Under150μ molm-2s-1, the microalgae obtained the maximum biomass concentration (1.458g/L) at the7th day and the greatest average specific growth rate (0.79d-1) of the first7days culture. The lipid contents under0,30,90and150μ molm-2s-1were12.6%,17.7%,16.9%,30.5%,21.4%and23.6%, respectively. The effects of illumination intensities on the contents of protein and carbohydrate were adverse.
     After microalgae harvest, the residule medium still contained abundant of nutrients, and high. If it is directly used to dilute the monosodium glutamate wastewater without treatment, that would lead to higher chromaticity and turbidity of the medium, blocking the light transmission. As a resoult the growth of microalgae will be negatively affected. In order to reduce the content of organic matter and decrease the chromaticity and turbidity of wastewater at the same time, the residule medium was excited to be treated by biological technology. We used two kinds of filters to conduct a immobilized biosystem. After inoculation with activated sludge and biofilm formation in the following 5days, the treatment efficiency of the immobilized biosystem on sewage was very well. The removal rate of COD, TN reached90%,50%respectively. During the actual operation process, we added two kinds of denitrifiers to the immobilized biosystem to enhance the contaminant removal. After46h the nitrogen removal was enhanced, the accumulation of nitrate during treatment was reduced. The chromaticity and turbidity of the effluent were10PCU,5NTU, respectively. It could be reused as water resource to dilutted the MSGW for microalgae cultivation.
引文
1. Abreu A.P., Fernandes B., Vicente A.A., Teixeira J., Dragone G.,2012. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology,118:61-66.
    2. Acien Fernandez F.G., Garcia Camacho F., Sanchez Perez J.A., Fernandez Sevilla J.M., Molina Grima E.,1998. Modeling of biomass productivity in tubular photobioreactors for microalgal cultures:effects of dilution rate, tube diameter, and solar irradiance. Biotechnology and Bioengineering,58(6):605-616.
    3. Ahluwalia S.S., Goyal D.,2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology,98:2243-2257.
    4. Akkerman I., Janssen M., Rocha J., Wijffels R.H.,2002. Photobiological hydrogen production:photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy,27(11):1195-1208.
    5. Almeida J.S., Julio S.M., Reis M.A.M. and Carrondo M.J.T.,1995. Nitrite Inhibition of Denitrification by Pseudomonas fluorescens. Biotechnology and Bioengineering,46:194-201.
    6. Alyabyev A.J., Loseva N.L., Gordon L.K., Andreyeva I.N., Rachimova G.G., Tribunskih V.I., Ponomareva A.A., Kemp R.B.,2007. The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritime cells. Thermochimica Acta,458:65-70.
    7. An J.Y., Sim S.J., Lee J.S., Kim B.W.,2003. Hydrocarbon production from secondary treated piggery wastewater by the green alga Botryococcus braunii. Journal of Applied Phycology,15:185-191.
    8. Anderson S.I, Melntosh I.,1991. Light-activated heterotrophic growth of the cyanobacterium Synechocystis strain PCC 6803:a blue-light-requiring process. Journal of bacteriology,173:2761-2767'.
    9. Anderson D.M., Gilbert P.M., Burkholder J.M.,2002. Harmful algal blooms and eutrophication:nutrient sources, composition and consequences. Estuaries,25: 704-726.
    10. Baba M., Kikuta F., Suzuki I., et al.,2012. Wavelength specificity of growth, photosynthesis, and hydrocarbon production in the oil-producing green alga Botryococcus braunii. Bioresource Technology,109:266-270.
    11. Barsanti L., Gualtieri P.,2006. Algae:anatomy, biochemistry, and biotechnology. Boca Raton:CRC Press.
    12. Becker E.W.,2007. Micro-algae as a source of protein. Biotechnology Advances, 25:207-217.
    13.Bhatnagar A., Chinnasamy S., Singh M., Das K.C.,2011. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy,88:3425-3431.
    14. Blanchemain A., Grizeau D., Guary J.C.,1994. Effect of different organic buffers on the growth of Skeletonema costatum cultures:further evidence for an autoinhibitory effect. Journal of Plankton Research,16:1433-1440.
    15. Bolton J.R., Hall D.O.,1991. The maximum efficiency of photosynthesis. Photochemistry and Photobiology,53(4):545-548.
    16. Borowitzka M.A.,1994. Large-scale algal culture systems:the next generation. Australasian Biotechnology,4 (4):212-215.
    17. Borowitzka M A.,1996. Commercial production of microalgae:Ponds, tanks, tubes and fermenters. Journal of biotechnology,70:313-321.
    18.Bosma R., Miazek K., Willemsen S.M., Vermue M.H., Wijffels R.H.,2008. Growth inhibition of Monodus subterraneusby free fatty acids. Biotechnology and Bioengineering,101:1108-1114.
    19. Bouarab L., Dauta A., Loudiki M.,2004. Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose:effect of light and acetate gradient concentration. Water Research,38:2706-2712.
    20. Bradford S.A., Segal E., Zheng W., Wang Q., Hutchins S.R.,2008. Reuse of animal feeding operation wastewater on agricultural lands. Journal of Environmental Quality,37(S):97-115.
    21. Brennan L., Owende P.,2010. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable & Sustainable Energy Reviews,14:557-577.
    22. Cai T., Park S.Y., Li Y.,2013. Nutrient recovery from wastewater streams by microalgae:Status and prospects. Renewable and Sustainable Energy Reviews,19: 360-369.
