用户名: 密码: 验证码:
方向调制在物理层安全通信和通信测向综合系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代无线通信技术的高速发展,无线通信信息在传输过程中的安全性问题和通信测向功能性综合问题越发得到人们的关注,尤其是将无线通信技术应用于军事通信领域时。本论文围绕方向调制技术展开全文,着重研究了方向调制信号在两个方面的应用:(a)基于相控阵的方向调制信号、多波束方向调制信号和基于切换阵列的方向调制扩频信号在物理层安全通信中的应用;(b)多波束方向调制信号和多普勒方向调制信号在通信测向综合系统中的应用。
     对本文的研究工作总结如下:
     1)提出了一种基于多目标函数遗传算法的方向调制信号。采用多目标优化函数综合相移器的相移值,实现期望方位发射信号星座图与基带数字调制信号相同,而在其它方位发射信号星座点产生最大程度的畸变。相比于传统的基于相控阵的方向调制信号,本文方法发射的方向调制信号具有更窄的信息波束宽度,是一种更好的基于相控阵的物理层安全通信信号。
     2)提出一种基于角型反射器天线的双波束方向调制信号,发射信号在期望方位接收信号星座图与传统的数字基带调制信号相同,而在其他方位接收信号的星座图中的星座点产生畸变,利用双波束之间的干涉实现方向调制。并且双波束方向调制技术可以与扩频技术兼容,基带调制采用伪随机序列调制通信信息,天线端利用双波束实现方向调制,这样发射的信号同时被扩频序列和空间方位信息调制,为通信信息的无线传输提供了一种更加安全的方法。
     3)设计了一种基于和差多波束卡塞格伦天线的多波束方向调制人工噪声辅助物理层安全通信系统。和波束指向期望接收机用于传输数字通信信息,方位差波束和俯仰差波束发射人工噪声调制信号用于防止窃听接收机窃听通信信息,由于和差波束之间的空间正交性人工噪声调制信号只影响窃听信道而不影响期望信道的正常通信。
     4)提出了一种基于切换天线阵列的方向调制扩频信号,采用扩频序列控制天线的切换发射方案,天线高速切换产生的谐波分量在频域上扩展发射信号的频谱,发射信号不仅与使用的扩频序列有关而且与接收机所在的空间方位信息有关,这样即使窃听接收机具有发射信号使用的扩频序列的先验知识也无法解调接收信号。这样发射的方向调制扩频信号结合了方向调制信号和扩频信号的优点同时具有低截获概率、低侦测概率和抗干扰能力。
     5)提出了一种基于八元天线阵的同相位中心多波束方向调制OFDM信号应用于通信测向综合系统。将多波束方向调制技术与OFDM技术结合,不同的方向图函数调制不同的子载波信号星座图,采用粗精测结合的比幅算法提高多波束方向调制信号的测向误差均方差。接收机只需要单天线接收机就能从接收信号星座图中同时解调出数字通信信息和空间方位信息。为了拉大发射阵列中阵元之间的最小间距提出了一种基于九元稀疏阵列的多波束方向调制信号,利用发射波束相位中心之间的相位差结合中国余数定理解模糊度粗测接收机的空间方位信息,再利用大阵元间距产生的波束通过比幅算法精测接收机所在的空间方位信息。
     6)提出了一种基于直线切换阵的多普勒方向调制通信测向综合信号,利用射频开关控制发射天线做高速的虚拟直线运动,天线虚拟运动产生的多普勒频移信息调制到发射信号的星座图中。接收机中设计了一种与传统扩频信号解调方式类似的差分相关解调算法,这样接收机可以从接收信号星座图中同时估计出收发信机之间的相对方位信息和数字通信信息。为了解决接收机运动产生的多普勒频移影响测向误差均方差问题,提出了一种双波束多普勒方向调制信号,切换圆阵发射多普勒调制信号,切换圆阵中心天线发射参考信号,采用和差编码的方式对切换天线和中心天线联合编码便于接收机区分多普勒方向调制信号和参考信号。
With the development of wireless communication technique, two issues have aroused people’sattention, one is the information security of wireless communication, the other is the integrationsystem with wireless communication and direction-finding, especially in military and homelandsecurity application. The directional modulation technique is researched in this doctoral dissertation,which is divided into two directions,(a) directional modulation signal using a phased array,multi-beam directional modulation signal and directional modulation spread-spectrum signal for thephysical layer security communication;(b) multi-beam directional modulation signal andDoppler-frequency directional modulation signal for the integration system with communication anddirection-finding.
     The main work of this doctoral dissertation is summarized as follows:
     1) A directional modulation signal using a phased array based on multi-objective genetic algorithmis proposed. According to the relationship between Euclidean space of constellation points and biterror rate performance, the values of the phase shifter are generated by means of optimizingmulti-objective genetic algorithm to synthesize a directional modulation signal. This signaltransmit different signal constellation at different directions. At the desired direction, the transmitsignal’s constellation is the same as the traditional baseband modulation signal while the transmitsignal constellation is scrambled at other directions. Compared with the traditional directionalmodulation signal, the directional modulation signal proposed in this doctoral dissertation hasmore narrow information beam-width. Simulation results show that the proposed technique offera more physical layer secure transmission signal for wireless communication.
