用户名: 密码: 验证码:
光质与生姜生长发育及光能利用特性的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生姜起源于热带雨林地区,生产中多采用遮光栽培。近年来,利用塑料薄膜进行生姜小拱棚覆盖提早保护栽培,延长生姜生育期,可显著提高生姜产量。由于构成产量的干物质90%以上来源于光合作用,而光是影响光合作用的重要环境因素,因此,前人就光强与生姜光合作用的关系进行了较多的研究,但关于光质对生姜光合作用的影响,尚未见报道。为此,本文通过利用有色膜田间遮光及室内电光源发光两种处理方法,系统研究了光质与生姜生长发育及光能利用特性的关系,创造了生姜传统遮光栽培技术与提早保护栽培技术相融合的生姜有色膜调光保护栽培新技术。主要研究结果如下:
     1.有色膜覆盖显著改变了生姜植株受光光质环境,较传统遮光栽培显著提高了生姜出苗前的气温及地温,有利于生姜出苗。出苗后,通过增加有色膜遮光小拱棚通风量,有色膜覆盖不仅起到了降低光照强度的作用,而且还降低了气温和地温。
     2.有色膜覆盖栽培和传统遮荫网栽培的生姜生长势均显著优于露地栽培,但不同颜色薄膜覆盖的效果有显著差异。蓝膜覆盖生姜株高秆细,生物量较低,分枝数及产量与传统遮荫网栽培差异不显著;红膜覆盖虽比蓝膜及传统遮荫网栽培的生物量增加,但却显著低于白膜和绿膜覆盖;白膜茎秆较粗,但分枝数及生物量不及绿膜高;绿膜覆盖生姜分枝数较多,产量较高。收获时绿膜、白膜、红膜、蓝膜覆盖的生姜产量分别达3560.6、3362.8、3194.3、2901.2 kg·666.7 m-2,分别比露地栽培提高37.7%、30.0%、23.5%、12.2%,但分别比地膜覆盖加遮荫网栽培提高18.5%、12.0%、6.3%、-3.4%。室内光质处理与田间有色膜覆盖效果不同,以白光和红光处理的生姜幼苗生物量较高,绿光处理生姜幼苗生物量较低,但生姜幼苗质量以白光和蓝光处理较好。
     3.田间不同颜色薄膜覆盖的生姜叶片叶绿素含量有较大差异。幼苗覆膜期,生姜植株功能叶及幼嫩叶叶绿素含量以蓝膜和绿膜覆盖较高,白膜覆盖居中,红膜覆盖较低,而随叶位下降,蓝膜覆盖生姜叶片叶绿素含量降低较快。
     室内光质处理生姜幼苗叶片叶绿素含量以白光和红光处理较高,分别达3.01、2.94 mg·g-1FW,蓝光处理居中,绿光处理较低,仅2.17 mg·g-1FW。
     4.整个生长期内,绿膜覆盖生姜叶片的光合速率较高,白膜和红膜覆盖次之,蓝膜覆盖较低。幼苗覆膜期,绿膜覆盖生姜叶片光饱和点、光饱和时的光合速率、羧化效率、CO2饱和点及RuBP最大再生速率较高;蓝膜覆盖叶片虽然光饱和点与绿膜处理差异不显著,但蓝膜处理光呼吸速率较高,光合同化碳素较多的流向乙醇酸循环,其净光合速率较绿膜、白膜和红膜低。旺盛生长无膜期,虽然各处理生姜叶片光饱和点无显著差异,但光合速率仍以苗期绿膜处理生姜叶片较高,分别比白膜、红膜、蓝膜覆盖提高5.8%、9.3%、16.3%,绿膜RuBP最大再生速率较白膜、红膜、蓝膜覆盖分别提高4.6%、11.9%、17.0%。
     5.有色膜覆盖可显著影响生姜叶片的光能利用及分配特性。不同处理叶片叶绿素荧光参数日变化动态相似,但叶片Fv/Fm、Fv′/Fm′、ΦPSII、qP和光化学反射指数(PRI)均以绿膜处理最高,其次为蓝膜和白膜处理,红膜处理最低;而PSI和PSII间激发能分配不平衡偏离系数(β/α-1)和NPQ则以绿膜处理最低,蓝膜、白膜和红膜处理依次升高。表明适当增加遮光光质中绿光比例,生姜叶片午间光抑制程度较轻,PSI和PSII间线性电子传递协调性较好,激发能热耗散较低,光能利用效率较高。旺盛生长无膜期,各处理间光能利用特性仍有显著差异,光抑制较强时,光能利用效率绿膜处理较高,白膜和红膜处理居中,蓝膜较低。
     6.有色膜覆盖显著影响了不同叶龄叶片色素含量、光合速率及光能利用特性。展叶30 d时,不同处理生姜叶片叶绿素含量达最高值,以蓝膜和绿膜处理较高,白膜居中,红膜较低,此后蓝膜处理叶绿素含量下降幅度显著高于其他处理;类胡萝卜素含量除红膜处理在生姜展叶30 d达最大值外,白膜、蓝膜、绿膜处理均在展叶20 d时达最大值。
     展叶20 d时,各处理生姜叶片光合速率达最高值,此时绿膜处理光合速率较白膜、红膜、蓝膜处理高6.6%、11.5%、17.9%;展叶30 d后,各处理光合速率迅速下降,但下降幅度以蓝膜处理较高。羧化效率变化趋势与光合速率相似,展叶20 d时达最大值,以绿膜处理较高,白膜和红膜居中,蓝膜较低;而表观量子效率以红膜处理较高,蓝膜处理居中,白膜和绿膜处理较低,且两者差异不显著。
     各处理生姜展叶5 d时,PSⅡ活性就接近最高值,并且展叶10~50 d内Fv/Fm一直较高,Fv′/Fm′、ΦPSⅡ、qP等在展叶10 d后就近最大值。此外,展叶当天,蓝膜处理生姜叶片Fv/Fm、Fv′/Fm′、ΦPSⅡ、qP显著高于绿膜、白膜和红膜处理,Fv/Fm、Fv′/Fm′、ΦPSⅡ、qP达最大值时绿膜处理较高,蓝膜和白膜居中,红膜较低。
     7.室内光质处理生姜幼苗叶片适应强光能力、光合能力、固定CO2能力、RuBP最大再生速率以白光处理较高,蓝光和红光处理居中,绿光处理较低;各处理Fv/Fm虽无显著差异,但Fv′/Fm′和ΦPSⅡ以白光和蓝光处理较高,红光处理居中,绿光处理较低。移至室外自然光照条件下,室内弱光处理生姜幼苗均出现严重光抑制,且光照减弱时仍未恢复到原来水平,白光、绿光、红光、蓝光处理生姜叶片17:00 Fv/Fm较7:00分别下降20.4%、42.0%、30.7%、22.5%,且光合日变化呈单峰曲线变化,峰值出现在9:00,但光合速率以白光处理较高,为7.9 mol·m-2·s-1,蓝光和红光处理居中,绿光处理较低,仅4.1 mol·m-2·s-1。
     8.午间高温、强光条件下,有色膜覆盖生姜叶片超氧阴离子自由基产生速率达最高值,但以绿膜覆盖生姜叶片超氧阴离子自由基产生速率较低,白膜、红膜、蓝膜覆盖差异不明显,但13:00时,SOD及APX酶活性以蓝膜覆盖较高,白膜和红膜居中,绿膜较低。MDA含量和电解质渗漏率在13:00时达最高值,但仍以绿膜覆盖较低,白膜、红膜和蓝膜覆盖差异不显著。
     幼嫩叶和功能叶超氧阴离子自由基产生速率较老龄叶片低,且均以绿膜覆盖较低。蓝膜处理老龄叶片MDA含量和电解质渗漏率显著高于绿膜、白膜和红膜处理。
     9.生姜生长的光质环境显著影响了气孔形态特征,绿膜覆盖生姜叶片上表皮气孔密度、气孔宽度、气孔孔径宽度较其他处理大。同时,无论幼苗覆膜期还是旺盛生长期,绿膜覆盖生姜叶片较厚,栅栏组织发达,栅栏组织/海绵组织厚度较高,而蓝膜覆盖叶片较薄,栅栏组织厚度较小。
     室内白光和红光处理的生姜叶片厚度差异不显著,但较蓝光和绿光处理高,蓝光处理虽然栅栏组织厚度不及白光和红光处理,但栅栏组织/海绵组织厚度较白光、红光、绿光处理分别高15.9%、19.9%、14.2%。绿光处理每个细胞中叶绿体数目,叶绿体大小、淀粉粒数、基粒片层数、基粒数均较白光、红光和蓝光处理低,同时蓝光处理基粒片层数、基粒数较多。
Ginger was native to the tropical rain forest region and planted by shading. In recent years, the growth period was prolonged and production was increased by planting in the small arch shed covering with plastic film. More than 90 percent dry matter making of production roots in photosynthesis that is affected by light, so the fore-researcher studied the relationship between light quantity and photosynthesis in ginger mainly. Therefore, the effects of light quality on photosynthesis in ginger was not studied. Using two methods that shading with color film in the field and indoor lamp-house, this paper studied on the relationship between light quality on growth and development and light utilization characteristics in ginger and created the new cultivating technology that merged the traditional shading and protection planting. The main results were as follows:
     1. Compared with the traditional shading, covering with color films not only changed the light quality environment remarkably, but also increased the air or earth temperature and shortened the ermerging seedling time. Furthermore, covering color film not only reduced the light intensity but also reduced the air or earth temperature by ventilating after ginger seedling emerged.
     2. The plants treated by color films or traditional shading growed better than that of cultivating bareness, and the effects of different colored film was different. The plants under blue film were higher in height and with thinner stem and lesser shoot, compared with those shaded with other color films. The red film induced biomass was more than that of traditional shading, but that was less than that of white or green film. The white film induced the plant was thicker, but lesser shoot or biomass than that of green film. The plant under green film was more in shoot and higher in production than those of other treatments. In parallel, the yield of green, white, red or blue film at harvesting stag were 3560.6, 3362.8, 3194.3 or 2901.2 kg·666.7 m-2, which was 37.7%, 30.0%, 23.5%, and 12.2% higher than that bareness, respectively, was 18.5%, 12.0%, 6.3%, and -3.4% higher than that traditional shading.
     The effects was different between the treatment of indoor light quality and covering with color films in the field, white or red light induced the greatest biomass, followed by blue and green light in turn, and white or blue light induced the better seedling quality.
     3. Chlorophyll content of different color film was different. Blue or green film induced the greatest chlorophyll content in functional leaves and young leaves, followed by shanding with white film, and red film. Furthermore, chlorophyll content of old leaves growing under blue film decreased rapidly.
     White or red light induced the greatest chlorophyll content, was 3.01, and 2.94 mg·g-1FW respectively, green light induced the least, only was 2.17 mg·g-1FW.
     4. In the whole growth period, green film induced the greatest photosynthetic rate, followed by shading with white, red or blue film. In parallel, at seedling stage the light saturation point(LSP), the maximum photosynthetic rate, carboxylation efficiency(CE) and maximum RuBP regeneration rate under green film-shading was the highest than that of other treatments. Although there was no difference in LSP between blue film and green film, blue film induced the greatest photorespiration(Pr) and Pr/Pn which reduced the net photosynthetic rate. Uncovering at vigorous growth, although there was no difference in the LSP among different treatments, the maximum photosynthetic rate and maximum RuBP regeneration rate under green film-shading was 5.8%, 9.3%, 16.3% and 4.6%、11.9%、17.0% higher than under white, red, and blue film-shading, respectively.
     5. Covering with color film remarkably affected light energy utilization and distribution characteristics. Though the diurnal variation of chlorophyll fluorescence in leaves of different treatments was similar, the maximal photochemical efficiency (Fv/Fm), the efficiency of excitation energy capture by open PSII reaction centers (Fv′/Fm′), quantum yield of PSII (ΦPSII), photochemical quenching coefficient(qP) and photochemical reflectance index (PRI) of leaves treated with green film was the highest, followed by blue, white or red film in turn. In contrast, green, blue, white or red film induced the relative deviation from full balance between two photosystems (β/α-1) and nonphotochemical quenching (NPQ) increased in turn. Increasing the ratio of green light in light quality could reduce the photoinhibition, make the correspondence of transferring electron between PSI and PSII well, decrease heat dissipation of excitation energy, enhance the light energy utilization efficiency. Uncovering at vigorous growth stage, there was remarkably difference in light energy utilization, green film induced the greatest light utilizing efficiency when the photoinhibition was strong, followed by that of white, red and blue film.