    23. Ceron Garcia M.C., Sanchez Miron A., Fernandez Sevilla J.M., Molina Grima E., Garcia Camacho F.,2005. Mixotrophic growth of the microalga Phaeodactylum tricornutum:Influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochemistry,40:297-305.
    24. Chaneva G., Furnadzhieva S., Minkova K., et al.,2007. Effect of light and temperature on the cyanobacteriumArthronema africanum-a prospective phycobiliprotein-producing strain. Journal of Applied Phycology,19(5): 537-544.
    25. Chang D.K., An J.Y., Park T.H.,2006. Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primaty-treated wastewater. Biochemical Engineering Journal,31:234-238.
    26. Chen C.Y., Yeh K.L., Aisyah R., Lee D.J., Chang J.S.,2011(a). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production:a critical review. Bioresource Technology,102:71-81.
    27. Chen F, Zhang Y.,1997. High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme and Microbial Technology,20:221-224.
    28. Chen X., Goh Q.Y., Tan W., Hossain I., Chen W.N., Lau R.,2011(b). Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters. Bioresource Technology 102,6005-6012.
    29. Chisti Y.,2007. Biodiesel from microalgae. Biotechnology Advances,25(3): 294-306.
    30. Cho S.J., Luong T.T., Lee D.H., Oh Y.K., Lee T.,2011. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresource Technology,102:8639-8645.
    31. Chrismadha T., Borowitzka M.A.,1994. Effect of cell-density and irradiance on growth, proximate composition and Eicosapentaenoic acid production of Phaeodactylum-Tricornutum grown in a tubular photobioreactor. Journal of Applied Phycology,6(1):67-74.
    32. Collos Y., Berges J.A.,2004. Nitrogen metabolism in phytoplankton, Encyclopedia of Life Support Systems (EOLSS). Oxford:EOLSS Publishers.
    33. Correll D.L.,1998. The role of phosphorus in the eutrophication of receiving waters:a review. Journal of Environmental Quality,27:261-266.
    34.陈峰,姜悦,1999.微藻生物技术[M].1st ed.;北京:中国轻工业出版社.
    35.陈卫民,2009.亚硝酸盐对铜绿微囊藻生理特性的影响.南开大学博士学位论文.
    36. Das P., Aziz S.S., Obbard J.P.,2011 (a). Two phase microalgae growth in the open system for enhanced lipid productivity. Renewable Energy,36 (9),2524-2528.
    37. Das P., Lei W., Aziz S.S., et al.2011(b). Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology, 102(4):3883-3887.
    38. de-Bashan L.E., Moreno M., Hernandez J.P. Bashan Y.,2002. Removal of ammonium and phosphorus inos from synthesis wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Research,36: 2941-2948.
    39. Demirbas A.,2006. Oily products from mosses and algae via pyrolysis. Energy Sources Part A Recovery Utilization and Environmental Effects,28(10):933-40.
    40. Dexter J. and Fu P.,2009. Metabolic engineering of cyanobacteria for ethanol production. Energy & Environmental Science,2(8):857-864.
    41. Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama S-y,1994. Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel,73(12):1855-1862.
    42. Doucha J, Livansky K.,2009. Outdoor open thin-layer microalgal photobioreactor: potential productivity. Journal of Applied Phycology,21:111-117.
    43. Durai G, Rajasimman M.,2011. Biological treatment of tannery wastewater-a review. Journal of Environmental Science and Technology,4:1-17.
    44. Energy Information Administration,2009. Iniernational energy outlook [R] DOE/EIA-0484.
    45. Falk S., Liu B., Braker G.,2010. Isolation, genetic and functional characterization of novel soil nirK-type denitrifiers. Systematic and Applied Microbiology,33: 337-347.
    46. FAO/WHO,1973. Energy and protein requirements. FAO nutritional meetings report series no.52, WHO technical report series, no.522. Food and Agriculture Organization, Rome.
    47. Farhat N., Rabhi M., Falleh H., et al.,2011. Optimization of salt concentrations for a higher carotenoid production in Dunaliella Salina(Chlorophyceae). Journal of Phycology,47(5):1072-1077.
    48. Fernandez-Nava Y, Maranon E., Soons J., Castrillon L.,2008. Denitrification of wastewater containing high nitrate and calcium concentrations. Bioresource Technology,99:7976-7981.
    49. Flotats X., Bonmati A., Fernandez B., Magri A.,2009. Manure treatment technologies:on farm versus centralized strategies, NE Spain as case study. Bioresource Technology,100:5519-5526.
    50. Fogg G.E.,1966. The extracellular products of algae. Oceanography and Marine Biology, An Annual Review 4:195-212.
    51. Fogg G.E.,1971. Extracellular products of algae in freshwater. Archiv fur hydrobiology,5:1-25.
    52. Fongsatitkul P., Elefsiniotis P., Yamasmit A.,2004. Yamasmit N., Use of sequencing batch reactors and Fenton's reagent to treat a wastewater from a textile industry. Biochemical Engineering Journal,21:213-220.
    53. Garcia J., Mujeriego R.,2000. Hernandez-Marine M. High rate algal pond operating strategies for urban wastewater nitrogen removal. Journal of Applied Phycology,12:331-339.
    54. Garcia-Camacho F., Sanchez-Miron A., Molina-Grima E., Camacho-Rubio F., Merchuck J.C.,2012. A mechanistic model of photosynthesis in microalgae including photoacclimation dynamics. Journal of Theoretical Biology,304:1-15.