     2) A dual-beam directional modulation signal using a corner reflector antenna is proposed. Theconstellation points of the receive signal maintain their positions as traditional basebandmodulation signal at the desired direction, but scramble in the phase at the undesired directions.This dual-beam directional modulation technique is compatible with the spread-spectrumtechnique because the transmit signal is modulated by the spreading sequence at the baseband andmodulated by two beams’ radiation pattern at the antenna level. In this way, the transmit signal ismodulation by the spreading sequence and the directional information of the receiver to offer asecure transmission method for wireless communication.
     3) A physical layer secure communication system aided by artificial noise using a sum-difference multi-beam Cassegrain antenna is designed. The main idea is that the sum beam transmitcommunication signal, simultaneously, two difference beams transmit artificial noise to guaranteesecure transmission of the sum beam. The eavesdropper’s channel is degraded by artificial noisebut the desired receiver’s channel does not affect because of the spatially orthogonal between thesum beam and two difference beams. In this way, the desired receiver can demodulate thecommunication signal while the eavesdroppers learn almost nothing about the information fromits observations.
     4) A directional modulation spread-spectrum signal is proposed using a switched antenna array. Themain idea is that a switching scheme of the switched antenna array is designed according to aspreading sequence. The harmonic components generated by the antenna switching spread thespectrum of the transmit signal. The transmit signal is associated with the spreading sequence andthe directional of the desired receiver. In this way, the desired receiver with a single antennademodulates the receive signal as the traditional spread-spectrum signal, while eavesdroppers cannot extract any useful information from the receive signal even if eavesdroppers know thespreading sequence of the directional modulation spread-spectrum signal. This transmit signalcombines the advantage of directional modulation signal and spread-spectrum signal with thecharacteristic of low-probability-of-interception, low-probability-of-detection and anti-jamming.
     5) A multi-beam directional modulation signal using an antenna array with eight elements isproposed for integration system with communication and direction-finding. The multi-beamdirectional modulation technique combines with the OFDM technique by which differentradiation patterns are modulated into different constellation of subcarriers. Therefore, the receiverwith a single antenna demodulates the communication information and the directionalinformation from the receive signal constellation, simultaneously. To increase the minimum spaceof element, a multi-beam without same phase directional modulation OFDM signal using a sparseantenna array with nine elements is proposed. The phase difference and the Chinese remaindertheorem are used to estimate the directional information of the receiver coarsely. Then, theradiation patterns generated by two-element sub-arrays with greater half wavelength space areused to estimate the directional information of the receiver accurately.
     6) A single beam Doppler frequency directional modulation signal using a switched antenna array isproposed for the integration system with communication and direction-finding. The virtualmotion transmit antenna is simulated by a linear switched antenna array which are controlled bythe high-speed RF switches. Therefore, the Doppler frequency shift information generated by the virtual motion of the transmit antenna is modulated into the transmit signal constellation. In thisway, the receiver can demodulate the directional information and communication informationform the receive signal constellation, simultaneously by a differential correlation demodulationalgorithm. However, the direction-finding performance is affected by the Doppler frequency shiftinformation generated by the receive motion. To solve this problem, a dual-beam Dopplerfrequency directional modulation signal using a uniform switched circular array is proposed forthe integration system with communication and direction-finding. The Doppler frequencydirectional modulation signal is transmitted by the uniform switched circular array simultaneouslythe reference signal is transmitted by a center antenna of the uniform switched circular array. Todistinguish the Doppler frequency directional modulation signal from the reference signal for thereceiver, a sum-difference coding scheme is designed as the traditional space-time coding.
引文
[1] Gesbert D., Shafi M., Da-shan Shiu, Smith P. J., and Naguib A.. From theory to practice: anoverview of MIMO space-time coded wireless systems [J]. IEEE Journal on Selected Areas inCommunications,2003,21(3):281-302.
    [2] Wei Zhang, Xia Xiang-Gen, and Ben Letaief K.. Space-Time/Frequency Coding forMIMO-OFDM in Next Generation Broadband Wireless Systems [J]. IEEE WirelessCommunications,2007,14(3):32-43.
    [3] Bolcskei H.. MIMO-OFDM wireless systems: basics, perspectives, and challenges [J]. IEEEWireless Communications,2006,13(4):31-37.
    [4] Janani M., Hedayat A., Hunter T.E., and Nosratinia A.. Coded cooperation in wirelesscommunications: space-time transmission and iterative decoding [J]. IEEE Transactions onSignal Processing,2004,52(2):362-371.
    [5] Ibrahim A., Zhu Han, and Liu K. J. R.. Distributed energy-efficient cooperative routing inwireless networks [J]. IEEE Transactions on Wireless Communications,2008,7(10):3930-3941.
