用户名: 密码: 验证码:
Cd-DDT复合污染土壤的植物与微生物联合修复及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤-作物系统中呈现出“新老污染物共存、无机/有机复合污染”的复杂状况,特别是重金属和持久性有机污染物(POPs)造成的复合土壤污染已受到广泛关注。近年来不断爆发的人体、土-水环境污染事件,为污染土壤治理与修复提出了迫切的需求。本研究以重金属(Cd)-有机氯农药(DDT)复合污染农田土壤为研究对象,开展了复合污染土壤植物-微生物联合修复技术及机制研究,取得的主要研究结果如下:
     1.研究21份不同基因型南瓜(Cucurbita pepo ssp)品种对复合污染土壤中Cd和DDs (DDT, DDD, DDE的总称)的吸收和积累能力的差异性。结果表明,不同南瓜品种对土壤DDs和Cd的积累及转运能力差异较大。南瓜果实、叶、茎、根DDs的平均含量分别为338.4-793.2、1619-1812、1273-3548、3396-12811ng g-1DW, Cd平均含量分别为0.26-1.12、0.49-2.25、1.04-4.84、1.61-7.72mg kg-1DW.南瓜地上部对Cd和DDs的转运系数(TF)平均值分别为0.79和0.60,富集系数(BAF)则分别为1.68和1.54。经盆栽实验验证,“特别选蜜本王”可以认定为Cd和DDs低积累型南瓜,在中轻度Cd和DDs (Cd≤1.50mg kg-1, DDs≤1.00mg kg-1)复合污染土壤上种植该品种亦可保障农产品的质量安全,而“日本红甜蜜”南瓜具有共富集Cd和DDs的潜力,适宜作为Cd-DDs复合污染土壤的植物修复材料。
     2.研发复合污染土壤的生物修复技术是治理污染土壤的重要举措。在Cd-DDs复合污染土壤条件下,盆栽实验中土壤接种DDT-1增加了东南景天的根系生物量,采用东南景天与DDT-1联合修复技术,去除了土壤中32.1-40.3%Cd和33.9-37.6%DDs,随之进行了为期18个月的大田试验,土壤Cd和DDs污染水平分别降低了31.1%和53.6%,大田数据很好地验证了该修复方法的有效性和可行性。可见,应用东南景天与DDT降解菌联合修复技术,是修复Cd-DDs复合污染土壤的有效手段。
     3.采用东南景天/小白菜(油冬儿)与DDT-1联合修复技术,增加了油冬儿的根生物量(P<0.05),但对其地上部的生物量无显著影响,增加了东南景天的根部和地上部的生物量(P<0.05);应用该联合修复技术显著降低了油冬儿根部和地上部Cd含量,降幅分别高达48.0-51.5%和54.7-71.4%;显著降低了其根部总DDs含量,降幅高达37%。土壤Cd和DDs的去除率分别达到30-46%和36.8-42.7%。激光扫描共聚焦显微镜的观测的结果表明,DDT-1大量定殖在根际土壤及东南景天的根毛和根表处。对土壤微生物多样性进行T-RFLP分析,结果表明,在所有包含植物的处理中土壤细菌群落丰富度指数(S)、Shannon指数(H’)、均匀度指数(E)和Simpson指数(D’)明显高于无植物对照组。因此,应用该修复技术既可以修复中轻度复合污染土壤又可以提高小白菜的安全系数,是有应用前景的生物修复策略。
     4.采用东南景天/南瓜与DDT-1联合修复技术,显著增加了南瓜根部和地上部的生物量(P<0.05),增幅分别为26.8和21.7%,但对东南景天根部和地上部的生物量均无显著影响。在低Cd-DDs浓度处理中,无明显降低两者根部及地上部的Cd含量,但在高Cd-DDs浓度处理中,降低了南瓜根部的Cd含量(P<0.05),降幅为33.0-40.6%。南瓜根部DDs含量无显著变化,地上部DDs含量则显著降低了38.2-44.5%;东南景天根部DDs含量显著增加了34.7-67.7%,地上部DDs含量显著降低了19.3-39.2%(P<0.05)。土壤Cd和DDs的去除率分别达到41.9-60.7%7.5-45.2%。研究了南瓜中Cd和DDs的微区分布特征,结果表明,南瓜根部Cd主要分布在表皮细胞壁和和维管束,而茎部Cd主要分布在厚壁组织(纤维)和基本组织的液泡;南瓜根部DDs主要分布在中柱和吸附在根毛表面,而茎部DDs主要分布在维管束、基本组织的液泡和腺毛体;激光扫描共聚焦显微镜观测结果表明,DDT-1菌株在东南景天与南瓜根部大量定殖。对土壤微生物多样性进行T-RFLP分析,结果表明,该修复技术对土壤细菌群落丰富度指数(S)、Shannon指数(H’)、均匀度指数(E)和Simpson指数(D’)有明显影响,土壤细菌群落多样性明显丰富。因此,应用该修复技术既可以修复中轻度复合污染土壤又可以提高南瓜的安全系数,是有应用前景的生物修复策略。
Environmental pollution of the soil-crop system is very complex due to the coexistence of old and new pollutants, as well as inorganic and organic compounds. Especially soil pollution caused by heavy metals and persistent organic pollutants (POPs) is widespread concerned. In recent years, the frequent outbreak of environmental pollution accidents due to soil-water pollution puts forward urgent demand for remediation and restoration of contaminated soil.