    55. Gladue R.M., Maxey J.F., Microalgal feeds for aquaculture. Journal of Applied Phycology,6:131-141.
    56. Golueke C.G. and Oswald W.J.,1959. Biological Conversion of light energy to the chemical energy of methane. Applied Microbiology,7(4):219-227.
    57. Gonzalez C., Marciniak J., Villaverde S., Garcia-Encina P.A., Munoz R.,2008. Microalgae-based processes for the biodegradation of pretreated piggery wastewater. Applied Microbiology and Biotechnology,80:891-898.
    58. Gouveia L., Oliveira A.C.,2009. Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology & Biotechnology,36:269-274.
    59. Granum E., Kirkvold S., Myklestad S.M.,2002. Cellular and extracellular production of carbohydrates and amino acids by the marine diatomSkeletonema costatum:diel variations and effects of N depletion. Marine Ecology Progress Series,242:83-94.
    60. Grobbelaar J.U.,2000. Physiological and technological considerations for optimisingmass algal cultures. Journal of applied phycology,12:201-206.
    61.Guarnieri M.T, Nag A, Smolinski S.L, Darzins A, Seibert M, Pienkos P.T. Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS One.2011, 6(10):e2585I
    62. Hajaya M.G., Tezel U., Pavlostathis S.G,2011. Effect of temperature and benzalkonium chloride on nitrate reduction, Bioresource Technology,102: 5039-5047.
    63. Hall D.O., Acien Fernandez F.G, Canizares Guerrero E., Krishna Rao K., Molina Grima E.,2003. Outdoor helical tubular photobioreactors for microalgal production:modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnology and Bioengineering,82(1):62-73.
    64. Harris W.S., Miller M., Tighe A.P., et al.,2008. Omega-3 fatty acids and coronary heart disease risk:clinical and mechanistic perspectives. Atherosclerosis,197(1): 12-24.
    65. Harun R., Singh M., Forde G.M., Danquah M.K.,2010. Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews,14:1037-1047.
    66. Hata N., Ogbonna J.C., Hasegawa Y., et al.,2001. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautrophic culture. Journal of applied phycology,13:395-402.
    67. He P.J., Mao B., Shen C.M., Shao L.M., Lee D.J., Chang J.S.,2013. Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresource Technology,129:177-181.
    68. Hecky R.E., Kilham P.,1988. Nutrient limitation of phytoplankton in freshwater and marine environments:a review of recent evidence on the effects of enrichment. Limnology and Oceanography,33:796-822.
    69. Hemaiswarya S., Raja R., Ravi Kumar R., Ganesan V., Anbazhagan C.,2011. Microalgae:a sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology,27:1737-1746.
    70. Heredia-Arroyo T., Wei W., Ruan R., Hu B.,2011. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy,35:2245-2253.
    71. Hiscock K.M., Lloyd J.W., Lerner D.N.,1991. Review of natural and artificial denitrification of groundwater. Water Research,25:1099-1111.
    72. Ho S.H., Chen C.Y., Chang J.S.,2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology,113:244-252.
    73. Hocaoglu S.M., Insel G.E.U., Cokgor D.O.,2011. Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water. Bioresource Technology,102:4333-4340.
    74. Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M., Darzins A.,2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal,54 (4):621-639.
    75. Huang, H.K. and Tseng, S.K.,2001. Nitrate reduction by Citrobacter diversus under aerobic environment. Applied Microbiology and Biotechnology,55:90-94.
    76. Huntley M., Redalje D.,2007. CO2 mitigation and renewable oil from photosynthetic microbes:a new appraisal. Mitigation and Adaptation Strategies for Global Change,12(4):573-608.
    77. Illman A.M., Scragg A.H., Shales S.W.,2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology,27 (8):631-635.
    78. Javanmardian M., Palsson B.O.,1991. High-density photoautotrophic algal cultures:design, construction, and open operation of a novel photobioreactor system. Biotechnology and Bioengineering,38:1182-1189.
    79. Jenck J., Lepine O., Legrand J., Dreno P., Grizeau D., Dupre C,2011. Valorisation industrielle des microalgues photosynthetiques. Techniques de l'ingenieur IN,201:1-10.
    80. Ji Y., Hu W.R., Li X.Q., Ma, G.X., Song, M.M., Pei, H.Y.,2013. Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater. Bioresource Technology,152:471-476.
    81. Jia C., Kang R., Zhang Y., Cong W., Cai Z,2007. Synergic treatment for monosodium glutamate wastewater by Saccharomyces cerevisiae and Coriolus versicolo. Bioresource Technology,98:967-970.
    82. Jin R.C., Zhang Q.Q., Liu J.H., Yang B.E., Wu K., Zheng P.,2013. Performance and stability of the partial nitrification process for nitrogen removal from monosodium glutamate wastewater. Separation and Purification Technology,103: 195-202.
    83.贾旋,闫海,肖宝清,马莹,2010.原核小球藻USTB-01去除化肥厂废水中总氮的研究.环境工程学报,4:737-740.
    84. Kapoor A., Viraraghavan T.,1997. Nitrate removal from drinking water-review. Journal of Environmental Engineering,123:371-380.
    85. Karlander E.P., Krauss R.W.,1966. Responses of heterotrophic cultures of Chlorella vulgaris Beyerinck to darkness and light. Ⅱ. Action spectrum for and mechanism of the light requirement for heterotrophic growth. Plant physiology,41: 7-14.