    [6] Badia L., Levorato M., Librino F., and Zorzi M.. Cooperation techniques for wireless systemsfrom a networking perspective [J]. IEEE Wireless Communications,2010,17(2):89-96.
    [7] Hubenko V. P., Raines R. A., Mills R. F., Baldwin R. O., Mullins B. E., and Grimaila M. R..Improving the Global Information Grid's Performance through Satellite Communications LayerEnhancements [J]. IEEE Communications Magazine,2006,44(11):66-72.
    [8] Mathur S., Reznik A., Chunxuan Ye, Mukherjee R., Rahman A., Shah Y., Trappe W., andMandayam N.. Exploiting the physical layer for enhanced security [Security and Privacy inEmerging Wireless Networks][J]. IEEE Wireless Communications,2010,17(5):63-70.
    [9] Debbah Mérouane, El-Gamal Hesham, Poor H. Vincent, and Shamai Shlomo. Editorial:Wireless physical layer security [J]. Eurasip Journal on Wireless Communications andNetworking,2009,2009:1-2.
    [10] Wyner A.. The wire-tap channel [J]. Bell System Technical Journal,1975,54(8):1355-1387.
    [11] Csiszar I., and Korner J.. Broadcast channels with confidental messages [J]. IEEE Transactionson Information Theory,1978,24(3):339-348.
    [12] Khisti A., and Wornell G. W.. Secure transmission with multiple antennas I: the MISOMEwiretap channel [J]. IEEE Transactions on Information Theory,2010,56(7):3088-3104.
    [13] Khisti A., and Wornell G. W.. Secure transmission with multiple antennas—Part II: theMIMOME wiretap channel [J]. IEEE Transactions on Information Theory,2010,56(11):5515-5532.
    [14] Hero A. O. III.. Secure space-time communication [J]. IEEE Transactions on InformationTheory,2003,49(12):3235-3249.
    [15] Lun Dong, Zhu Han, Petropulu A. P., and Poor H. V.. Improving wireless physical layer securityvia cooperating relays [J]. IEEE Transactions on Signal Processing,2010,58(3):1875-1888.
    [16] Jiangyuan Li, Petropulu A.P., and Weber S.. On Cooperative Relaying Schemes for WirelessPhysical Layer Security [J]. IEEE Transactions on Signal Processing,2011,59(10):4985-4997.
    [17] Simeone O., and Popovski P.. Secure communications via cooperating base stations [J]. IEEECommunications Letters,2008,12(3):188-190.
    [18] Goel S., and Negi R.. Guaranteeing secrecy using artificial noise [J]. IEEE transactions onwireless communications,2008,7(6):2180-2189.
    [19] Lun Dong, Zhu Han, Petropulu A. P., and Poor H. V.. Cooperative jamming for wirelessphysical layer security [C]. IEEE/SP15th Workshop on Statistical Signal Processing,417-420,2009.
    [20] Gan Zheng, Li-Chia Choo, and Kai-Kit Wong. Optimal Cooperative Jamming to EnhancePhysical Layer Security Using Relays [J]. IEEE Transactions on Signal Processing,2011,59(3):1317-1322.
    [21] Chen J., Zhang R., Song L., Han Z., and Jiao B.. Joint Relay and Jammer Selection for SecureTwo-Way Relay Networks [J]. IEEE Transactions on Information Forensics and Security,2011,Vol. pp, No.99,1-28.
    [22] Fakoorian S. A. A., and Swindlehurst A. L.. Solutions for the MIMO Gaussian Wiretap ChannelWith a Cooperative Jammer [J]. IEEE Transactions on Signal Processing,2011,59(10):5013-5022.
    [23] Jing Huang, and Swindlehurst A. L.. Cooperative Jamming for Secure Communications inMIMO Relay Networks [J]. IEEE Transactions on Signal Processing,2011,59(10):4871-4884.
    [24] Lun Dong, Zhu Han, Petropulu A. P., and Poor H. V.. Amplify-and-forward based cooperationfor secure wireless communications [C]. IEEE International Conference on Acoustics, Speechand Signal Processing,2613-2616,2009.
    [25] Krikidis I., Thompson J., and Mclaughlin S.. Relay selection for secure cooperative networkswith jamming [J]. IEEE Transactions on Wireless Communications,2009,8(10):5003-5011.
    [26] Xiangyun Zhou, McKay M. R.. Physical layer security with artificial noise: Secrecy capacityand optimal power allocation [C].3rd International Conference on Signal Processing andCommunication Systems,1-5,2009.
    [27] Pereira M., Postolache O., and Girao P.. Spread spectrum techniques in wireless communication[J]. IEEE Instrumentation&Measurement Magazine,2009,12(6):21-24.
    [28] Van Veen B.D., and Buckley K.M.. Beamforming: a versatile approach to spatial filtering [J].IEEE ASSP Magazine,1988,5(2):4-24.