     In this research, the plant-microbe remediation of Cd and DDT was carried out under pot and field experiments to identify bioremediation strategy of Cd-DDs co-contaminated soil and to investigate the mechanism for enhancing bioremediation efficiency. Primary results were summarized as follows:
     1. Cadmium (Cd) and dichlorodiphenyltrichloroethane (DDT) or its metabolite residues DDD/DDE (DDT, DDE, and DDD are collectively called DDs) are frequently detected in agricultural soils and agricultural products, posing a threat to human health. The objective of this study was to compare the ability of21genotypes of Cucurbita pepo ssp in mobilizing and uptake of Cd and DDs (p,p'-DDT, o,p-DDT, p,p'-DDD and p,p'-DDE) in the co-contaminated soil. The plant genotypes varied greatly in the uptake and accumulation of Cd and DDs, with mean concentrations of0.26-1.12、0.49-2.25、1.04-4.84and1.61-7.72mg kg-1DWfor Cd, and338.4-793.2,1619-1812,1273-3548and3396-12811ng g-1DW for DDs in leaf, stem and root, respectively. The TF and BAF values were0.79and1.68for Cd, and0.60and1.54for DDs, respectively. These results indicate that Cucurbita pepo cv."Tebiexuan mibenwang" has a low ability to absorb and accumulate Cd and DDs from the contaminated soils, but Cucurbita pepo cv."Riben Hongtianmi" has great potential for accumulating Cd and DDs from moderately co-contaminated soil (Cd≤1.50mg kg-1, DDs≤1.00mg kg-1)。
     2. The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation strategy for fields co-contaminated with cadmium (Cd), dichlorodiphenyltrichloroethane (DDT), and its metabolites1,1-dichloro-2,2-bis (4-chlorophenyl) ethylene (DDE) and1,1-dichloro-2,2-bis (4-chlorophenyl) ethane (DDD) using an identified Cd-hyperaccumulator plant Sedum alfredii (SA) and DDT-degrading microbes (DDT-1). Initially, inoculation with DDT-1was shown to increase SA root biomass in a pot experiment. When SA was applied together with DDT-1, the levels of Cd and DDs in the co-contaminated soil decreased by32.1-40.3%and33.9-37.6%, respectively, in a pot experiment over18months compared to3.25%and3.76%decreases in soil Cd and DDs, respectively, in unplanted, untreated controls. A subsequent field study (18-month duration) in which the levels of Cd and DDs decreased by31.1%and53.6%, respectively, confirmed the beneficial results of this approach. This study demonstrates that the integrated bioremediation strategy is effective for the remediation of Cd-DDs co-contaminated soils.
     3. Co-cropping, a widely accepted agronomical practice in China for2000years, can increase total crop yields through increased resource use efficiency. In our present experiments, co-cropping of Sedum alfredii and B. campestris ssp chinensis associated with DDT-1increased the biomass and metal phytoextraction of S. alfredii (P<0.05) and also enhanced the root growth of B. campestris ssp chinensis (P<0.05), but had no significant effects on shoot biomass of B. campestris ssp chinensis. The combined remediation strategy decreased the Cd concentration by48.0-51.5%and54.7-71.4%in the roots and shoots of B. campestris ssp chinensis, respectively, and also corresponded to a decrease in root DDs concentration by37%. The removal efficiencies were30-46%for Cd and36.8-42.7%for DDs. Laser scanning confocal microscopy revealed that gfp-tagged DDT-1heavily colonized in rhizosphere soil, and on rhizoplane of Sedum alfredii. The soil diversity indices, such as richness index (S), evenness index (E), Shannon's diversity (H'), Simpson's index (D'), were higher in all of the planted treatments than in the unplanted control. Principal component analysis of bacterial T-RFLP data also revealed strong shifts in bacterial community composition with the planted treatments. The results of this study indicate that the co-cropping of Sedum alfredii and B. campestris ssp chinensis associated with DDT-1appears to be a promising approach for the bioremediation of soils co-contaminated by Cd and DDs, while simultaneously decreasing the pollutant concentration in edible part of B. campestris ssp Chinensis, and hence maintaining product safety and and reliability of this vegetable.
     4. In our present experiments, co-cropping Sedum alfredii and Cucurbita pepo cv."Tebiexuan mibenwang" associated with DDT-1increased the root (26.8%) and shoot biomass (21.7%) of "Tebiexuan mibenwang"(P<0.05), but had no significant effects on the root and shoot biomass of Sedum alfredii. In general, the combined remediation strategy did not significantly decrease the Cd concentrations in roots and shoots of both plants. However, for "Tebiexuan mibenwang", the bioremediation strategy decreased the shoot DDs concentration by38.2-44.5%(P<0.05), but had no significant effects on root DDs concentration; for Sedum alfredii, increased and decreased DDs concentration by34.7-67.7%and38.2-44.5%in roots and shoots of Sedum alfredii, respectively. The removal efficiencies were41.9-60.7%for Cd and37.5-45.2%for DDs. In the present study, for roots of "Tebiexuan mibenwang", Cd was largely retained in the cell walls and vessel tissue, DDs was largely retained in central cylinder, and was adsorbed on root hairs, but for shoots, Cd was largely retained in the collenchyma tissue and vacuoles, DDs was largely retained in vessel tissue, vacuoles and glandular trichomes. Laser scanning confocal microscopy revealed that gfp-tagged DDT-1heavily colonized on rhizoplane of Sedum alfredii and "Tebiexuan mibenwang". The soil diversity indices, such as richness index (S), evenness index (E), Shannon's diversity (H'), Simpson's index (D'), were higher in the treatment than in the unplanted control. The results of this study indicate that the co-cropping of Sedum alfredii and "Tebiexuan mibenwang" associated with DDT-1appears to be a promising approach for the bioremediation of soils co-contaminated by Cd and DDs, and while decreasing the DDs concentration in shoot of "Tebiexuan mibenwang", and hence ensuring product safety of the pumpkin.
引文
Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale, New Phytol.158:219-224.
    Aislabie J, Davison AD, Boul HL, Franzmann PD, Jardine DR, Karuso P (1999) Isolation of Terrabacter sp strain DDE-1, which metabolizes 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene when induced with biphenyl, Appl. Environ. Microbiol.65:5607-5611.
    Aislabie JM, Richards NK, Boul HL (1997) Microbial degradation of DDT and its residues—a review, N. Z. J. Agric. Res.40:269-282.
    Arthur EL, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR (2005) Phytoremediation-An overview, Crit. Rev. Plant Sci.24:109-122.
    Babu AG, Reddy MS (2011) Dual Inoculation of Arbuscular Mycorrhizal and Phosphate Solubilizing Fungi Contributes in Sustainable Maintenance of Plant Health in Fly Ash Ponds, Water Air Soil Poll.219:3-10.
    Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L (2000) Efficacy of Burkholderia cepacia MCI 7 in disease suppression and growth promotion of maize, Biol. Fert. Soils 31:225-231.