     6. Covering with color film remarkably affected the pigment content, photosynthetic rate and light utilization in ginger leaves of different age.
     Chlorophyll content reached the maximum when it was 30 days leaf unfolding, and that under blue or green film-shading was the highest, red was the lowest. After it was 30 days leaf unfolding, blue film induced droping extent of chlorophyll content was remarkably higher than that of other treatments. When it was 20 days leaf unfolding, white, blue or green film induced the carotenoid content reached the maximum, while it was 30 days, red film got to the maximum.
     When it was 20 days leaf unfolding, photosynthetic rate in ginger leaves reached the maximum, which growing under green film-shading was 6.6%, 11.5%, and 17.9% higher than that under white, red, or blue film-shading, respectively. The carboxylation efficiency’s change pattern in different shading treatments was similar to that of photosynthetic rate, and that reached the maximum when it was 20 days leaf unfolding. While growing under green film was the higest, followed by white, red, or blue film in turn. In contrast, red film induced the apparent quantum yield of photosynthesis(AQY) was the highest, white or green film was the lowest.
     When it was 5 days leaf unfolding, the Fv/Fm approached the maximum, and it was remaining higher value from 10 to 50 days leaf unfolding. In parallel, when it was 10 days leaf unfolding, Fv′/Fm′,ΦPSⅡ, or qP approached the maximum. Furthermore, Fv/Fm, Fv′/Fm′,ΦPSⅡ, or qP growing under blue film-shading was higher than that of other treatments when it was 1 days leaf unfolding. When Fv/Fm, Fv′/Fm′,ΦPSⅡ, or qP reached the maximum, which treated with green film was the highest, followed by blue, white or red film in turn.
     7. The LSP, the maximum photosynthetic rate, carboxylation efficiency(CE) and maximum RuBP regeneration rate under white light was the highest, followed by blue, red, or green light in turn. There was no difference in Fv/Fm between different treatment, but Fv′/Fm′orΦPSⅡunder white or blue light was the highest, the green light was the lowest. When ginger seedlings were transferred to sunlight, the leaves of different treatment appeared seriously photoinhibition. Compared with the Fv/Fm at 7:00, Fv/Fm of white, green, red or blue light at 17:00 decreased by 20.4%, 42.0%, 30.7%, or 22.5%, respectively. The diurnal variation of Pn appeared one-peak-type, and the peak was at 9:00. White light induced the highest Pn, being 7.9 mol·m-2·s-1, followed by blue, red, or green light in order from high to low.
     8. O2-·production rate of different treatment reached the maximum at noon. Green film induced the lowest O2-·production rate than that of white, red or blue film, in which there was no difference. In contrast, SOD or APX activity under blue film-shading was the highest, followed by white, red or green film in turn at 13:00. In parallel, MDA content and electrolytic leakage reached the maximum at 13:00, those under green film was the lowest than that of others. There was no difference between white, red and blue film.
     O2-·production rate of young leaves and functional leaves was lower than that of old leaves, and that under green film-shading was lower than that of other treatments. Blue film induced the highest MDA content and electrolytic leakage of old leaves than the green, white or red film.
     9. Light quality affected the stomatic characteristics in ginger leaves. The upper cuticle stomatic density, stomatic width and stomatal aperture width under green film was the highest than those of others. No matter covering with film at seedling stage or uncovering at vigorous growth, green film induced the thicker leaves, stronger palisade tissue, and PTT/STT, while blue film induced the thinner leaves and palisade tissue.
     There was no difference in leaf thickness between white and red light which was thicker than that of blue light and green light. Although blue light induced the thinner palisade tissue than white or red light, induced the PTT/STT was 15.9%、19.9%、14.2% higher than white, red, and green light, respectively. The number of chloroplast in each cell, chloroplast size, number of starch grains in each cholroplast, number of grana in each chloroplast, number of amella in each grana under green light was lower than that of others. Blue light induced the highest number of grana in each chloroplast, number of amella in each grana than that of white, red and green light.
引文
艾希珍,郭延奎,马兴庄等.弱光条件下日光温室黄瓜需光特性及叶绿体超微结构.中国农业科学, 2004, 37(2): 268-273
    艾希珍,马兴庄,于立明等.日光温室黄瓜叶片展开过程中光合特性的变化.中国农业科学, 2005, 38(3):558-564
    艾希珍,王秀峰,郭延奎.弱光亚适温和低温对黄瓜气孔特性及叶绿体超微结构的影响. 中国农业科学, 2006, 39(10): 2063-2068
    白宝章,靳占忠,李德春.植物生理生化测试技术.中国科学技术出版社, 1995
    戴绍军,王洋,阎秀峰等.滤光膜对喜树幼苗叶片生长和喜树碱含量的影响.生态学报, 2004, 24(5): 869-875
    邓铭,钟山,任波等.光照强度对绞股蓝总皂甙含量的效应研究.湖北医科大学学报, 2000, 21(2): 102-103
    杜洪涛.光质对彩色甜椒幼苗生长发育特性的影响.山东农业大学硕士毕业论文, 2005
    杜建芳,廖祥儒,叶布青等.光质对油菜幼苗生长及抗氧化酶活性的影响.植物学通报, 2002, 19(6): 743-745.
    杜英君,姜萍,王兵等. UV-C对紫杉叶叶绿体膜质过氧化及PSⅡ电子传递活性的影响. 应用生态学报, 2003, 14(8): 1218-1222
    段伟,高金鹏,王鹏等.硫灯和氙灯下生长的黄瓜幼苗植物激素水平的差异.植物生理与分子生物学报, 2004, 30(6): 687-690
    高辉远,邹琦,陈敬锋等.大豆光合午休原因的分析.作物学报, 1994, 20(3): 357-362
    高金鹏,於新建,陈启林等.氙灯和硫灯照射对棉花生长发育的不同影响.植物生理与分子生物学学报, 2004, 30(2): 221-224
    郭连旺,沈允钢.高等植物光合机构避免强光破坏的保护机制.植物生理学通讯, 1996, 32 (1): 1-8
    洪佳华,马月华,刘明孝等.光强、光质对人参光合的影响.中国农业气象, 1995, 16(1): 19-22
    胡美君,郭延平,沈允钢等.柑橘属光合作用的环境调节.应用生态学报, 2006, 17(3): 535-540
    黄俊,郭世荣,吴震等.弱光对不结球白菜光合特性与叶绿体超微结构的影响.应用生态学报, 2007, 18(2): 352-358
    贾虎森,李德全,韩亚琴.高等植物光合作用的光抑制研究进展.植物学通报, 2000, 17(3): 218-224.