    [29] Li Xiaohua, Hwu J., and Ratazzi E. P.. Using antenna array redundancy and channel diversityfor secure wireless transmissions [J]. Journal of Communications,2007,2(3):24-32.
    [30]穆鹏程,殷勤业,王文杰.无线通信中使用随机天线阵列的物理层安全传输方法[J].西安交通大学学报,2010,44(6):62-66。
    [31] Jen-Po Cheng, Yen-Huan Li, Ping-Cheng Yeh, and Chen-Mou Cheng. MIMO-OFDM PHYIntegrated (MOPI) Scheme for Confidential Wireless Transmission [C].2010IEEE WirelessCommunications and Networking Conference,1-6,2010.
    [32] Luo W. Y., Jin L., Liu S. P., and Zhang L. Z.. Wireless physical layer security model andresource allocation algorithm in MISO-OFDMA [J]. Electronics Letters,2011,47(6):414-416.
    [33] Zheng Li and Xiang-Gen Xia. A Distributed Differentially Encoded OFDM Scheme forAsynchronous Cooperative Systems with Low Probability of Interception [J]. IEEETransactions on wireless communications,2009,8(7):3372-3379.
    [34] Tsouri G. R., and Wulich D.. Securing OFDM over wireless time-varying channels usingsubcarrier overloading with joint signal constellations [J]. Eurasip Journal on WirelessCommunications and Networking,2009,2009:1-18.
    [35] Ruifeng Ma, Linglong Dai, Zhaocheng Wang and Jun Wang. Secure communication inTDS-OFDM system using constellation rotation and noise insertion [J]. IEEE Transactions onConsumer Electronics,2010,56(3):1328-1332.
    [36] Babakhani A., Rutledge D. B., and Hajimiri A.. Transmitter Architectures Based on Near-FieldDirect Antenna Modulation [J]. IEEE Journal of Solid-State Circuits,2008,43(12):2674-2692.
    [37] Babakhani A., Rutledge D. B., and Hajimiri A.. Near-field direct antenna modulation [J]. IEEEMicrowave Magazine,2009,10(1):36-46.
    [38] Daly M. P., and Bernhard J. T.. Directional Modulation Technique for Phased Arrays [J]. IEEETransactions on Antennas and Propagation,2009,57(9):2633-2640.
    [39] Daly M. P., Daly E. L., and Bernhard J. T.. Demonstration of Directional Modulation Using aPhased Array [J]. IEEE Transactions on Antennas and Propagation,2010,58(5):1545-1550.
    [40] Daly M. P., and Bernhard J. T.. Beamsteering in Pattern Reconfigurable Arrays UsingDirectional Modulation [J]. IEEE Transactions on Antennas and Propagation,2010,58(7):2259-2265.
    [41] Fusco V. F., and Qiang Chen. Direct-signal modulation using a silicon microstrip patch antenna[J]. IEEE Transactions on Antennas and Propagation,1999,47(6):1025-1028.
    [42] Kim S., and Wang Y. E.. Theory of Switched RF Resonators [J]. IEEE Transactions on Circuitsand Systems I: Regular Papers,2006,53(12):2521-2528.
    [43] Keller S. D., Palmer W. D., and Joines W. T.. Electromagnetic Modeling and Simulation of aDirectly Modulated Patch Antenna [J]. IEEE Antennas and Wireless Propagation Letters,2010,9:779-782.
    [44] Keller S. D., Palmer W. D., and Joines W. T.. Switched Antenna Circuit With IncreasedInformation Bandwidth [J]. IEEE Antennas and Wireless Propagation Letters,2010,9:1045-1048.
    [45] Hong T., Song M.-Z., Sun X.-Y.. Design of a Sparse Antenna Array for Communication andDirection Finding Applications Based on the Chinese Remainder Theorem [J]. Progress InElectromagnetics Research,2009, PIER98:119-136.
    [46] Song M. Z. and T. Hong. Dual beam modulation transmitted from two antennas without a phasecenter [J]. Journal of Electromagnetic Waves and Applications,2008,22:1180–1190.
    [47] Song M. Z. and T. Hong. Sum and difference multiple beam modulation transmitted bymultimode horn antenna for inverse monopulse direction-finding [J]. Progress InElectromagnetics Research,2008, PIER82:367-380.
    [48] Song M. Z. and T. Hong. Microwave space modulation carrying azimuth and elevationtransmitted by monopulse antenna [J]. Journal of Electromagnetic Waves and Applications,2008,22(2):277-289.
    [49] Wei-Cheng Liao, Tsung-Hui Chang, Wing-Kin Ma, and Chong-Yung Chi. QoS-Based TransmitBeamforming in the Presence of Eavesdroppers: An Optimized Artificial-Noise-AidedApproach [J]. IEEE Transactions on Signal Processing,2011,59(3):1202-1216.