    Bidlan R, Manonmani HK (2002) Aerobic degradation of dichlorodiphenyltrichloro-ethane (DDT) by Serratia marcescens DT-IP, Process Biochem.38:49-56.
    Bumpus JA, Aust SD (1987) Biodegradation of DDT [1,1,1-Trichloro-2,2-Bis (4-Chlorophenyl)Ethane] by the White Rot Fungus Phanerochaete Chrysosporium, Appl. Environ. Microbiol.53:2001-2008.
    Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings, Appl Environ Microbiol.64:3663-3668.
    Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment, Environ. Sci. Pollut. R.12:34-48.
    Cheema SA, Khan MI, Shen CF, Tang XJ, Farooq M, Chen L, Zhang CK, Chen YX (2010) Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation, J. Hazard. Mater.177:384-389.
    Chen TB, Wei CY, Huang ZC, Huang QF, Lu QG, Fan ZL (2002) Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation, Chi. Sci. Bull. 47:902-905.
    Cheng SP (2003) Heavy metal pollution in China:Origin, pattern and control, Environ. Sci. Pollut. R.10:192-198.
    Chiou CT, Sheng GY, Manes M (2001) A partition-limited model for the plant uptake of organic contaminants from soil and water, Environ. Sci. Technol. 35:1437-1444.
    Collins C, Fryer M, Grosso A (2006) Plant uptake of non-ionic organic chemicals, Environ. Sci. Technol.40:45-52.
    Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases:Principles, mechanisms of action, and future prospects, Appl. Environ. Microbiol.71: 4951-4959.
    Cork DJ, Krueger JP (1991) Microbial Transformations of Herbicides and Pesticides, Adv. Appl. Microbiol.36:1-66.
    Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments, Plant Soil 245:35-47.
    DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: Staking all on metabolism and gene expression, J. Integr. Plant Biol.50: 1268-1280.
    de Souza MP, Huang CPA, Chee N, Terry N (1999) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants, Planta 209:259-263.
    de-Bashan LE, Hernandez JP, Bashan Y (2011)The potential contribution of plant growth-promoting bacteria to reduce environmental degradation-A comprehensive evaluation. Appl. Soil Ecol., doi:10.1016/j.apsoil.2011.09.003
    DePieri LA, Buckley WT, Kowalenko CG (1997) Cadmium and lead concentrations of commercially grown vegetables and of soils in the Lower Fraser Valley of British Columbia, Can. J. Soil Sci.77:51-57.
    Edvantoro BB, Naidu R, Megharaj M, Singleton I (2003) Changes in microbial properties associated with long-term arsenic and DDT contaminated soils at disused cattle dip sites, Ecotox. Environ. Safe.55:344-351.
    El Aafi N, Brhada F, Dary M, Maltouf AF, Pajuelo E (2012) Rhizostabilization of Metals in Soils Using Lupinus Luteus Inoculated with the Metal Resistant Rhizobacterium Serratia Sp. Msmc541, Int. J. Phytoremediation 14:261-274.
    Fang H, Dong B, Yan H, Tang F, Yu Y (2010) Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil, J. Hazard. Mater.184:281-289.
    Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite, Nature 417:432-436.
    Foght J, April T, Biggar K, Aislabie J (2001) Bioremediation of DDT-Contaminated Soils:A Review, Bioremediation J.5:225-246.
    Friedrich M, Grosser RJ, Kern EA, Inskeep WP, Ward DM (2000) Effect of model sorptive phases on phenanthrene biodegradation:molecular analysis of enrichments and isolates suggests selection based on bioavailability, Appl. Environ. Microbiol.66:2703-2710.
    Gamalero E, Lingua G, Capri FG, Fusconi A, Berta G, Lemanceau P (2004) Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy, FEMS Microbiol. Ecol.48:79-87.
    Gao Y, Zhou P, Mao LA, Zhi YE, Zhang CH, Shi WJ (2010) Effects of plant species coexistence on soil enzyme activities and soil microbial community structure under Cd and Pb combined pollution, J. Environ. Sci.-China 22:1040-1048.
    Gaw SK, Kim ND, Northcott GL, Wilkins AL, Robinson G (2008) Uptake of Sigma DDT, arsenic, cadmium, copper, and lead by lettuce and radish grown in contaminated horticultural soils, J. Agr. Food Chem.56:6584-6593.
    Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants:Potential and challenges, Plant Sci.176:20-30.
    Glick BR (2010) Using soil bacteria to facilitate phytoremediation, Biotechnol. Adv. 28:367-374.
    Glick BR, Stearns JC (2011) Making Phytoremediation Work Better:Maximizing a Plant's Growth Potential in the Midst of Adversity, Int. J. Phytoremediation 13: 4-16.
    Gove B, Hutchinson JJ, Young SD, Craigon J, McGrath SP (2002) Uptake of metals by plants sharing a rhizosphere with the hyperaccumulator Thlaspi caerulescens, Int. J. Phytoremediation 4:267-281.
    Greenwood SJ, Rutter A, Zeeb BA (2011) The Absorption and Translocation of Polychlorinated Biphenyl Congeners by Cucurbita pepo ssp pepo, Environ. Sci. Technol.45:6511-6516.
    Gronewold AD., Wolpert RL (2008) Modeling the relationship between most probable number (MPN) and colony-forming unit (CFU) estimates of fecal coliform concentration, Water Res.42:3327-3334.
    Gulser F, Erdogan E (2008) The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils, Environ. Monit. Assess.145:127-133.
    Guo Y, Yu HY, Zeng EY (2009) Occurrence, source diagnosis, and biological effect assessment of DDT and its metabolites in various environmental compartments of the Pearl River Delta, South China:a review, Environ. Pollut.157: 1753-1763.
    Hammer D, Keller C (2002) Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants, J. Environ. Qual.31:1561-1569.
    Hammer D, Keller C (2003) Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials, Soil Use Manage.19:144-149.
    Hao XZ, Zhou DM, Wang YK, Shi FG, Jiang P (2011) Accumulation of Cu, Zn, Pb, and Cd in Edible Parts of Four Commonly Grown Crops in Two Contaminated Soils, Int. J. Phytoremediation 13:289-301.