    江明艳,潘远智.不同光质对盆栽一品红光合特性及生长的影响.园艺学报, 2006, 33(2): 338-343
    姜闯道,高辉远,邹琦等.田间大豆叶片成长过程中的光和特性及光破坏防御机制.植物生理与分子生物学报, 2004, 30(4): 428-434
    冷平生,苏淑钗,王天华等.光强与光质对银杏光合作用及黄酮苷与萜类内酯含量的影响.植物资源与环境学报, 2002, 11(1): 1-4
    李德全,赵会杰,高辉远等.植物生理学.北京:中国农业科技出版社, 1999
    李芳兰,包维楷,刘俊华等.岷江上游干旱河谷海拔梯度上白刺花叶片生态解剖特征研究.应用生态学报, 2006, 17(1): 6-10
    李韶山,潘瑞炽.蓝光对水稻幼苗叶绿体发育的影响.中国水稻科学, 1994, 8(3): 185-188
    李书民.光质调控薄膜在设施园艺作物生产上的应用.中国蔬菜(增刊), 2000, 54-57
    李向东,王晓云,余松烈等.花生叶片衰老过程中光合性能及细胞微结构变化.中国农业科学, 2002, 35(4): 384-389
    李雪梅,张利红,何兴元等.脱落酸对UV-C胁迫下小麦幼苗光合特性及抗氧化酶活性的影响.应用生态学报, 2006, 17(5): 822-826
    梁伯璠,周毓君.不同光质对萝卜根形态建成的影响.河北大学学报, 1999, 19(4): 369-371
    刘再亮,马承伟,杨其长.设施环境中红光与远红光比值调控的研究进展.农业工程学报, 2004, 20(1): 270-273
    马建忠,娄世庆,匡廷云等.不同光质对黍子(Panicum miliaceum)叶绿体光系统发育及psbA基因转录物稳态含量的影响.遗传学报, 1997, 24(5): 464-470
    马力耕,孙大业.光敏色素与转录因子结合直接调控植物基因表达和发育.生命科学, 2001, 13: 148-150
    毛金水,杨大旗.不同光质所育稻苗对高温胁迫的反应.植物学通报, 1994, 11(1): 48-49
    潘秋红,朱靖杰,蔡世英等.不同习性植物光合诱导现象的研究.热带作物学报, 1996, 17(2): 29-35
    蒲高斌,刘世琦,张珍等.光质对番茄幼苗生长及抗氧化酶活性的影响.中国蔬菜, 2005, 9: 21-23
    邱瑾,钟然,韩闯等.水仙生长过程中叶片光合性能与叶绿体超微结构的变化.中国生态农业学报, 2007, 15(2): 92-95
    山东农学院主编.植物生理实验指导.济南:山东科学技术出版社, 1982, 143-190
    史宏志,韩锦峰,官春云,远彤.红光和蓝光对烟叶生长、碳氮代谢和品质的影响.作物学报, 1999, 25(2): 215-220
    宋海星,王平.冬小麦越冬期间生理指标的变化基抗寒剂对其影响.沈阳农业大学学报, 1999, 30(6): 631-632
    陶汉之,王新长.茶树光合作用与光质的关系.植物生理学通讯, 1989, (1): 19-23
    陶宗娅,邹琦. Mehler反应在大豆叶片耗散过剩光能中的作用.植物生理学报, 2001, 27(1): 66-72
    汪诗平,万长贵, Ronald E. Sosebee.不同光照质量和刈割强度对小糠草无性繁殖特性的影响.应用生态学报, 2001, 12(2): 245-248
    王利溥.太阳光谱与茶叶生产的关系.云南热作科技. 1995, 18(2):11-13
    王强,温晓刚,张其德.光合作用光抑制的研究进展.植物学通报, 2003, 20(5): 539-548
    王绍辉,郝翠玲.植物遮荫效应的研究与进展.山东农业大学学报, 1998, 29(1): 130-134
    王伟,洪宇,童哲等.光周期对光敏核不育水稻光敏色素A含量及其mRNA丰度的影响. 植物学报, 1997, 39(10): 914-921
    王小菁.我国光形态建成研究回顾.植物学通报, 2003, 20: 407-415
    吴杏春,林文雄,黄忠良. UV-B辐射增强对两种不同抗性水稻叶片光合生理及超显微结构的影响. 2007, 27(2): 554-564
    徐凯,郭延平,张上隆等.不同氮素水平下二氧化碳加富对草莓叶片光抑制的影响.应用生态学报, 2007, 18(1): 87-93
    徐凯,郭延平,张上隆等.草莓叶片光合作用对强光的响应及其机理研究.应用生态学报, 2005, 16(1): 73-78
    徐凯,郭延平,张上隆等.草莓叶片光合作用对强光的响应及其机理研究.应用生态学报, 2005, 16(1): 73-78
    徐坤,康立美.生姜地膜覆盖及塑料大棚栽培技术.中国蔬菜, 2002, 5: 36-37
    徐坤,赵德婉.生姜农艺性状与产量的关系分析.河北农技师范学院学报, 1994, 8(4): 5-8
    徐坤,郑国生.环境因素与生姜需光特性关系的研究.生态学报, 2001, 24(4): 1091-1094
    徐坤,郑国生.水分胁迫下生姜光合速率及保护酶活性变化.园艺学报, 2000, 27(2): 87-91
    徐坤,邹琦,郑国生.强光下姜叶片的光呼吸及叶黄素循环.园艺学报, 2002, 29(2): 47-51
    徐坤,邹琦.生姜光合特性研究再探.山东农业大学学报(自然科学版), 2000, 31(2): 147-150
    徐坤.地面覆草对生姜光合特性的影响.中国蔬菜, 2000, 2: 18-20 
    徐坤.地面覆草对田间小气候及生姜生长和产量的影响.中国蔬菜, 1999, 2: 15-17
    徐坤.生长期长短对生姜生长及产量的影响.中国蔬菜, 1999, 4: 30-31
    许长城,邹琦.植物水分胁迫与活性氧代谢.山东农业大学学报, 1993, 24(1): 113-117
    许大全.光合作用气孔限制分析中的一些问题.植物生理学通讯, 1997, 33(4): 241-244
    许大全.光合作用效率.上海:上海科学技术出版社, 2002, 192
    阎秀峰,王洋,郭盛磊等.遮荫和红膜处理对高山红景天根生物量及红景天甙含量季节变化的影响.应用生态学报, 2004, 15(3): 382-386
    姚允聪,王绍辉,孔云.弱光条件下桃叶片结构及光合特性与叶绿体超微结构变化的影响.中国农业科学, 2007, 40(4): 855-863
    余让才,潘瑞炽.蓝光对水稻幼苗生长及内源激素水平的影响.植物生理学报, 1997, 23(2): 175-180
    鱼欢,冯佰利,张英等.不同栽培模式下冬小麦叶片衰老与活性氧代谢研究.作物学报, 2007, 33(10): 1729-1732
    张瑞华,徐坤.苗期遮光光质对生姜生长及光合作用的影响.应用生态学报, 2008, 19(3): 499-504
    张瑞华,战琨友,徐坤.有色膜覆盖对姜叶片色素含量及光合作用的影响.园艺学报, 2007, 34(6): 1465-1470
    张永平,王志敏,吴永成等.不同供水条件下小麦不同绿色器官的气孔特性研究.作物学报, 2006, 32(1): 70-75
    张振贤,郭延奎,艾希珍等.日光温室光温因子对黄瓜叶绿体超微结构及其功能的影响. 应用生态学报, 2003, 14(8): 1287-1290
    张振贤,郭延奎,邹琦.遮荫对生姜叶片显微结构及叶绿体超微结构的影响.园艺学报, 1999, 26(2): 96-100
    赵德婉.生姜优质丰产栽培-原理与技术.北京:中国农业出版社, 2002
    赵世杰,刘华山,董新纯.植物生理学实验指导.中国农业科技出版社, 1998
    赵玉锦,童哲,陈华君等.内源植物激素与光敏核不育水稻农垦58S育性的关系.植物学报, 1996, 38: 936-941
    中国科学院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南. 上海科学出版社, 1999: 302-322
    中华人民共和国药典委员会.中华人民共和国药典.广州:广东科技出版社,1995:62
    周治国,孟亚利,施培.苗期遮荫对棉苗茎叶结构及功能叶光合性能的影响.中国农业科学, 2001, 34(5): 465-468
    朱诚,傅亚萍,孙宗修.超高产水稻开花结实期间叶片衰老与活性氧代谢的关系.中国水稻科学, 2002, 16(4): 326-330
    朱世东.茄果类幼苗低温伤害与膜质过氧化作用.安徽农学院报, 1991, 18(2): 141-146
    邹琦.《植物生理生化实验指导》.中国农业出版社,北京, 1995
    Ahmad M, Jarillo J A, Cashmore A R. Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell, 1998, 10: 197-207
    Andel F, Lagarias J C, Mathies R A. Resonance Raman analysis of chromophore structure in the Lumi-R photoproduct of phytochrome. Biochemistry, 1996, 35(50): 15997-16008
    Aneeta S N, Sopory S K. Phytochrome and calcium regulated protein phosphorylation in sohumbicolor. Journal of Plant Biochemistry, 1999, 8(1): 31-35