    86. Khan M, Yoshida N.,2008. Effect of L-glutamic acid on the growth and ammonium removal from ammonium solution and natural wastewater by Chlorella vulgaris NTM06. Bioresource Technology,99:575-582.
    87. Kong W.B., Hua S.F., Cao H., Mu Y.W., Yang H., Song H., Xia C.G.,2012. Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by Chlorella vulgaris using response surface methodology. Journal of The Taiwan Institute of Chemical Engineers,43: 360-367.
    88. Kong W.B., Song H., Cao Y.T., Yang H., Hua S.F., Xia C.G.,2011. The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. African Journal of Biotechnology,10(55):11620-11630.
    89. Kim M., Jeong S.Y., Yoon S.J., Cho S.J., Kim,Y.H., Kim M.J., Ryu E.Y. and Lee, S.J.,2008. Aerobic Denitrification of Pseudomonas putida AD-21 at Different C/N Ratios, Journal of Bioscience and Bioengineering,106(5):498-502.
    90. Kovacevic V., Wesseler J.,2010. Cost-effectiveness analysis of algae energy production in the EU. Energy Policy,38:5749-5757.
    91. Kuenzler E.J.,1965. Glucose-6-phosphate utilization by marine algae. Journal of Phycology,1:156-164.
    92.孔维宝,华绍烽,宋吴昊,夏春谷,2010.利用微藻生产生物柴油的研究进展.中国油脂,35(8):51-56.
    93. Lam M.K., Lee K.T.,2012. Potential of using organic fertilizer to cultivate Chlorella vulgar is for biodiesel production. Applied Energy,94:303-308.
    94. Lee K.C., Rittmann B.E.,2000. A novel hollow-fiber membrane biofilm reactor for autohydrogenotrophic denitrification of drinking water. Water Science and Technology,41:219-226.
    95. Li C.L., Yang H.L., Li Y.J., Cheng L.P., Zhang M., Zhang L., Wang W.,2013. Novel bioconversions of municipal effluent and CO2 into protein riched Chlorella vulgaris biomass. Bioresource Technology,132:171-177.
    96. Li X., Hu H.Y., Yang J.,2010. Lipid accumulation and nutrient removal properties of a newly isolated freswater microalga Scenedesmus sp. LX1, growing in secondary effluent. New Biotechnology,27:59-63.
    97. Li Y., Zhou W., Hu B., et al.,2012. Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater. Biotechnology and Bioengineering,109(9):2222-2229.
    98. Li Y.C., Chen Y.F., Chen P., Min M., Zhou W.G., Martinez B., Zhu J., Ruan R., 2011. Characterization of a microalga Chlorella sp. Well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology,102:5138-5144.
    99. Lee Y.K.,1997. Commercial production of microalgae in the Asia-Pacific rim. Journal of Applied Phycology,9(5):403-411.
    100. Liang K., Zhang Q., Gu M., Cong W.,2013. Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. Journal of Applied Phycology,25:311-318.
    101. Liang YN, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters.2009,31(7):1043-1049.
    102. Lim S.L., Chu W.L., Phang S.M.,2010. Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource Technology,101:7314-7322.
    103. Liu J, Huang J.C., Sun Z, Zhong Y.J., Jiang Y, Chen F.,2011. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofwgiemis:Assessment of algal oils for biodiesel production. Bioresource Technology,,102(1):106-110
    104. Liu J.X., Yue Q.Y., Gao B.Y., Ma Z.H., Zhang P.D.,2012. Microbial treatment of the monosodium glutamate wastewater by Lipomyces starkeyi to produce microbial lipid. Bioresource Technology,106:69-73.
    105. Liu R., Zhou Q.,2010. Fluxes and influencing factors of ammonia emission from monosodium glutamate production in Shenyang, China. Bull. Environ. Contam. Toxicol.85:279-286.
    106. Livansky K., Dedic K., Binova J., Tichy V., Novotny P., Doucha J.,1996. Influence of the nutrient solution recycling on the productivity of Scenedesmus obliquus, utilization of nutrients and water in outdoor cultures. Algological Studies/Archiv fur Hydrobiologie, Supplement Volumes 81:105-113.
    107. Lundquist T.J., Woertz I.C., Quinn N.W.T., Benemann J.R.,2010. A realistic technology and engineering assessment of algae biofuel production. Berkeley, California:Energy Biosciences Institute.
    108.李乃胜,2009.关于发展海藻生物能源的认识与建议.科学时报,2:9.
    109.李超,冯玉杰,张大伟,初晓婉,2012.以市政污水为底物的微藻油脂积累和碳流分析.可再生能源,30:93-96.
    110.梁威,胡洪营,2004.印染废水生物强化处理技术研究进展.环境污染治理技术与设备,5:8-11.
    111.刘世名,1999.小球藻(Chlorella Vulgaris)高密度异养培养[D].广州:华南理工大学.
    112.刘学铭,1999.小球藻异养生长特性及味精废水生产微藻蛋白研究[D].广州: 华南理工大学.
    113.刘玉环,阮榕生,孔庆学,2008.利用市政废水和火电厂烟道气大规模培养高油微藻.生物加工过程,56(3):29-33.
    114.吕富,崔刚,陈洪兴,封功能,余晓红,2012.水葫芦提取植物蛋白废液培养小球藻初步研究.盐城工学院学报:自然科学版,25(1):11-14.
    115. Maestrini S.Y., Robert J.M., Leftley J.W., Collos Y.,1986. Ammonium thresholds for simultaneous uptake of ammonium and nitrate by oyster-pond algae. Journal of Experimental Marine Biology and Ecology,102:75-98.