    Hay AG, Focht DD (1998) Cometabolism of 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene by Pseudomonas acidovorans M3GY grown on biphenyl, Appl. Environ. Microbiol.64:2141-2146.
    Hay AG, Focht DD (2000) Transformation of 1,1-dichloro-2,2-(4-chlorophenyl) ethane (DDD) by Ralstonia eutropha strain A5, FEMS Microbiol. Ecol.:31 249-253.
    He Y, Zeng S (2006) Determination of the stereoselectivity of chiral drug transport across Caco-2 cell monolayers, Chirality 18:64-69.
    Hery M, Nazaret S, Jaffre T, Normand P, Navarro E (2003) Adaptation to nickel spiking of bacterial communities in neocaledonian soils, Environ. Microbiol.5: 3-12.
    Hinsinger P, Plassard C, Tang CX, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints:A review, Plant Soil 248:43-59.
    Hu WY, Huang B, Zhao YC, Sun WX, Gu ZQ (2011) Organochlorine Pesticides in Soils from a Typical Alluvial Plain of the Yangtze River Delta Region, China, B. Environ. Contam. Tox.87:561-566.
    Huang H, Yu N, Wang L, Gupta DK, He Z, Wang K, Zhu Z, Yan X, Li T, Yang XE (2011) The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil, Bioresour. Technol.102: 11034-11038.
    Huang SS, Liao QL, Hua M, Wu XM, Bi KS, Yan CY, Chen B, Zhang XY (2007) Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China, Chemosphere 67:2148-2155.
    Huang Y, Zhao X, Luan S (2007) Uptake and biodegradation of DDT by 4 ectomycorrhizal fungi, Sci. Total Environ.385:235-241.
    Ji PH, Sun TH, Song YF, Ackland ML, Liu Y (2011) Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L, Environ. Pollut.159:762-768.
    Johri BN, Sharma A, Virdi JS (2003), Rhizobacterial diversity in India and its influence on soil and plant health, Adv. Biochem. Eng. Biotechnol.84:49-89.
    Juhasz AL, Naidu R (1999) Apparent degradation of 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane (DDT) by a Cladosporium sp., Biotechnol. Lett.21: 991-995.
    Kachenko A, Singh B (2006) Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia, Water Air Soil Poll.169: 101-123.
    Kantachote D, Singleton I, McClure N, Naidu R, Megharaj M, Harch BD (2003) DDT resistance and transformation by different microbial strains isolated from DDT-contaminated soils and compost materials, Compost Sci. Util.11:300-310.
    Karlsson H, Oehme M, Scherer G (1999) Isolation of the chlordane compounds U82, MC5, MC7, and MC8 from technical chlordane by HPLC including structure elucidation of U82 and determination of ECD and NICI-MS response factors, Environ. Sci. Technol.33:1353-1358.
    Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency:comparison of different plant species in the field, Plant Soil 249:67-81.
    Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China, Environ. Pollut.152:686-692.
    Kidd PS, Prieto-Fernandez A, Monterroso C, Acea MJ (2008) Rhizosphere microbial community and hexachlorocyclohexane degradative potential in contrasting plant species, Plant Soil 302:233-247.
    Kiflom WG, Wandiga SO, Ng'ang'a PK, Kamau GN (1999) Variation of plant p,p'-DDT uptake with age and soil type and dependence of dissipation on temperature, Environ. Int.25:479-487.
    Kim SY, Lee SH, Freeman C, Fenner N, Kang H (2008) Comparative analysis of soil microbial communities and their responses to the short-term drought in bog, fen, and riparian wetlands, Soil Biol. Biochem.40:2874-2880.
    Kleikemper J, Schroth MH, Sigler WV, Schmucki M, Bernasconi SM, Zeyer J (2002) Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer, Appl. Environ. Microbiol.68:1516-1523.
    Knight B, Zhao FJ, McGrath SP, Shen ZG (1997) Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution, Plant Soil 197:71-78.
    Kolb D, Muller M, Zellnig G, Zechmann B (2010) Cadmium induced changes in subcellular glutathione contents within glandular trichomes of Cucurbita pepo L. Protoplasma 243:87-94.
    Kramer U (2005) Phytoremediation:novel approaches to cleaning up polluted soils, Curr. Opin. Biotechnol.16:133-141.
    Kramer U (2010) Metal Hyperaccumulation in Plants, Annu. Rev. Plant Biol.61: 517-534.
    Krzeslowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy, Acta Physiol. Plant 33:35-51.
    Larue C, Korboulewsky N, Wang RY, Mevy JP (2011) "Depollution potential of three macrophytes:Exudated, wall-bound and intracellular peroxidase activities plus intracellular phenol concentrations" (vol 101, pg 7951,2010), Bioresour. Technol.102:6376-6376.
    Lee HS, Lee K (2001) Bioremediation of diesel-contaminated soil by bacterial cells transported by electrokinetics, J. Microbiol. Biotechnol.11:1038-1045.
    Li FB, Li XM, Zhou SG, Zhuang L, Cao F, Huang DY, Xu W, Liu TX, Feng CH (2010) Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide, Environ. Pollut.158: 1733-1740.
    Li TQ, Di ZZ, Islam E, Jiang H, Yang XE (2011) Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredii involved in zinc accumulation, J. Hazard. Mater.185:818-823.
    Li TQ, Yang XE, Jin XF, He ZL, Stoffella PJ, Hu QH (2005) Root responses and metal accumulation in two contrasting ecotypes of Sedum alfredii Hance under lead and zinc toxic stress, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng.40:1081-1096.
    Li WC, Wong MH (2012) Interaction of Cd/Zn hyperaccumulating plant(Sedum alfredii) and rhizosphere bacteria on metal uptake and removal of phenanthrene, J. Hazard. Mater.209-210:421-433.
    Li WC, Ye ZH, Wong MH (2007) Effects of bacteria an enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii, J. Exp. Bot.58:4173-4182.
    Lin L, Guo W, Xing YX, Zhang XC, Li ZY, Hu CJ, Li S, Li YR, An QL (2012) The actinobacterium Microbacterium sp.16SH accepts pBBRl-based pPROBE vectors, forms biofilms, invades roots, and fixes N2 associated with micropropagated sugarcane plants. Appl. Microbiol. Biot.93:1185-1195
    Lin Q, Shen KL, Zhao HM, Li WH (2008) Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants, J. Hazard. Mater. 150:515-521.