    Appenroth K J, Mcco R, Jourdan V et al. Phytochrome and posttranslation of nitrate reductase in higher plants. Plant Science, 2000, 159(1): 51-56
    Arnon D J. Copper enzymes in isolated chloroplasts. Plant Physiology, 1949, 24:1-15
    Bahourina O, Newma I, Shabala S. Blue light-induced kinetics of H+and Ca2+ fluxes in etiolated wide-type and phototropin-mutant Arabidopsis seedlings. Proceedings of the National Academy of Science, 2002, 99(4): 2433-2438
    Balegh S E, Biddulph O. The photosynthetic action spectrum of the bean plant. Plant Physiology, 1970, 46: 1-5.
    Bauer D, Viczián A, Kircher S, et al. Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of photochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell, 2004, 16: 1433-1445
    Baum G, Long J C, Jenkins G I, et al. Stimulation of the blue light phototropic receptor NPH1causes a transient increase in cytosolic Ca2+. Plant Biology, 1999, 96(23): 13554-13559
    Bertram L, Lercari B. Phytochrome A and phytochrome B1 control the acquisition of competence for shoot regeneration in tomato hypocotyls. Plant Cell, 2000, 19(6): 604-609
    Borevitz J O, Maloof J N, Lutes J, et al. Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana. Genetics, 2002, 160: 683-696
    Bossen M E, Kendrick R E, Vredenberg W J. The involvement of a G protein in phytochrome regulated Ca2+ dependent swelling of etiolated wheat protoplasts. Physiology Plant, 1990, 80: 55-62
    Bowler C, Neuhaus G, Yamagata H, et al. Cyclic GMP and calcium mediate phytochrome phototransduction. Cell, 1994, 77: 73-81
    Braun G, Malkin S. Regulation of the imbalance in light excitation between photosystemⅡand photosystem I by cations and by the energized state of the thylakoid membrane. Biochimca et Biophysica Acta, 1990, 1017: 79-90
    Briggs W R, Beckb C F, Cashmorec J M, et al. The phototropin family of photoreceptors. Plant Cell, 2001, 13: 993-997
    Carmona R, Vergara JJ, Lahaye M, et al. Light quality affects morphology and polysaccharide yield and composition of Gelidium sesquipedale (Rhodophyceae). Journal of Applied Phycology, 1998, 10: 323-331
    Casal J J, Mazzella M A. Conditional synergism between cryptochrome1 and phytochrome B is shown by the analysis of phyA, phyB and hy4 simple, double and triple mutants in Arabidopsis. Plant Physiology, 1998, 118: 19-25
    Casal J J. Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochemistry and Photobiology, 2000, 71(1): 1-11
    Cashmore A R, Jarillo J A, Wu Y J, et al. Cryptochromes: blue light receptors for plants and animals. Science, 1999, 284: 760-765
    Cerny T A, Rajapakse N C. Recent development in photoselective greenhouse covers. Proceedings of 28th National Agricultural Plastic Congress, 1999, 75-80
    Chalker-Scott L. Environmental significance of anthocyanins in plant stress responses. Photochem Photobiology, 1999, 70: 1-9
    Chance M. Assay of calatare and peroxide. Methods Enzymol, 1995, 2: 764-775
    Childs K L, Lu J L, Mullet J. E, et al. Genetic regulation of development in sorghum bicolor (X. greatly attenuated photoperiod sensitivity in a phytochrome-deficient sorghum possessing a biological clock but lacking a red light-high irradiance response). Plant Physiology, 1995, 108(1): 345-351
    Choe S, Fujioka S, Noguchi T, et al. Over expression of DWARF4 in the brassinost eroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant Journal, 2001, 26: 573-582
    Choi G, Yi H, Lee J. Phytochrome signaling is mediated through nucleotide diphosphate kinase 2. Nature, 1999, 401(6753): 610-613
    Christian S H, Kazuhito G, Mark T O et al. HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1 binging domain. EMBO Journal, 2000, 19(18): 4997-5006
    Christie J M, Briggs W R. Blue light sensing in higher plants. Journal Biology Chemistry, 2001, 276(15): 11457-11460
    Clack T, Mathews S, Sharrock R A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Molecular Biology, 1994, 25: 413-427
    Colon-Carmona A, Chen D L, Yeh K C, et al. Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant physiology, 2000, 124(4): 1728-1738
    Demmig-Adams B, AdamsⅢW W, Barker D H, Logan B A, Bowling D R, Verhoeven A S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 1996, 98: 253-264.