    116. Marchetti J., Bougaran G, Jauffrais T., Lefebvre S., Rouxel C., Saint-Jean B., Lukomska E., Robert R., Cadoret J.P.,2013. Effects of blue light on the biochemical composition and photosynthetic activity of Isochrysis sp. (T-iso). Journal of Applied Phycology,25:109-119.
    117. Martinez M.E., Sanchez S., Jimenez J.M., Yousfi F.E., Munoz L.,2000. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology,73:263-272.
    118. Martinez M.E., Camacho F., Jimenez J.M., Espinola J.B.,1997. Influence of light intensity on the kinetic and yield parameters of Chlorella pyrcnoichsa mixotrophic growth. Process biochemisty,32(2):93-98.
    119. Martinez M.E., Jimenez J.M.,et al.,1999. Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus. Bioresource Technology,67:233-240.
    120. Mata T.M., Martins A.A., and Caetano N.S.,2010. Microalgae for biodiesel production and other applications:A review. Renewable and Sustainable Energy Reviews,14(1):217-232.
    121. Mateju V., Cizinska S., Krejci J., Janoch T.,1992. Biological water denitrification-a review. Enzyme and Microbial Technology,14:170-183.
    122. MB Pescod,1992. Wastewater treatment and use in agriculture, Food and Agriculture Organization of the United Nations, Rome.
    123. McEvoy E, Wright PC, Bustard MT. The effect of high concentration isopropanol on the growth of a solvent-tolerent strain of Chlorella vulgaris. Enz Microbial Technol,2004,35(2-3):140-146.
    124. Mehta S.K., Gaur J.P.,2005. Use of algae for removing heavy metal ions from wastewater:progress and prospects. Critical Reviews in Biotechnology,25: 113-152.
    125. Miao X, Wu Q,2004(a). High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 110(1):85-93.
    126. Miao X, Wu Q, Yang C.,2004 (b). Fast pyrolysis of microalgae to produce renewable fuels. Journal of Analytical and Applied Pyrolysis,71(2):855-63.
    127. Minowa T., Yokoyama S.Y., Kishimoto M., Okakura T.,1995. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel,74(12):1735-1738.
    128. Mitra D., van Leeuwen J.H., Lamsal B.,2012. Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgarison industrial co-products. Algal Research,1:40-48.
    129. Morineau-Thomas O.M.-T., Jaouen P.J., Legentilhomme P.L.,2002. The role of exopolysaccharides in fouling phenomenon during ultrafiltration of microalgae (Chlorella sp. and Porphyridium purpureum):advantage of a swirling decaying flow. Bioprocess and Biosystems Engineering,25:35-42.
    130. Morris I., Syrett P.J.,1963. The development of nitrate reductase in Chlorella and its repression by ammonium. Archives of Microbiology,47:32-41.
    131. Mosse K.P.M., Patti A.F., Christen E.W., Cavagnaro T.R.,2011. Review:winery wastewater quality and treatment options in Australia. Australian Journal of Grape and Wine Research,17:111-122.
    132. Mujtaba G., Choi W., Lee C.G., Lee K.,2012. Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresource Technology,123:279-283.
    133.马红芳,李鑫,于茵,巫演虎,2012.栅藻LX1在水产养殖废水中的生长、 脱氮除磷和油脂积累特性.环境科学,33:1891-1896.
    134. Newman Mark,2011. Industrial water use, Worldmapper map no.325, Sheffield.
    135. Nicolella C., Zolezzi M., Rabino M., et al.,2005. Development of particle-based biofilms for degradation of xenobiotic organic compounds. Water Research,39: 2495-2504.
    136. Ogbonna J.C., Tomiyama S., Tanaka H.,1999. Production of a-tocopherol by sequential heterotrophic-photoautotrophic cultivation of Euglena gracilis. Journal of Biotechnology,70:213-221.
    137. Ogbonna J.C., Ichige E., Tanaka H.,2002. Regulating the ratio of photoautotrophic to hetertrophic metabolic activities in photoheterophic culture of Euglena gracilis and its application to a-tocopherol production. Biotechnology Letters,24:953-958.
    138. Olguin E.J., Rodriguez D., Sanchez G., Hernandez E., Ramirez M.E.,2003. Productivity, protein content and nutrient removal from anaerobic effluents of coffee wastewater in Salvinia minima ponds, under subtropical conditions. Acta Biotechnol,23:259-270.
    139. Park J.M., Jin H.F., Lim B.R., Park K.Y., Lee K.,2010. Ammonia removal from anaerobic digestion effluent of livestock waste using alga Scenedesmus sp.. Bioresource Technology,101:8649-8657.
    140. Passarge J., Hol S., Escher M.,2006. Competition for nutrients and light:Stable coexistence, alternative stable states, or competitive exclusion. Ecol Monogr,76 (1):57-72.
    141. Patureau D., Bernet N., Delgenes J.P., and Moletta R.,2000. Effect of dissolved oxygen and carbon-nitrogen loads on denitrification by an aerobic consortium. Applied Microbiology and Biotechnology,54:535-542.
    142. Peng J., Yuan J.P., Wu C.F., et al.,2011. Fucoxanthin, a Marine Carotenoid Present in Brown Seaweeds and Diatoms:Metabolism and Bioactivities Relevant to Human Health. Marine Drugs,9(10):1806-1828.
    143. Pirt S.J., Lee Y.K., Richmond A., Pirt M.W.,1980. The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilization. Journalof Chemical Technology & Biotechnology,30:25-34.