    [50] Shiroma G. S., Miyamoto R. Y., Roque J. D., Cardenas J. M., and Shiroma W. A.. AHigh-Directivity Combined Self-Beam/Null-Steering Array for Secure Point-to-PointCommunications [J]. IEEE Transactions on Microwave Theory and Techniques,2007,55(5):838-844.
    [51] McFarland R. H.. ILS-a safe bet for your future landings [J]. IEEE Aerospace and ElectronicSystems Magazine,1990,5(5):12-15.
    [52] Roepcke F.. ILS-past and present [J]. IEEE Aerospace and Electronic Systems Magazine,1990,5(5):9-11.
    [53] Walton E. K.. Effect of wet snow on the null-reference ILS system [J]. IEEE Transactions onAerospace and Electronic Systems,1993,29(3):1030-1035.
    [54]魏星,万建伟,皇甫堪。基于长短基线干涉仪的无源定位系统研究[J]。现代雷达,2007,29(5):22-25。
    [55]池庆玺,司锡才,卓志敏。相位测向系统中解模糊方法研究[J]。弹箭与制导学报,2005,25(4):267-270。
    [56]周亚强,陈翥,皇甫堪,孙仲康。噪扰条件下多基线相位干涉仪解模糊算法[J]。电子与信息学报,2005,27(2):259-261。
    [57]周亚强,皇甫堪。噪扰条件下数字式多基线相位干涉仪解模糊问题[J]。2005,通信学报,26(8):16-21。
    [58]龚享铱,袁俊泉,苏令华。基于相位干涉仪阵列多组解模糊的波达角估计算法研究[J]。电子与信息学报,2006,28(1):55-59。
    [59]张刚兵,刘渝,刘宗敏。基线比值法相位解模糊算法[J]。南京航空航天大学学报,2008,40(5):665-669。
    [60] Winick A. B., and Brandewie D. M.. VOR/DME system improvements [J]. Proceedings of theIEEE,1970,58(3):430-437.
    [61] Garfield W. L.. TACAN: a navigation system for aircraft [J]. Proceedings of the IEE-Part B:Radio and Electronic Engineering,1958,105(9):298-306.
    [62] Christopher E.. Electronically scanned TACAN antenna [J]. IEEE Transactions on Antennas andPropagation,1974,22(1):12-16.
    [63] Alexander B., Renick R. C., and Sullivan J. F.. Background and Principles of Tacan Data Link[J]. IRE Transactions on Aeronautical and Navigational Electronics,1959, ANE-6(1):9-16.
    [64] Preston S. L., Thiel D. V., Smith T. A., O'Keefe S. G., and Jun Wei Lu. Base-station tracking inmobile communications using a switched parasitic antenna array [J]. IEEE Transactions onAntennas and Propagation,1998,46(6):841-844.
    [65] Svantesson T., and Wennstrom M.. High-resolution direction finding using a switched parasiticantenna [C]. Proceedings of the11th IEEE Signal Processing Workshop on Statistical SignalProcessing,508-511,2001.
    [66] Taillefer E., Hirata A., and Ohira T.. Direction-of-arrival estimation using radiation powerpattern with an ESPAR antenna [J]. IEEE Transactions on Antennas and Propagation,2005,52(2):678-684.
    [67] Bullock L. G., Oeh G. R., and Sparagna J. J.. An Analysis of Wide-Band Microwave MonopulseDirection-Finding Techniques [J]. IEEE Transactions on Aerospace and Electronic Systems,1971, AES-7(1):188-203.
    [68] Lo K. W., and Vu T. B.. Improving performance of monopulse phased array in direction finding[J]. IEE Proceedings H Microwaves, Antennas and Propagation,1988,135(6):391-394.
    [69] Poe G., and Chiu C.. Thermal Noise Errors in DF Monopulse Systems Having Log Amplifiers[J]. IEEE Transactions on Aerospace and Electronic Systems,1976, AES-12(5):561-567.
    [70]吴仁彪。与空时二维自适应滤波兼容的单脉冲测角新方法[J]。航空学报,1996,17(4):410-416。
    [71] Kainam Thomas Wong, and Zoltowski M. D.. Self-initiating MUSIC-based direction findingand polarization estimation in spatio-polarizational beamspace [J]. IEEE Transactions onAntennas and Propagation,2000,48(8):1235-1245.
    [72] Zhongfu Ye, and Chao Liu. On the Resiliency of MUSIC Direction Finding Against AntennaSensor Coupling [J]. IEEE Transactions on Antennas and Propagation,2008,56(2):371-380.
    [73] Chevalier P., Ferreol A., Albera L., and Birot G.. Higher Order Direction Finding From ArraysWith Diversely Polarized Antennas: The PD-2q-MUSIC Algorithms [J]. IEEE Transactions onSignal Processing,2007,55(11):5337-5350.
    [74] Wong K. T., Linshan Li, and Zoltowski M. D.. Root-MUSIC-based direction-finding andpolarization estimation using diversely polarized possibly collocated antennas [J]. IEEEAntennas and Wireless Propagation Letters,2004,3(1):129-132,2004.