    Demmig-Adams B, AdamsⅢW W. Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta, 1996, 198: 460-470.
    Demmig-Adams B, AdamsⅢ,W.W. 1996. The role of xanthophylls cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, I 21-27
    Deng X W, Matsici M, Wei N, et al. COPL, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motify and a G beta homologous domain. Cell, 1992, 71: 791-801
    Devlin P F, Patel S R, Whitelam G C. Phytochrome E influences internode elongation and flowering time in Arabidopsis. Plant Cell, 1998, 10(9): 1479-1487
    Devlin P F, Robson P R H. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiology, 1999, 119(3): 909-915
    Duek P D, Fankhauser C. HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signaling. Plant Journal, 2003, 34: 827-836
    Elstner E F. Oxygen activation and oxygen toxicity. Annu Rev Plant Physiology, 1982, 33: 73-96
    Elzenga J T M, Staal M, Prins H B A. Red light induced acidification by pea leaf epidermal cells is regulated by more than one phytochrome. Phyton Annals Rei Botanicae, 2000,40(3): 35-44
    Eskins K, Duysen M, Dybas L, Mccarthy S. Light quality effects on corn chloroplast development. Plant Physiology, 1985, 77: 29-34.
    Fairchild C D, Schumaker M A, Quail P H. HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Development, 2000, 14: 2377-2391
    Fankhauser C, Chory J. RSF1, an Arabidopsis locus implicated in phytochrome A signling. Plant Physiology, 2000, 124(1): 39-45
    Fankhauser C. Phytochromes as light-modulated protein kinase. Semin Cell Development Biology, 2000, 11: 467-473
    Fankhauser C. The phytochromes, a family of red/far-red absorbing photoreceptors. Journal Biology Biochemistry, 2001, 276: 11453-11456
    Folta K M, Spaldding E P. Unexpected roles for cryptochrome2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant Journal, 2001, 26: 471-478
    Gamon J A, Surfus J S. Assessing leaf pigment content and activity with a reflectometer. New Phytology, 1999, 143: 105-107.
    Gilmore A M, Yamamoto H Y. Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynthesis Research, 1993, 35: 67-78.
    Ginnopolitis C N, Ries S K. Superoxide dismutases. I. Occurrence in higher plants. Plant Physilogy, 1977, 59: 309-314
    Gu X S, Chen Z L, Zhu Y X. Phytochrome and Photoegulation. Acta Botanica Sinica, 1997, 39(7): 675-681
    Guilfoyle T, Hagen G, Ulmasov T, et al. How does auxin turn on genes. Plant Physiology, 1998, 118: 341-347
    Guo H, Mockler T, Duong H, et al. SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science, 2001, 291: 487-490
    Guo H, Yang H, Mockler T C et al. Regulation of flowering time by Arabidopsis photoreceptors. Science, 1998, 279: 1360-1363
    Hanjo H, Mark E. Plant development: regulation by protein degradation. Science, 2002, 297: 793-797
    Harper R M, Stowe-Evans E L, Luesse D R, et al. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell, 2000, 12: 757-770
    Haupt W, Trump K. Light-oriented chloroplast movement in Mougeotia: the magnitude of the phytochrome gradient controls the rate of the movement. Plant Physiology and Biochemistry, 1975, 168 (1/4), p 131-140.