    144. Pires J.C.M., Goncalves A.L., Martins F.G., Alvim-Ferraz M.C.M., Simoes M., 2013. Effect of light supply on CO2 capture from atmosphere by Chlorella vulgaris and Pseudokirchneriella subcapitata, Mitig Adapt Strateg Glob Change. DOI 10.1007/s11027-013-9463-1.
    145. Pittman J.K., Dean A.P., Osundeko O.,2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology,102: 17-25.
    146. Poerschmann J., Spijkerman E., and Langer U.,2004. Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microbial Ecology,48(1):78-89.
    147. Pokhrel D., Viraraghavan T.,2004. Treatment of pulp and paper mill wastewater-a review. Science of Total Environment,333:37-58.
    148. Posten C., Schaub G.,2009. Microalgae and terrestrial biomass as source for fuels-A process view. Journal of Biotechnology,142:64-69.
    149. Pratt R., Fong J.,1940. Studies on Chlorella vulgaris Ⅱ. Further evidence that Chlorella cells form a growth-inhibiting substance. American Journal of Botany, 27:431-436.
    150. Pratt R.,1942. Studies on Chlorella vulgaris VI. Retardation of photosynthesis by a growth-inhibiting substance from Chlorella vulgaris. American Journal of Botany,30:32-33.
    151. Quintana N., Van der Kooy F., Van de Rhee M.D., et al.,2011. Renewable energy from Cyanobacleria:energy production optimization by metabolic pathway engineering. Applied Microbiology and Biotechnology,91(3):471-490.
    152. Raboy B., Padan E.,Shilo M.,1976. Heterotrophic capacities of Plectonema boryanum. Archives of Microbiology,110:77-85.
    153. Rakowska M., Szkilladziowa W., Kunachowicz H.,1978. Biologiczna wartosc bialka zywnosci [Biological value of food protein]. Wydaw-a Naukowo-Techniczne, Warszawa.118-131.
    154. Raposo de J., Oliveira M.F., Castro S.E., Bandarra P.M., Morais N.M., et al., 2010. On the utilization of microalgae for brewery effluent treatment and possible applications of the produced biomass. Journal of the Institute of Brewing,116 (3):285-292.
    155. Rawat I., Kumar R.R., Mutanda T., Bux F.,2011. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy,88:3411-3424.
    156. Rebolloso Fuentes M.M., Acien Fernandez G.G., Sanchez Perez J.A., Guil Guerrero J.L.,2000. Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chemistry,70:345-353.
    157. Rebolloso Fuentes M.M., Navarro-Perez A., Garcia-Camacho F., Ramos Miras J.J., Guil Guerrero J.L.,2001. Biomass nutrient profiles of the microalga Nannochloropsis. Journal of Agricultural and Food Chemistry,49:2966-2972.
    158. Redfield A. C., Ketchum B. H., Richards F. A.,1963. The influence of organisms on the composition of sea-water[M]. Interscience Publication, New York,26-77.
    159. Richmond A., Cheng-Wu Z., Zarmi Y.,2003. Efficient use of strong light for high photosynthetic productivity:interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomolecular Engineering, 20:229-236.
    160. Richmond A., Lichtenberg E., Stahl B., er al.,1990. Quantitative assessment of the major limitation on productivity of Spirulina platensis in open raceways. Journal of Applied Phycology,2:195-206.
    161. Richmond A.,2000. Microalgal biotechnology at the turn of the millennium:a personal view. Journal of Applied Phycology,12(3-5):441-451.
    162. Rodolfi L., Zittelli G.C., BarsanRichmond A., ZouN.,1999. Efficient utilisation of high photon irradiance for mass production of photoautotrophic micro-organisms. Journal of Applied Phycology,11:123-127.
    163. Saravanane R., Murthy D.V.S., Krishnaish K.,2001. Bioaugmentation and treatment of cephalexin drug-based pharmaceutical effluent in an upflow anaerobic fluidized bed system. Bioresource Technology,76:279-281.
    164. Satoh H., Okabe S., Yamaguchi Y., et al,2003. Evalution of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode. Water Research,37:2206-2216.
    165. Schneegurf M.A., Sherman D.M., Sherman L.A.,1997. Growth, physiology, and ultrastructure of a diazotrophic Cyanothece sp. Strain ATCC 51142 in mixptrophic and chemoheterotrophic cultures. Journal of Phycology,33: 632-642.
    166. Sekar S. and Chandramohan M.,2008. Phycobiliproteins as a commodity:trends in applied research, patents and commercialization. Journal of Applied Phycology,20(2):113-136.
    167. Sialve B., Bernet N., Bernard O.,2009. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances,27(4):409-416.
    168. Shifrin N.S., Chisholm S.W.,1981. Phytoplankton lipids:interspecific differences and effects of nitrate, silicate and light-dark cycles. Journal of Phycology,17:374-384.
    169.Shimamatsu H.,2004. Mass production of Spirulina, an edible microalga. Hydrobiologia,512 (1-3):39-44.
    170. Sijbesma W.F.H., Almeida J.S., Reis M.A.M., Santos H.,1996. Uncoupling effeet of nitrite during denitrifieation by Pseudomonas fluorescens:an in vivo 31P-NMR study. Bioteehnol Bioeng,52:176-182.
    171. Singh S., Rekha P.D., Arun A.B., Young C.C.,2009. Impacts of monosodium glutamate industrial wastewater on plant growth and soil characteristics. Ecological Engineering,35:1559-1563.