    [75] Weiss A. J., and Gavish M.. Direction finding using ESPRIT with interpolated arrays [J]. IEEETransactions on Signal Processing,1991,39(6):1473-1478.
    [76] Tong Tong Zhang, Hon Tat Hui, and Lu Y. L.. Compensation for the mutual coupling effect inthe ESPRIT direction finding algorithm by using a more effective method [J]. IEEETransactions on Antennas and Propagation,2005,53(4):1552-1555.
    [77] Lemma A. N., van der Veen A.-J., and Deprettere E. F.. Multiresolution ESPRIT algorithm [J].IEEE Transactions on Signal Processing,1999,47(6):1722-1726.
    [78] Zoltowski M. D., and Wong K. T.. ESPRIT-based2-D direction finding with a sparse uniformarray of electromagnetic vector sensors [J]. IEEE Transactions on Signal Processing,2000,48(8):2195-2204.
    [79]宋茂忠。一种新颖的四天线时空调制通信定位综合化系统[J]。高技术通讯,2001,第01期:43-47。
    [80]宋茂忠。一种新颖的四进制八相时空调制通信定位综合化系统[J]。东南大学学报(自然科学版),2002,32(1):56-58。
    [81]宋茂忠,许宗泽。一种新型同时测向测距四相时空调制扩频系统[J]。电子科技大学学报,2001,30(5):449-453。
    [82]宋茂忠,许宗泽。一种新型八相时空调制扩频通信定位综合系统[J]。应用科学学报,2002,20(4):404-408。
    [83]宋茂忠,许宗泽。圆天线阵时空调制扩频通信定位系统设计与仿真[J]。厦门大学学报(自然科学版),2002,41(1):30-34。
    [84]宋茂忠。甚高频全向信标改造成数字通信测向综合化系统的几种新方案[J]。航空电子技术,32(3):11-20。
    [85]史庭祥,宋茂忠。时空调制扩频通信定位系统抗多径测角测距方法[J]。应用科学学报,2004,22(2):136-139。
    [86]宋茂忠,谭姝。载有方位信息的时空调制信号载波提取与相干解调[J]。上海交通大学学报,37(10):1552-1555。
    [87]宋茂忠。双波束天线阵时空调制OFDM通信测向方法[J]。南京航空航天大学学报,2007,39(5):593-596。
    [88]宋茂忠,许宗泽,刘渝。发射二维方向信息的时空调制OFDM通信测向系统[J]。电子学报,2008,36(7):1268-1272。
    [89]宋茂忠,洪涛,陈林。发射方向调制信号的多波束调制技术[J]。武汉大学学报(理学版),2008,54(1):109-113。
    [90]宋茂忠,许宗泽,刘渝。一种基于二维微波空间调制的通信跟踪系统[J]。宇航学报,2008,29(1):331-334。
    [91] Stockman H.. Communication by means of reflected power [J]. Proceeding of the IRE,1948,36(10):1196-1204.
    [92] Lei Chen, Yu Chun Guo, Xiao Wei Shi, and Tian Ling Zhang. Overview on the phaseconjugation technique of the retrodirective array [J]. International Journal of Antennas andPropagation,2010,2010:1-10.
    [93] Fusco V., and Buchanan N. B.. High-Performance IQ Modulator-Based Phase Conjugator forModular Retrodirective Antenna Array Implementation [J]. IEEE Transactions on MicrowaveTheory and Techniques,2009,57(10):2301-2306.
    [94] DiDomenico L. D., and Rebeiz G. M.. Digital communications using self-phased arrays [J].IEEE Transactions on Microwave Theory and Techniques,2001,49(4):677-684.
    [95] Miyamoto R. Y., and Itoh T.. Retrodirective arrays for wireless communications [J]. IEEEMicrowave Magazine,2002,3(1):71-79.
    [96] Goshi D. S., Leong K. M. K. H., Itoh T.. A secure high-speed retrodirective communication link[J]. IEEE Transactions on Microwave Theory and Techniques,2005,53(11):3548-3556.
    [97] Fusco V. F., and Buchanan N. B.. Retrodirective Antenna Spatial Data Protection [J]. IEEEAntennas and Wireless Propagation Letters,2009,8:490-493.
    [98] Baghdady E. J.. Directional signal modulation by means of switched spaced antennas [J]. IEEETransactions on Communications,1990,38(4):399-403.
    [99] Baghdady E. J.. Theory of frequency modulation by synthetic antenna motion [J]. IEEETransactions on Communications,1991,39(2):235-248.
    [100] Baghdady E. J.. Novel Techniques for Counteracting Multipath Interference Effects inReceiving Systems [J]. IEEE Journal on Selected Areas in Communications,1987,5(2):274-285.
    [101] Shanks H. E., and Bickmore R. W.. Four-dimensional electromagnetic radiators [J]. Canad. J.Phys.,1959,37:263-275.