    Lin Q, Wang ZW, Ma S, Chen YX (2006) Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil, Sci. Total Environ.368:814-822.
    Liu D, Li T, Yang X, Islam E, Jin X, Mahmood Q (2007) Enhancement of lead uptake by hyperaccumulator plant species Sedum alfredii Hance using EDTA and IAA, B. Environ. Contam. Tox.78:280-283.
    Liu MQ, Yanai J, Jiang RF, Zhang F, McGrath SP, Zhao FJ (2008) Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescensl, Chemosphere71:1276-1283.
    Liu XM, Wu QT, Banks MK (2005) Effect of simultaneous establishment of Sedum alfredii and Zea mays on heavy metal accumulation in plants, Int. J. Phytoremediation 7:43-53.
    Liu YZ, Zhou T, Crowley D, Li LQ, Liu DW, Zheng JW, Yu XY, Pan GX, Hussain Q, Zhang XH, Zheng JF (2012) Decline in Topsoil Microbial Quotient, Fungal Abundance and C Utilization Efficiency of Rice Paddies under Heavy Metal Pollution across South China, Plos One 7.
    Long XX, Zhang YG, Jun D, Zhou Q (2009) cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions, Bull. Environ. Contam. Toxicol.82 (2009) 460-467.
    Lu LL, Tian SK, Yang XE, Wang XC, Brown P, Li TQ, He ZL (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii, J. Exp. Bot.59:3203-3213.
    Lu RK (2000) Analysis Method of Soil Agricultural Chemistry, Chinese Agricultural Science and Technology Press, Beijing, China.
    Luo SL, Xu TY, Chen L, Chen JL, Rao C, Xiao X, Wan Y, Zeng GM, Long F, Liu CB, Liu YT (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp SLS18, Appl. Microbiol. Biot.93:1745-1753.
    Ma Y, Rajkumar M, Luo YM, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants-Effects on plant growth and Ni uptake, J. Hazard. Mater. 195:230-237.
    Ma Y, Rajkumar M, Vicente JAF, Freitas H (2011) Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp strain srs8 for the improvement of nickel phytoextraction by energy crops, Int. J. Phytoremediation 13:126-139.
    Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation, Biotechnol. Adv.18:23-34.
    Martina MI, Berger WA, Eitzer BD (2007) Factors affecting the phytoaccumulation of weathered, soil-borne organic contaminants:analyses at the ex Planta and in Planta sides of the plant root, Plant Soil 291:143-154.
    Mattina MI, Isleyen M, Eitzer BD, Iannucci-Berger W, White JC (2006) Uptake by cucurbitaceae of soil-Bome contaminants depends upon plant genotype and pollutant properties, Environ. Sci. Technol.40:1814-1821.
    Mattina MI, Lannucci-Berger W, Musante C, White JC (2003) Concurrent plant uptake of heavy metals and persistent organic pollutants from soil, Environ. Pollut.124:375-378.
    Maxted AP, Black CR, West HM, Crout NM, McGrath SP, Young SD (2007) Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens:development of a predictive model, Environ. Pollut.150:363-372.
    McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri, Environ. Pollut.141:115-125.
    McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils, Curr. Opin. Biotechnol.14:277-282.
    Melis L, Vandooren B, Kruithof E, Jacques P, De Vos M, Mielants H, Verbrugen G, De Keyser F, Elewaut D (2009) Systemic Levels of IL-23 are Strongly Associated with Disease Activity in Rheumatoid Arthritis but not Spondyloarthritis, Clin. Immunol.131:S49-S49.
    Mendoza-Cozatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation, Plant J.54:249-259.
    Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals, Biotechnol. Adv.29:645-653.
    Mitra J, Mukherjee PK, Kale SP, Murthy NB (2001) Bioremediation of DDT in soil by genetically improved strains of soil fungus Fusarium solani, Biodegradation 12:235-245.
    Mo C-H, Cai Q-Y, Li H-Q, Zeng Q-Y, Tang S-R, Zhao Y-C (2008) Potential of different species for use in removal of DDT from the contaminated soil, Chemosphere 73:120-125.
    Murakami M, Nakagawa F, Ae N, Ito M, Arao T (2009) Phytoextraction by Rice Capable of Accumulating Cd at High Levels:Reduction of Cd Content of Rice Grain, Environ. Sci. Technol.43:5878-5883.
    Murano H, Otani T, Seike N (2010) Dieldrin-Dissolving Abilities of the Xylem Saps of Several Plant Families, Particularly Cucurbita Pepo L., Environ. Toxicol. Chem.29:2269-2277.
    Nadeau LJ, Menn FM, Breen A, Sayler GS (1994) Aerobic degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by Alcaligenes eutrophus A5, Appl. Environ. Microbiol.60:51-55.
    Notten MJ, Oosthoek AJ, Rozema J, Aerts R (2005) Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient. Environ Pollut 138(1):178-190
    Nzengung VA, Jeffers P (2001) Sequestration phytoreduction, and phytooxidation of halogenated organic chemicals by aquatic and terrestrial plants. International Journal of Phytoremediation 3:13-40
    Olaniran AO, Balgobind A, Pillay B (2011) Quantitative assessment of the toxic effects of heavy metals on 1,2-dichloroethane biodegradation in co-contaminated soil under aerobic condition, Chemosphere 85:839-847.
    Otani T, Seike N, Sakata Y (2007) Differential uptake of dieldrin and endrin from soil by several plant families and Cucurbita genera, Soil Sci. Plant Nutr.53:86-94.
    Park BJ, Cho JY (2011) Assessment of Copper and Zinc in Soils and Fruit with the Age of an Apple Orchard, J. Korean Soc. Appl. Bi.54:910-914.
    Pepper IL, Gentry TJ, Newby DT, Roane TM, Josephson KL (2002) The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils, Environ. Health Persp.110:943-946.
    Perronnet K, Schwartz C, Gerard E, Morel J (2000) Availability of cadmium and zinc accumulated in the leaves of Thlaspi caerulescens incorporated into soil, Plant Soil 227:257-263.