    172. Solovchenko A., Khozin-Goldberg I., Didi-Cohen S., et al.,2008. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. Journal of Applied Phycology,20(3): 245-251.
    173. Spolaore P., Joannis-Cassan C., Duran E., Isambert A.,2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering,101, 87-96.
    174. Stephenson P.G., Moore C.M., Terry M.J., et al.,2011. Improving photosynthesis for algal biofuels:toward a green revolution.Trends in Biotechnology,29(12): 615-623.
    175. Stumm W., Morgan J.J.,1981. Aquatic chemistry:an introduction emphasizing chemical equilibria in natural waters. John Wiley.
    176. Su Y., Mennerich A., Urban B.,2012. Synergistic cooperation between wastewater born algae and activated sludge for wastewater treatment:Influence of algae and sludge inoculation ratios. Bioresource Technology,105:67-73.
    177. 沈允钢,2000.地球上最重要的化学反应—光合作用,清华大学出版社.
    178. Tallec G., Gamier J., Billen G., Gousailles M.,2008. Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants under anoxia and low oxygenation, Bioresource Technology,99:2200-2209.
    179. Takeyama H., Kanamaru A., Yoshino Y, et al.,1997. Production of antioxidant vitamins,β-carotene, vitamin C, and nitamin E by two-step culture of Euglena gracilis Z. Biotechnology and Bioengineering,53:185-190.
    180.Talukdar J., Kalita M., Bhatnagar S., et al.,2011. Prospects of microalgae of North East India for biodiesel production. Algae Biofuel,69-90.
    181. Tamn., F.Y, Wong, Y.S.,1996. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media[J]. Bioresource technology, 57 (1):45-50.
    182. Tchobanoglous G., Burton F.L.,1991. Wastewater engineering:treatment, disposal, and reuse. McGraw-Hill.
    183. Thompson G.A.,1996. Lipids and membrane function in green algae. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism,1302(1):17-45.
    184. Tredici M.R.,2010. Photobiology of microalgae mass cultures:understanding the tools for the next green revolution. Biofuels,1(1):143-162.
    185. United States Environmental Protection Agency (USEPA), (1993) Nitrogen Control Manual. EPA/625/R-93/010, Office of Research and Development, Washington, DC, USA.
    186. Vanotti M.B., Szogi A.A.,2008. Water quality improvements of wastewater from confined animal feeding operations after advanced treatment. Journal of Environmental Quality,37:S-86-96.
    187. Vartanian M.D., Espardellier F.J., Astier C.,1981. Contribution of respiratory and photosynthetic pathway of a facultative photoautotrophic cyanobacterrium, Aphanocapsa 6714. Plant Physiology,68:974-978.
    188. Vasudevan P, Briggs M.,2008. Biodiesel production-current state of the art and challenges. Journal of Industrial Microbiology and Biotechnology,35(5): 421-430.
    189. Vazquez I., Rodriguez-Iglesias J., Maranon E., Castrillon L., Alvarez M.,2007. Removal of residual phenols from coke wastewater by adsorption. Journal of Hazardous Materials,147:395-400.
    190. Vernotte C., Picaud M., Kirilovsky D., et al.,1992. Changes in the photosynthetic apparatus in the cyanobacterium Synechococcus ap. PCC6714 following light-to dark and dark-to-light transitions. Photosynthesis Research, 32:42-57.
    191. Wahidin S., Idris A., Shaleh S.R.,2013. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technology,129:7-11.
    192. Wang H.Y., Xiong H.R., Hui Z.L., Zeng X.B.,2012. Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresource Technology,104:215-220.
    193. Wang J., Sommerfeld M., and Hu Q.,2009. Occurrence and environmental stress responses of two plastid terminal oxidases in Haematococcus pluvialis (Chlorophyceae). Planta,230(1):191-203.
    194. Wang L., Li Y.C., Chen P., Min M., Chen Y.F., Zhun J., Ruan R.,2010. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp.. Bioresource Technology,101: 2633-2628.
    195. Wang J., Sommerfeld M., and Hu Q.,2011. Cloning and expression of isoenzymes of superoxide dismutase in Haematococcus pluvialis (Chlorophyceae) under oxidative stress. Journal of Applied Phycology,23(6): 995-1003
    196. Wilkie A.C., and Mulbry W.W.,2002. Recovery of dairy manure nutrients by benthic freshwater algae. Bioresource Technology,84:81-91.
    197. Wu J.T., Chiang Y.R., Huang W.Y., Jane W.N.,2006. Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria. Aquatic Toxicology,80: 338-345.
    198. Wu L.F., Chen P.C., Huang A.P., Lee C.M.,2012. The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresource Technology, 113:14-18.
    199.王翠,李环,王钦琪等,2010.pH值对沼液培养的普通小球藻生长及油含量积累的影响[J].生物工程学报,8:1074-1079.
    200.王建芳,赵庆良,林佶侃,金文标,2007.生物强化技术及其在废水生物处理中的应用.环境工程学报,1(9):40-45.
    201.王素琴,闫海,张宾等,2005.不同氮源形态和植物激素对小球藻USTB01生长及叶黄素含量的效应[J].科技导报,12:37-40.
    202.味精行业废水治理工程技术规范(HJ 2030-2013),2011.中国环保部.
    203.魏文志,夏文水,李湘鸣等,2006.小球藻糖蛋白的分离纯化与性质测定[J].食品科学,27(11):101-104.