    [102] Yang S., Gan Y. B., and Tan P. K.. A new technique for power-pattern synthesis intime-modulated linear arrays [J]. IEEE Antennas Wireless Propagat. Lett.,2003,2:285-287.
    [103] Yang S., Gan Y. B., Qing A., and Tan P. K.. Design of a uniform amplitude time modulatedlinear array with optimized time sequences [J]. IEEE Trans. Antennas Propag.,2005,53(7):2337-2339.
    [104] Poli L., Rocca P., Manica L., and Massa A.. Handling Sideband Radiations in Time-ModulatedArrays Through Particle Swarm Optimization [J]. IEEE Trans. Antennas Propag.,2010,58(4):1408-1411.
    [105] Bregains J. C., Fondevila-Gomez J., Franceschetti G., and Ares F.. Signal Radiation and PowerLosses of Time-Modulated Arrays [J]. IEEE Trans. Antennas Propag.,2008,56(6):1799-1804.
    [106] Yang S., Gan Y. B., and Qing A.. Sideband suppression in time-modulated linear arrays by thedifferential evolution algorithm [J]. IEEE Antennas Wireless Propagat. Lett.,2002,1:173-175.
    [107] Poli L., Rocca P., Manica L., and Massa A.. Handling Sideband Radiations in Time-ModulatedArrays Through Particle Swarm Optimization [J]. IEEE Trans. Antennas Propag.,2010,58(4):1408-1411.
    [108] Tennant A. and Chambers B.. A two-element time-modulated array with direction-findingproperties [J]. IEEE Antennas Wireless Propag. Lett.,2007,6:64–65.
    [109] Tennant A.. Experimental Two-Element Time-Modulation Direction Finding Array [J]. IEEETrans. Antennas Propag.,2010,58(3):986-988.
    [110] Li G., Yang S., and Nie Z.. A study on the application of time modulated antenna arrays toairborne pulsed Doppler radar [J]. IEEE Trans. Antennas Propag.,2009,57(5):1578-1582.
    [111] Li G., Yang S., and Nie Z.. Direction of Arrival Estimation in Time Modulated Linear ArraysWith Unidirectional Phase Center Motion [J]. IEEE Trans. Antennas Propag.,2010,58(4):1105-1111.
    [112] Fredrick J. D., Yuanxun Wang, Seong-Sik Jeon, and Itoh T.. A Smart Antenna Receiver ArrayUsing a Single RF Channel and Digital Beamforming [C].2002IEEE MTT-S InternationalMicrowave Symposium Digest,2002,1:311-314.
    [113] Chien-Hsing Liao, Mu-King Tsay, and Ze-Shin Lee. Secure communications system throughconcurrent AJ and LPD evaluation [J]. Wireless Personal Communication,2009,49:35-54.
    [114] Gutman L. L., and Prescott G. E.. System quality factors for LPI communications [J]. IEEEAerospace and Electronic Systems Magazine,1989,4(12):25-28.
    [115] Mills R. F., and Prescott G. E.. Waveform design and analysis of frequency hopping LPInetworks [C]. IEEE Military Communications Conference,1995,2:778-782.
    [116] Glenn A.. Low probability of intercept [J]. IEEE Communications Magazine,1983,21(4):26-33.
    [117] Chandler E., and Cooper G.. Low Probability of Intercept Performance Bounds forSpread-Spectrum Systems [J]. IEEE Journal on Selected Areas in Communications,1985,3(5):706-713.
    [118] Weile D. S., and Michielssen E.. Genetic algorithm optimization applied to electromagnetics: areview [J]. IEEE Transactions on Antennas and Propagation,1997,45(3):343-353.
    [119] Haupt, R. L.. Thinned arrays using genetic algorithms [J]. IEEE Transactions on Antennas andPropagation,1994,42(7):993-999.
    [120] Bray M. G., Werner D. H., Boeringer D. W., and Machuga D. W.. Optimization of thinnedaperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning[J]. IEEE Transactions on Antennas and Propagation,2002,50(12):1732-1742.
    [121] Mahanti G. K.. Synthesis of thinned linear antenna array with fixed sidelobe level usingreal-coded genetic algorithm [J]. Progress In Electromagnetics Research,2007, PIER75:319-328.
    [122] Ares F., Rengarajan S. R., Villanueva E., Skochinski E., and Moreno E.. Application of geneticalgorithms and simulated annealing technique in optimising the aperture distributions ofantenna array patterns [J]. Electronics Letters,1996,32(3):148-149.
    [123] Haupt R. L.. Optimum quantised low sidelobe phase tapers for arrays [J]. Electronics Letters,1995,31(14):1117-1118.
    [124] Xu Z., Li H., and Liu Q. Z.. Pattern synthesis of conformal antenna array by the hybrid geneticalgorithm [J]. Progress In Electromagnetics Research,2008, PIER79:75-90.