    Purnomo AS, Kamei I, Kondo R (2008) Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi, J. Biosci. Bioeng.105: 614-621.
    Qadir M, Ghafoor A, Murtaza G (2000) Cadmium Concentration in Vegetables Grown on Urban Soils Irrigated with Untreated Municipal Sewage, Environ. Develop. Sustain.2:13-21
    Qiu X, Zhu T, Li J, Pan H, Li Q, Miao G, Gong J (2004) Organochlorine pesticides in the air around the Taihu Lake, China, Environ. Sci. Technol.38:1368-1374.
    Qiu XH, Zhu T, Yao B, Hu JX, Hu SW (2005) Contribution of dicofol to the current DDT pollution in China, Environ. Sci. Technol.39:4385-4390.
    Qu WY, Suri RPS, Bi XH, Sheng GY, Fu JM (2010) Exposure of young mothers and newborns to organochlorine pesticides (OCPs) in Guangzhou, China, Sci. Total Environ.,408:3133-3138.
    Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation, Biotechnol. Adv., http://dx.doi.org/10.1016/j.biotechadv.2012.04.011.
    Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants:How and why do they do it? And what makes them so interesting?, Plant Sci.180: 169-181.
    Roosens N, Verbruggen N, Meerts P, Ximenez-Embun P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe, Plant Cell Environ.26:1657-1672.
    Roy S, Khasa DP, Greer CW (2007) Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems, Can. J. Bot.85: 237-251.
    Salt DE, Smith RD, Raskin I (1998) Phytoremediation, Annu. Rev. Plant Physiol. Plant Mol. Biol.49:643-668.
    Sandrin TR, Chech AM, Maier RM (2000)A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation, Appl. Environ. Microbiol. 66:4585-4588.
    Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants, Environ. Health Perspect. 111:1093-1101.
    Santacruz G, Bandala ER, Torres LG (2005) Chlorinated pesticides (2,4-D and DDT) biodegradation at high concentrations using immobilized Pseudomonas fluorescens, J. Environ. Sci. Health B 40:571-583.
    Schwitzguebel JP, Comino E, Plata N, Khalvati M (2011) Is phytoremediation a sustainable and reliable approach to clean-up contaminated water and soil in Alpine areas?, Environ. Sci. Pollut. R.18:842-856.
    Shi GR, Cai QS (2009) Cadmium tolerance and accumulation in eight potential energy crops, Biotechnol. Adv.27:555-561.
    Simonich SL, Hites RA (1995) Organic Pollutant Accumulation in Vegetation, Environ. Sci. Technol.29:2905-2914.
    Song Y, Zhang F, Marschner P, Fan F, Gao H, Bao X, Sun J, Li L (2007) Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat(Triticum aestivum L.), maize(Zea mays L.), and faba bean (Viciafaba L.), Biol. Fert. Soils 43:565-574.
    Stan V, Gament E, Cornea CP, Voaides C, Dusa M, Plopeanu G (2011) Effects of Heavy Metal from Polluted Soils on the Rhizobium Diversity, Not. Bot. Horti. Agrobo.39:88-95.
    Stephen JR, Chang YJ, Macnaughton SJ, Kowalchuk GA, Leung KT, Flemming CA, White DC (1999) Effect of toxic metals on indigenous soil p-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria, Appl. Environ. Microbiol.65: 95-101.
    Sun Y-b, Zhou Q-x, An J, Liu W-t, Liu R (2009) Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance), Geoderma 150:106-112.
    Sun YB, Zhou QX, Xu YM, Wang L, Liang XF (2011) Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetespatula, J. Hazard. Mater.186:2075-2082.
    Sun YM, Zhang NN, Wang ET, Yuan HL, Yang JS, Chen WX (2009) Influence of intercropping and intercropping plus rhizobial inoculation on microbial activity and community composition in rhizosphere of alfalfa(Medicago sativa L.) and Siberian wild rye(Elymus sibiricus L.), FEMS Microbiol. Ecol.70:218-226.
    Teng Y, Luo YM, Sun XH, Tu C, Xu L, Liu WX, Li ZG, Christie P (2010) Influence of Arbuscular Mycorrhiza and Rhizobium on Phytoremediation by Alfalfa of an Agricultural Soil Contaminated with Weathered PCBs:A Field Study, Int. J. Phytoremediation 12:516-533.
    Teng Y, Shen YY, Luo YM, Sun XH, Sun MM, Fu DQ, Li ZG, Christie P (2011) Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil, J. Hazard. Mater.186: 1271-1276.
    Tian SK, Lu LL, Labavitch J, Yang XE, He ZL, Hu HN, Sarangi R, Newville M, Commisso J, Brown P (2011) Cellular Sequestration of Cadmium in the Hyperaccumulator Plant Species Sedum alfredii, Plant Physiol.157:1914-1925.
    Tian SK, Lu LL, Yang XE, Labavitch JM, Huang YY, Brown P (2009) Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii, New Phytol.182:116-126.
    Turusov V, Rakitsky V, Tomatis L (2002) Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks, Environ. Health Perspect.110:125-128.
    USEPA (2007) Method 8081B:Organochlorine Pesticides by Gas Chromatography, US EPA SW-846, third ed. Update IV, US NTIS, Springfield, VA.
    Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of Poly chlorinated Biphenyls:New Trends and Promises, Environ. Sci. Technol.44:2767-2776.
    Vig K, Megharaj M, Sethunathan N, Naidu R (2003) Bioavailability and toxicity of cadmium to microorganisms and their activities in soil:a review, Adv. Environ. Res.8:121-135.
    Wackett LP, Sadowsky MJ, Newman LM, Hur HG, Li SY (1994) Metabolism of Polyhalogenated Compounds by a Genetically-Engineered Bacterium, Nature 368:627-629.
    Wang K, Zhu ZQ, Huang HG, Li TQ, He ZL, Yang XE, Alva A (2012) Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii, J. Soils Sediments 12: 556-564.
    Wang X, White JC, Gent MP, Iannucci-Berger W, Eitzer BD, Mattina MI (2004) Phytoextraction of weathered p,p'-DDE by zucchini(Cucurbita pepo) and cucumber(Cucumis sativus) under different cultivation conditions, Int. J. Phytoremediation.6:363-385.