    Hiroko H, Katsuhiko I, Hideki K, et al. In vitro assembly of phytochrome B apoprotein with synthetic analogs of the phytochrome chromophore. Proceedings of the National Academy of Science, 2001, 98: 3612-3617
    Holm M, Ma L G, Qu L J et al. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Development, 2002, 16: 1247-1259
    Hsieh H L, Okamoto H, Wang M L, et al. FEN219, an auxin-regulated gene, difins a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Development, 2000, 5(3): 87-89
    Huala E, Oeller P W, Liscum E, et al. Arabidopsis NPH1: A protein kinase with a putative redox-sensing domain. Science, 1997, 278: 2120-2123
    Hughes J, Lamparter T, Mittmann F, et al. Aprokaryotic phytochrome. Nature, 1997, 386: 66
    Huq E, Al-Sady B, Hudson M, et al. Phytochrome-interacting factor 1 is acritical bHLH regulator of chlorophyll biosynthesis. Science, 2004, 305: 1937-1941
    Huq E, Quail P H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO Journal, 2002, 21: 2441-2450
    Kato M C, Hirotsu N, Makino A, Makino A, Hirose T. The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant Cell Physiology, 2003, 44 (3):318-325
    Kay S A. PAS, present, and future: clues to the origins of circadian clocks. Science, 1997, 276: 753-754
    Khanna R, Huq E, Kikis E A, et al. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basichelix-loop-helix transcription factors. Plant Cell, 2004, 16: 3033-3044
    Kim J, Yi H, Choi G, et al. Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell, 2003, 15: 2399-2407
    Kircher S, Gil P, Kozma-Bognár L, et al. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell, 2002, 14: 1541-1555
    Kircher S, Kozma-Bognár L, Kim L,et al. Light quality-dependent nuclear import of the plantphotoreceptors phytochrome A and B. Plant Cell, 1999, 11: 1445-1456
    Kleiner O, Kircher S, Harter K et al. Nuclear localization of the Arabidopsis blue light receptor cryptochrome2. Plant Journal, 1999, 19(3): 289-296
    Kretsch T, Poppe C, Schafer E. A new type of mutation in the plant photoreceptor phytochrome B causes loss of photoreversibility and an extremely enhanced light sensitivity. Plant Journal, 2000, 22(3): 177-186
    Lamparter T, Mittmann F, GartnerW, et al. Characterization of recombinant phytochrome from the cyanobacterium Synechocystis. Proceedings of the National Academy of Science, 1997, 94: 11792-11797
    Lee I J, Foster K R, Morgan P W. Photoperiod control of gibberellin levels and flowering in Sorghum. Plant Physiol, 1998, 116: 1003-1011
    Leonard K, Jason W R. The histidine kinase-related domain participates in phytochrome B function but is dispensable. Proceedings of the National Academy of Science, 2000, 97: 8169-8174
    Leong T Y, Goodchild D J, Anderson J M. Effect of light quality on the composition, function, and structure of photosynthetic thylakoid membranes of Asplenium australasicum (Sm.) hook. Plant Physiology, 1985, 78: 561-567
    Li S, Rajapakse N C, Oi R. Production of compact cucumber, tomato,and bell pepper transplants by use of photoselective plastic films(abstract). HortScience, 1998, 34(3): 550
    Lin C T. Blue light receptors and signal transduction. Plant Cell, 2002, S207-S225
    Lin C, Ahmad M, Cashmore A R. Arabidopsis cryptochrome is a soluble protein mediating blue light-dependent regulation of plant growth and development. Trends Plant Journal, 1996, 10: 893-902
    Lin C, Yang H, Guo H et al. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proceedings of the National Academy of Science, 1998, 95: 2686-2690
    Liscum E, Briggs W R. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell, 1995, 7: 473-485
    Liscum E, Briggs W R. Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiology 1996, 112: 291-296
    Liscum E, Hodgson D W, Campbell T J. Blue light signaling through the cryptochromes and phototropins. So that’s what the blues is all about. Plant Physiology, 2003, 133: 1429-1436
    Long S P, Humphries S. Photoinhibition of photosynthesis in nature. Annu Review of Plant Physiology, 1996, 112: 461-466
    Ma L G, Gao Y, Qu L J et al. Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell, 2002, 14: 2383-2398
    Malkin S, Telfer A. Quantitative analysis of state 1- state 2 transition in intact leaves using modulated fluorimeter evidence for changes in the absorption cross-section of the two photosystems during state transitions. Biochim Biophys Acta, 1986, 848:48-57
    Martinez-Garcia J F, Huq E, Quail P H. Direct targeting of light signals to a promoter element-bound transcription factor. Science, 2000, 288: 859-863
    Mas P, Devlin P F, Panda S et al. Functional interaction of phytochrome B and cryptochrome 2. Nature, 2000, 408: 207-211
    Mathews S, Sharrock R A. Phytochrome gene diversity. Plant Cell and Environ, 1997, 20: 666-67
    Miyashita Y, Kitaya Y, Kozai T, et al. Effects of red and far-red light on the growth and morphology of potato plantlets in vitro: using light emitting diode as a light source for micropropagation. Acta Horticulturae, 1995, 393: 189-194
    Mockler T C, Guo H, Yang H et al. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development, 1999, 126: 2073-2082
    Molchan O V, Sokolosky S G. The phytochrome control of the cAMP endogenous level in oat seedeings. Russian Journal of Plant Physiology, 2000, 47(4): 463-467
    Moller S G, Kim Y S, Kunkel T et al. PP7 is a positive regulator of blue light signaling in Arabidopsis. Plant Cell, 2003, 15: 1111-1119
    Mortensen L M, Stromme E. Effects of light quality on some greenhouse crops. Scientia Horticulturae, 1987, 33: 27-36
    Motchoulski A, Liscum E. Arabidopsis NPH3: A NHP1 photoreceptor-interacting protein essential for phototropism. Science, 1999, 286:961-964
    Murakami K, Aiga I, Horaguchi K, et al. Red/far-red photon flux ratio used as an index number for morphological control of plant growth under artificial lighting conditions. Acta Horticulturae, 1997, 418: 135-140
    Nagy F, Schafer E. Control of nuclear import and phytochromes. Current Opinion in Plant Biology, 2000, 3: 450-454
    Neff M M, Fankhauser C, Chory J. Light: an indicator of time and place.Genes Development, 2000, 14: 257-271
    Neuhaus G, Bowler C, Hiratsuka K. Phytochrome-regulated repression of gene expressionrequires calcium cGMP. EMBO Journal, 1997, 16(10): 2554-2564
    Ni M, Tepperman J M. Binding of phytochrome B to its nucleus. Signaling partner PLF3 is reversibly induced by light. Natural, 1999, 400: 781-784
    Nick P, Furuya M. Phytochrome dependent decrease of gibberellin-sensitirity. Plant Growth Regulation, 1993, 12: 195-206
    Nishio J N, Sun J, Vogelmann TC. Carbon fixation gradients across spinach leaves do not follow internal light gradients. The Plant Cell, 1993, 5: 953-961
    Okamoto H, Matsui M, Deng X W. Over expression of the heterotrimeric G-proteinα-subunit enhances phytochrome-mediated inhibition of hypocotyls elongation in Arabidopsis. Plant Cell, 2001, 13: 1639-1651
    Omran R G. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling. Plant Physiology, 1980, 65: 407-408
    Oyaert E, Volckaert E. Growth of chrysanthemum under colored plastic films with different light qualities. Scientia Horticulturae, 1999, 79: 195-205
    Péter G, Eberhard S, Ferenc N. Light perception and signaling in higher plants. Cur Opinion in Plant Biology, 2003, 6: 446-452
    Quail P H, Boylan M T, Parks B M, et al. Phytochromes: photosensory perception and signal transduction. Science, 1995, 268: 675-680
    Quail P H. An emerging molecular map of the phytochromes. Plant Cell and Environment, 1997, 20: 657-66
    Quail P H. Phytochrome-interacting factors. Seminars in Cell﹠Developmental Biology. 2000, 11(6): 457-466
    Quail P H. The phytochrome family dissection of functional roles and pathways among family memebers. Philosophical Transactions of the royal society of London series Biological Science, 1998, 353: 1374
    Reed J W, Nagatani A, Eilch T D et al. Phytochrome A and phytochrome B have overlapping but distinct functions in arabidopsis development. Plant Physiology, 1994, 104(4): 1139-1149
    Reed J W, Nagpal P, Poole D S. Mutations in the gene for the red/far-red light receptor Phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell, 1993, 5: 147-157
    Richter G, Wessel K. Red light inhibits blue light-induced chloroplast development in cultured plant cells at the mRNA level. Plant Molecular Biology, 1985, 5(3): 175-182.