    [125] Wang H., Fang D. G., Chow Y. L.. Grating lobe reduction in a phased array of limited scanning[J]. IEEE Transactions on Antennas and Propagation,2008,56(6):1581-1586.
    [126] Haupt R. L., and Ali A. S.. Optimized backscattering sidelobes from an array of strips using agenetic algorithm [C]. in Proc. Appl. Computat. Electromagn. Conf., Monterey, CA,266-270,Mar.1994.
    [127] Haupt R.. Optimization of aperiodic conducting grids [C]. in Proc.11th Annu. Rev. ProgressAppl. Computat. Electromagn., Montereey, CA,211-215, Mar.1995.
    [128] Tennant A. Dawoud M. M. and Anderson A. P.. Array pattern nulling by element positionperturbations using a genetic algorithm [J]. Electronics Letters,1994,30(3):174-176.
    [129] Haupt R. L.. Phase-only adaptive nulling with a genetic algorithm [J]. IEEE Transactions onAntennas and Propagation,1997,45(6):1009-1015.
    [130] Ouedraogo R. O., Rothwell E. J. and Greetis B. J.. A reconfigurable microstrip leaky-waveantenna with a broadly steerable beam [J]. IEEE Transactions on Antennas and Propagation,2011,59(8):3080-3083.
    [131] Mahanti G. K., Chakrabarty A., and Das S.. phased-only and amplitude-phase synthesis ofdual-pattern linear antenna arrays using floating-point genetic algorithms [J]. Progress InElectromagnetics Research,2007, PIER68:247-259.
    [132] Boag A., Boag A., Michielssen E., and Mittra R.. Design of electrically loaded wire antennasusing genetic algorithms [J]. IEEE Transactions on Antennas and Propagation,1996,44(5):687-695.
    [133] Dimousios T. D., Mitilineos S. A., Panagiotou S. C., Capsalis C. N.. Design of a corner-reflectorreactively controlled antenna for maximum directivity and multiple beam forming at2.4GHz[J]. IEEE Transactions on Antennas and Propagation,2011,59(4):1132-1139.
    [134] Lucci L.. Phase centre optimization in profiled corrugated circular horns with parallel geneticalgorithms [J]. Progress In Electromagnetics Research,2004, PIER46:127-142.
    [135] Linden D. S., and Altshuler E. E.. Automating wire design using genetic algorithms [J].Microwave Journal,1996,39(3):74.
    [136] Ghaffar A., Naqvi Q. A., and Hongo K.. Analysis of the Fields in Three Dimensional CassegrainSystem [J]. Progress In Electromagnetics Research,2007, PIER72:215-240.
    [137] Aziz A., Naqvi Q. A., and Hongo K.. Analysis of the Fields in Two Dimensional CassegrainSystem [J]. Progress In Electromagnetics Research,2007, PIER71:227-241.
    [138] Yin J., Aas J. A., Yang J., and Kildal P. S.. Monopulse tracking performance of multi-port elevenantenna for use in satellite communications terminals [J]. IET Seminar Digest,2007,2007:11961.
    [139] Ling Curtis C., and Rebeiz Gabriel M..94GHz planar monopulse tracking receiver [J]. IEEETransactions on Microwave Theory and Techniques,1994,42(10):1863-1871.
    [140] Li G., Yang S., Chen Y., and Nie Z.-P.. A Novel Electronic Beam Steering Technique in TimeModulated Antenna Array [J]. Progress In Electromagnetics Research,2009, PIER97:391-405.
    [141] Young-Bae Jung, Shishlov, A.V. and Seong-Ook Park. Cassegrain Antenna With Hybrid BeamSteering Scheme for Mobile Satellite Communications [J]. IEEE Transactions on Antennas andPropagation,2009,57(5):1367-1372.
    [142] Bird, T. S. and Sprey, M. A.. Scan limitations of shaped dual-offset reflector antennas formultiple satellite access [J]. Electronics Letters,1990,26(4):228-230.
    [143] Lee C. K. and Langley R. J.. Performance of a dual-band reflector antenna incorporating afrequency selective subreflector [J]. International Journal of Electronics,1986,61(5):607-616.
    [144] Zoltowski M. D., and Mathews C. P.. Real-time frequency and2-D angle estimation withsub-Nyquistspatio-temporal sampling [J]. IEEE Transactions on Signal Processing,1994,42(10):2781-2794.
    [145] Alamouti S. M.. A simple transmit diversity technique for wireless communications [J]. IEEE J.Select. Areas Commun.,1998,16(10):1451-1458.
    [146] Anderson S. R., and Flint R. B.. The CAA Doppler Omnirange [J]. Proceedings of the IRE,1959,47(5):808-821.
    [147] Hong T., Song M. Z., and Liu Y.. RF directional modulation technique using a switched antennaarray for physical layer secure communication applications [J]. Progress In ElectromagneticsResearch,2011, PIER116:363-379.
    [148] Haas E.. Aeronautical channel modeling [J]. IEEE transactions on vehicular technology,2002,51(2):254-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700