    Wardle DA, Bonner KI, Barker GM, Yeates GW, Nicholson KS, Bardgett RD, Watson RN, Ghani A (1999) Plant removals in perennial grassland:Vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties, Ecol. Monogr.69:535-568.
    Wei BG, Yang LS (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China, Microchem. J.94:99-107.
    Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant-endophyte partnerships take the challenge Phytoremediation: plant-endophyte partnerships take the challenge, Curr. Opin. Biotech.20: 248-254.
    Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere, J. Exp. Bot.52:487-511.
    White JC (2001) Plant-facilitated mobilization and translocation of weathered 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE) from an agricultural soil, Environ. Toxicol. Chem.20:2047-2052.
    White JC (2009) Optimizing Planting Density for p,p'-DDE Phytoextraction by Cucurbita pepo, Environ. Eng. Sci.26:369-375.
    White JC, Parrish ZD, Isleyen M, Gent MPN, Iannucci-Berger W, Eitzer BD, Mattina MJI (2005) Uptake of weathered p,p'-DDE by plant species effective at accumulating soil elements, Microchem. J.81:148-155.
    Whitfield Aslund ML, Zeeb BA, Rutter A, Reimer KJ (2007) In situ phytoextraction of poly chlorinated biphenyl-(PCB) contaminated soil, Sci. Total Environ.374: 1-12.
    Whitfield Aslund ML, Lunney AI, Rutter A, Zeeb BA (2010) Effects of amendments on the uptake and distribution of DDT in Cucurbita pepo ssp pepo plants, Environ. Pollut.158:508-513.
    Whiting SN, De Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens, Environ. Sci. Technol.35: 3144-3150.
    Whiting SN, Leake JR, McGrath SP, Baker AJM (2001) Assessment of Zn mobilization in the rhizosphere of Thlaspi caerulescens by bioassay with non-accumulator plants and soil extraction, Plant Soil 237:147-156.
    Wieshammer G, Unterbrunner R, Garcia TB, Zivkovic MF, Puschenreiter M, Wenzel WW (2007) Phytoextraction of Cd and Zn from agricultural soils by Salix ssp and intercropping of Salix caprea and Arabidopsis halleri, Plant Soil 298: 255-264.
    Wild E, Dent J, Thomas GO, Jones KC (2005) Direct observation of organic contaminant uptake, storage, and metabolism within plant roots, Environ. Sci. Technol.39:3695-3702.
    Wong MH, Leung AO, Chan JK, Choi MP (2005) A review on the usage of POP pesticides in China, with emphasis on DDT loadings in human milk, Chemosphere 60:740-752.
    Wu FY, Ye ZH, Wu SC, Wong MH (2007) Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance, Planta 226:1363-1378.
    Wu LH, Li Z, Han CL, Liu L, Teng Y, Sun XH, Pan C, Huang YJ, Luo YM, Christie P (2012) Phytoremediation of Soil Contaminated with Cadmium, Copper and Polychlorinated Biphenyls, Int. J. Phytoremediation 14:570-584.
    Wu N, Zhang S, Huang H, Shan X, Christie P, Wang Y (2008) DDT uptake by arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of anon-ionic surfactant, Environ. Pollut.151:569-575.
    Wu QT, Wei ZB, Ouyang Y (2007) Phytoextraction of metal-contaminated soil by Sedum alfredii H:Effects of chelator and co-planting, Water Air Soil Poll.180: 131-139.
    Wu WH, Wang HZ, Xu JM, Xie ZM (2009) Adsorption characteristic of bensulfuron-methyl at variable added Pb2+concentrations on paddy soils, J. Environ. Sci.-China21:1129-1134.
    Xia HL, Chi XY, Yan ZJ, Cheng WW (2009) Enhancing plant uptake of polychlorinated biphenyls and cadmium using tea saponin, Bioresour. Technol. 100:4649-4653.
    Yan S, Ling Q, Bao Z, Chen Z, Yan S, Dong Z, Zhang B, Deng B (2009) Cadmium accumulation in pak choi (Brassica chinensis L.) and estimated dietary intake in the suburb of Hangzhou city, China, Food Addit. Contam. B 2:74-78.
    Yang CJ, Zhou QX, Wei SH, Hu YH, Bao YY (2011) Chemical-Assisted Phytoremediation of Cd-PAHs Contaminated Soils Using Solanum Nigrum L., Int. J.Phytoremediation 13:818-833.
    Yang Q, Tu S, Wang G, Liao X, Yan X (2012) Effectiveness of Applying Arsenate Reducing Bacteria to Enhance Arsenic Removal from Polluted Soils by Pteris Vittata L., Int. J. Phytoremediation 14:89-99.
    Yang RY, Tang JJ, Chen X, Hu SJ (2007) Effects of coexisting plant species on soil microbes and soil enzymes in metal lead contaminated soils, Appl. Soil Ecol.37: 240-246.
    Yang X, Li T, Yang J, He Z, Lu L, Meng F (2006) Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance, Planta 224:185-195.
    Yang X, Long XX, Ni WZ, Fu CX (2002) Sedum alfredii H:a new Zn hyperaccumulating plant first found in China, Chin. Sci. Bull.47:1634-1637.
    Yang XE, Li TQ, Long XX, Xiong YH, He ZL, Stoffella PJ (2006) Dynamics of zinc uptake and accumulation in the hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii Hance, Plant Soil 284:109-119.
    Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance), Plant Soil 259:181-189.
    Yang XE, Ye HB, Long XX, He B, He ZL, Stoffella PJ, Calvert DV (2004) Uptake and accumulation of cadmium and zinc by Sedum alfredii Hance at different Cd/Zn supply levels, J. Plant Nutr.27:1963-1977.
    Yergeau E, Sanschagrin S, Beaumier D, Greer CW (2012) Metagenomic Analysis of the Bioremediation of Diesel-Contaminated Canadian High Arctic Soils, Plos One 7.
    Yi H, Crowley DE (2007) Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid, Environ. Sci. Technol.41:4382-4388.