    204. Xia J, Gao K.,2003.Effects of doubled atmospheric CO2 concentration on the photosynthesis and growth of Chlorella pyrenoidosa cultured at varied levels of light. Fisheries Science,69(4):767-71.
    205.辛明秀,赵颖,周军,高文臣,2007.反硝化细菌在污水脱氮中的作用.微生物学通报,34:773-776.
    206. Xiong W., Gao C.F., Yan D., Wu C., Wu Q.Y., Double C.O.,2010. Fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresource Technology,101(7):2287-2293.
    207. Xu H., Miao X.L., Wu Q.Y.,2006. High quality biodiesel production from a microalga Chlorella pwtothecoides by heterotrophic growth in fermenters. Journal of Biotechnology,126(4):499-507
    208. Xu N., Duan S., Li A., et al.,2010(a). Effects of temperature, salinity and irradiance on the growth of the harmful dinoflagellate Prorocentrum donghaiense Lu. Harmful Algae,9(1):13-17.
    209. Xu Z.Z., Zhang L., Liu T., et al.,2010(b). Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nature Medicine,16(5): 592-597.
    210.颜昌宙,曾阿妍,金相灿,赵景柱,许秋瑾,王兴民,2007.不同浓度氨氮对轮叶黑藻的生理影响.生态学报,27(3):1050-1055.
    211.杨桂娟,栾忠奇,周笑辉,2009.温度对小球藻生长量和溶氧量影响研究[J].农机化研究.9:157-158.
    212. Yang J., Xu M., Zhang X., Hu Q., Sommerfeld M., Chen Y,2011. Life-cycle analysis on biodiesel production from microalgae:water footprint and nutrients balance. Bioresource Technology,102:159-165.
    213.杨鹭生,李国平,陈林水,2003.蛋白核小球藻粉的蛋白质、氨基酸含量及营养价值评价.亚热带植物科学,32(1):36-38.
    214.严美姣,王银东,胡贤江,2007.光照对小球藻、斜生栅藻生长速率及叶绿素含量的影响[J].安徽农学通报,13(23):27-29,59.
    215. Yang Q.X., Yang M, Zhang S.J., Lv W.Z.,2005. Treatment of wastewater from a monosodium glutamate manufacturing plant using successive yeast and activated sludge systems. Process Biochem.40:2483-2488.
    216. Yang S., Wang J., Cong W., Cai Z L., Ouyang F.,2004. Utilization of nitrite as a nitrogen source by Botryocoecus braunii. Biotechnology Letter,26:239-243.
    217. Yen H.W. and Brune D.E.,2007. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology,98(1):130-134.
    218. Yeh K.L., Chang J.S.,2012(a). Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology,105:120-127.
    219. Yeh K.L., Chen C.Y., Chang J.S.,2012(b). pH-stat photoheterotrophic cultivation of indigenous Chlorella vulgaris ESP-31 for biomass and lipid production using: acetic acid as the carbon source. Biochemical Engineering Journal,64:1-7.
    220.殷国梁,2007.普通小球藻对味精废水的净化及其资源化研究.天津大学,硕士学位论文.
    221. Yu Y, Hu H.-Y, Li X., Wu Y.-H., Zhang X., Jia S.-L.,2012. Accumulation characteristics of soluble algal products (SAP) by a freshwater microalga Scenedesmus sp. LX1 during batch cultivation for biofuel production. Bioresource Technology,110:184-189.
    222. Yu Z., Mohn W.W.,2002. Bioaugmentation with the resin acid-degrading bacterium Zoogloea resiniphila DhA-35 to counteract pH stress in an aeratedlagoon treating pulp and paper mill effluent. Water Research,36: 2793-2801.
    223. Yuan Y, Chen Q., Zhou S., et al.,2011. Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell. Journal of Hazardous Materials,187(1):591-595.
    224. Yoo C., Jun S.Y., Lee J.Y, Ahn C.Y., Oh H.M.,2010. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology,101: S71-S74.
    225.袁雅姝,刘军,杨辉等,2005.味精生产废水处理技术研究进展.中国科技信息,13:69-73.
    226.姚晓丽,梁运祥,2006.一株反硝化细菌在景观水净化处理中的应用[J].环境科学与技术,29(11):62-64.
    227. Zamani N., Noshadi M., Amin S., Niazi A., Ghasemi Y.,2012. Effect of alginate structure and microalgae immobilization method on orthophosphate removal from wastewater. Journal of Applied Phycology,24:649-656.
    228. Zhang Y, Su H., Zhong Y, Zhang C., Shen Z., Sang W., Yan G., Zhou X.,2012. The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosain wastewater from the production of soybean products. Water Research,46:5509-5516.
    229. Zhu L., Wang Z., Shu Q., Takala J., Hiltunen E., Feng P., Yuan Z.,2013. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Research,47:4294-4302.
    230.张桂艳,温小斌,耿亚洪,梁芳,梅洪,李夜光,2011.pH对小球藻(Chlorella sp.)生长和产油的影响.中国藻类学会第八次会员代表大会暨第十六次学术讨论会论文摘要集.
    231.中国环保总局,2002.水和废水分析检测方法(第四版).中国环境科学出版社,北京,266-274.
    232.张跃群,王勇军,2002.微藻的营养价值及其应用.生物学教学,27(6):42-44.
    233.郑子英,刘雷,曾慧卿,刘香华,2011.小球藻对氨厂废水的净化及其叶绿素荧光变化.环境工程学报,5:856-860.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700