    Richter G. Blue light control of the level of two plastid mRNA’s in cultured plant cells. PlantBiology, 3: 271-276
    Roelfsema M. Rob. G, Hanstein S, Felle H. H. et al. CO2 provides an intermediate link in the red light response of guard cells. The Plant Journal, 2002, 32(1): 65
    Saijo Y, Sullivan J A, Wang H Y, et al. The COP1-SP1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Development, 2003, 47: 2642-2647
    Sakai T, Kagawa T, Kasahara M, et al. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proceedings of the National Academy of Science, 2001, 98: 6969-6974
    Sato Y, Wada M, Kadota A. Choice of tracks, microtubules and/or actin filaments for chloroplast photomovement is differentially controlled by phytochrome and a blue light receptor. Journal of cell science, 2001, 114(2): 269-279
    Schafer E, Bowler C. Phytochrome-mediated photoperception and signal transduction in higher plants. EMBO Journal, 2002, 3: 1042-1048
    Seo H S, Yang J Y, Ishikawa M, et al. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature, 2003, 423: 995-999
    Shalitin D, Yang H, Mockler T C et al. Regulation of Arabidopsis cryptochrome2 by blue-light-dependent phosphorylation. Nature, 2002, 417(6890): 763-767
    Sharma R. Phytochrome: A serine kinase illuminates the nucleus. Current Science, 2001, 80(2): 178-188
    Shropshive W Jr, Mohr H. Photomorphogenesis: Encyclopedia of Plant Physiology, New Series, Vol. 16A, B. Berlin: Springer Verlag, 1983
    Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 337-354
    Smith H. Physiological and ecological function within the phytochrome family. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46: 289-315
    Smith, H. 2000. Phytochromes and light signal perception by plants-an emerging synthesis. Nature, 407: 585-591.
    Soh M S, Kim Y M, Han S J, et al. REP1, a basic helix-loop-helixprotein, is required for abranch pathway of phytochrome A signaling in Arabidopsis. Plant Cell, 2000, 12: 2061-2074
    Somers D E, Devlin P F, Kay S A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science, 1998, 282: 1488-1490
    Stacey M G, Hicks S N, von Arnim A G. Diserete domains mediate the light responsive mucleo and cytoplasmic localization of Arabidopsis COP. Plant Cell, 1999, 11: 349-363
    Stuefer J F, Huber H. 1998. Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species. Oecologia, 117:1-8
    Stylinski C D, Gamon J A, Oechel W C. Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia, 2002, 131: 366-374.
    Sun J D, Nishio J N, Vogelmann TC. Green light drives CO2 fixation deep within leaves. Plant Cell Physiology, 1998, 39(10): 1020-1026
    Swart T E, Corchnoy S B, Christie J M, et al. The photocycle of a falvin-binding domain of the blue light photoreceptor phototropin. Journal Biology Chemistry 2001, 276: 36493-36500
    Talbott L. D., Nikolova G, Ortiz A. Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. American Journal of Botany, 2002, 89(2): 366-368
    Tepperman J M, Zhu T, Chang H S, et al. Multiple transcription-factor genes are early targets of phytochrome A signaling. Proceedings of the National Academy of Science, 2001, 98: 9437-9442
    Tong Z, Kasemir H, Mohr H. Coaction of light and cytokinin in photomorphogenesis. Planta, 1983, 159:136-142
    Tong Z, Wang T, Xu Y. Evidence for involvement phytochrome regulation in male-sterlity of a mutant of Oryza sativa L. Photochemistry Photobiology, 1990, 52: 161-164
    Torii K U, McNellis T W, Deng X W. Functional dissection of Arabidopsis COP1 reveals specific roles of its three structural modules in light control of seedling development. Europe Molecular Biology Lab Journal, 1998, 17: 5577-5587
    Tóth R, Kevei E, Hall A et al. Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiology, 2001, 127: 1607-1616
    Tretun A. Calcium-dependent signal transduction pathways in plant phytochrome mechanis of action as an example. Polish Journal of Plarmacotogy, 1999, 51(2): 145-151
    Vlasova M. P., Drozdova S., Voskresenskaya N. P. Modification of chloroplast ultrastructure in pea plants greening under blue and red light. Fiziol. Rast.(USSR), 1971, 18: 5-11
    von Arnim A G, Osterlund M T, Kwok S F, et al. Genetic and developmental control of nuclear accumulation of COP1, a repressor of photomorphogenesis in Arabidopsis. PlantPhysiology, 1997, 114: 779-788
    Voskersenskaya N P, Drozdova I S. Effect of light quality on the organization of photosynthetic electron transport chain of pea seedlings. Plant Physiology, 1977, 59: 151-154.
    Wang H, Ma L G, Li J M et al. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science, 2001, 294: 154-158
    Yamaguchi S, Smith M W, Brown R G, et al. Phytochrome regulation and differential expression of gibberellin 3β-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell, 1998, 10: 2115-212
    Yang H Q, Tang R H, Cashmore A R. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell, 2001, 13: 2573-2588
    Yang H Q, Wu Y J, Tang R H et al. The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell, 2000, 103: 815-827
    Yang H Q, Wu Y J, Tang R H, et al. The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell, 2000, 103: 815-827
    Yeh K C, Lagarias J C. Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proceedings of the National Academy of Science, 1998, 95: 13976~1398
    Zeiger E. Sensory transduction of blue light in guard cells. Trends Plant Science, 2000, 5: 183-185
    Zhou J L, Ma L G, Sun D Y, et al. Effects of G protein and cGMP on phytochrome-mediated amaranthin synthesis in Amaranthus caudatus seedlings. Science China (Series C), 1998, 41: 232-237

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700