    Yu J, Huang ZY, Chen T, Qin DP, Zeng XC, Huang YF (2012) Evaluation of ecological risk and source of heavy metals in vegetable-growing soils in Fujian province, China, Environ. Earth Sci.65:29-37.
    Zehetner F, Lair GJ, Graf M, Gerzabek MH (2008) Distribution of cadmium among geochemical fractions in floodplain soils of progressing development, Environ. Pollut.156:207-214.
    Zhang BC, Tolstikov V, Turnbull C, Hicks LM, Fiehn O (2010) Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits, P. Natl. Acad. Sci. USA,107:13532-13537.
    Zhang HJ, Chen JP, Ni YW, Zhang Q, Zhao L (2009) Uptake by roots and translocation to shoots of polychlorinated dibenzo-p-dioxins and dibenzofurans in typical crop plants, Chemosphere 76:740-746.
    Zhang L, Dong L, Shi S, Zhou L, Zhang T, Huang Y (2009) Organochlorine pesticides contamination in surface soils from two pesticide factories in Southeast China, Chemosphere 77:628-633.
    Zhang X, Lin L, Chen M, Zhu Z, Yang W, Chen B, Yang X, An Q (2012) A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance, J. Hazard. Mater.229-230: 361-370.
    Zhang X, Lin L, Zhu Z, Yang X, Wang Y, An Q. (2012) Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii, Int. J. Phytoremediation 15:51-64
    Zhang XY, Lin FF, Wong MTF, Feng XL, Wang K (2009) Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China, Environ. Monit. Assess.154:439-449.
    Zhang ZH, Rengel Z, Chang H, Meney K, Pantelic L, Tomanovic R (2012) Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs), Geoderma 175:1-8.
    Zhang ZH, Rengel Z, Meney K, Pantelic L, Tomanovic R (2011) Polynuclear aromatic hydrocarbons (PAHs) mediate cadmium toxicity to an emergent wetland species, J. Hazard. Mater.189:119-126.
    Zhu Z-q, Yang X-e, Wang K, Huang H-g, Zhang X, Fang H, Li T-q, Alva AK, He Z-l (2012) Bioremediation of Cd-DDT Co-Contaminated Soil Using the Cd-Hyperaccumulator Sedum alfredii and DDT-Degrading Microbs, J. Hazard. Mater.235-236:144-151.
    Zuo Y, Zhang F (2009) Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review, Agron. Sustain. Dev.29: 63-71.
    陈怀满(1996)土壤-植物系统中的重金属污染.北京:科学出版社:71-87
    陈怀满(2002)土壤中化学物质的行为与环境质量.北京:科学出版社:443-465
    陈怀满(2005)环境土壤学.北京:科学出版社
    陈瑛,李廷强,杨肖娥,金叶飞,不同品种小白菜对镉的吸收积累差异,应用生态学报20(2009)736-740
    程凤侠,司友斌,刘小红(2009)铜与草甘膦单一污染和复合污染对水稻土酶活的影响.农业环境科学学报28(1):84-88
    郭朝晖,肖细元,陈同斌,廖晓勇,宋杰,武斌(2008)湘江中下游农田土壤和蔬菜的重金属污染.地理学报63(1):1-11
    郭观林,周启星(2003)土壤-植物系统复合污染研究进展.应用生态学报14(5):823-828
    胡建信,丁琼,刘建国(2008)中国消减和淘汰杀虫剂类持久性有机污染物战略研究.北京:中国环境科学出版社:21-25,34-37
    胡著邦,汪海珍,吴建军,等(2005)镉与苄嘧磺隆除草剂单一污染和复合污染土壤的微生物生态效应.浙江大学学报(农业与生命科学版)31(2):151-156
    黄化刚(2012)镉-锌/滴滴涕复合污染土壤植物修复的农艺强化过程及机理.[博 士学位论文]浙江大学
    李玉浸(2001)集约化农业的环境问题与对策.北京:中国农业出版社
    刘维屏(2006)农药环境化学 化学工业出版社418-422
    骆永明(2009)土壤环境与生态安全.北京:科学出版社,141-145,155-160
    苗静,祝惠,王鑫宏,等(2009)DOP与Pb单一及复合污染对土壤酶活性的影响.环境科学研究22(7):856-861
    潘攀,杨俊诚,邓仕槐,等(2011)重金属与农药复合污染研究现状及展望.农业环境科学学报:30(10):1925-1929
    曲健,宋云横,苏娜(2006)沈抚灌区上游土壤中多环芳烃的含量分析.中国环境监测22:29
    苏玮玮(2010)澜沧江中上游流域矿区水、土壤主要重金属污染及其人体健康效应的研究.[硕士论文]大连理工学院3-19
    孙胜龙(2005)环境激素与人类未来北京:化学工业出版社 环境科学与工程出版中心:6-7.
    汪立刚(2011)土壤残留农药的环境行为与农产品安全.中国农业大学出版社:59-86
    王春霞,朱利中,江桂斌(2011)环境化学学科前沿与展望.科学出版社:407-411
    肖根林(2011)光合细菌修复铅镉及呋喃丹复合污染土壤的研究.[硕士学位论文]中北大学78
    杨肖娥,龙新宪,倪吾钟(2002)超积累植物吸收重金属的生理及分子机制.植物营养与肥料学报8(1):8-15
    中国环境修复网(2011) http://www.hjxf.net/eco/2011/0315/article_232.html
    周启星,高拯民(2004)土壤-水稻系统Cd-Zn的复合污染及其衡量指标的研究.土壤学报,32(4):430-436
    周启星,宋玉芳(2004)污染土壤修复原理与方法.北京:科学出版社:134-189
    周生贤(2011)中国1.5亿亩耕地被污染.创新科技
    朱立禄,阎百兴,王莉霞(2010)第二松花江下游稻田土壤重金属含量特征及来源分析.应用生态学报21(11):2965-2970
    朱毅(2011)从镉污染大米说开去.健康报,2月21日第004版
    邹小明,林志芬,尹大强,等(2010)氯氰菊酯与Cd2+对土壤微生物量及酶活性的联合效应.生态与农村环境学报26(4):361-366
    邹小明,林志芬,尹大强,等(2010)氯氰菊酯与Cd2+对土壤微生物量及酶活性的联合效应.生态与农村环境学报26(4):361-366

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700