用户名: 密码: 验证码:
高分子纳米纤维及其结构支架的力学性能研究与计算建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子纳米纤维支架具有与天然细胞外基质相似的形态结构,能够为细胞的种植和生长提供合适的微环境,在组织工程中得到了广泛的应用。支架是由单根的高分子纳米纤维组成,为了能够在纳米尺度下对支架进行设计以达到特定细胞生长所需要的力学强度,需要研究单根高分子纳米纤维的力学性能。另外,支架的孔隙率和纤维角度取向程度等结构参数也是支架设计过程中的重要参考因素,因此也需要研究支架本身的力学性能与支架结构参数之间的关系。本论文主要针对单根高分子纳米纤维的力学性能进行了实验和理论研究,并建立了支架力学性能的理论计算模型。
     实验部分以聚己内酯(PCL)纳米纤维为研究对象,分别利用纳米拉伸设备和原子力显微镜测试了单根PCL纳米纤维在轴向拉伸和三点弯曲实验中的力学性能。拉伸实验的统计结果显示,PCL纳米纤维的弹性模量与其直径之间没有明显的尺度效应关系,而根据文献中的另一组实验数据,PCL纳米纤维的弹性模量具有尺度效应,这似乎与我们的实验结果存在矛盾。三点弯曲的实验结果显示纤维的弹性模量与纤维直径之间存在尺度效应关系,与文献中对高分子纳米纤维的弯曲实验得到的尺度效应一致,即随着纤维直径的减小,纤维的弹性模量呈显著增大趋势。
     在单根纳米纤维力学性能的建模部分,分别针对纤维的拉伸和弯曲变形建立了不同的理论模型。考虑到高分子材料内部的微结构对纤维力学性能具有影响,采用应变梯度弹性(SGE)理论研究了纤维力学性能的尺度效应,并根据高阶应变梯度弹性(HSGE)理论建立了纤维在均匀拉伸变形中的尺度效应模型。
     根据理论模型预测,纤维的等效弹性模量存在两种尺度效应:与纤维长度相关的尺度效应(L-SD)和与纤维直径相关的尺度效应(D-SD)。在纤维的拉伸变形建模中,根据SGE可以得到L-SD尺度效应,根据HSGE可以得到D-SD尺度效应,而根据表面效应理论(SE)同样可以得到D-SD尺度效应,但与HSGE模型得到的D-SD不同。由于针对纳米纤维的拉伸实验只有D-SD的数据,L-SD的实验数据尚未见到报道,分别利用HSGE模型和SE模型拟合拉伸实验中的D-SD数据。比较两种模型的拟合结果可以发现,HSGE模型的拟合结果与实验数据比较吻合,而SE模型的拟合结果与实验数据之间存在一定的偏差。
     在纤维的弯曲变形建模中,根据SGE和SE建立了纤维在三种弯曲边界条件(悬臂梁、两端固支梁和简支梁)下等效弹性模量的尺度效应模型。根据SGE可以得到L-SD和D-SD两种尺度效应,而根据SE可以得到D-SD尺度效应。分别利用SGE模型和SE模型拟合弯曲实验中的D-SD数据,比较两种模型的拟合结果可以发现,两种模型均能解释纤维弯曲变形的尺度效应,但对于高分子纳米纤维材料,SGE的拟合结果与实验数据更加吻合。
     基于对单根纳米纤维力学性能的理论分析,我们进一步研究纤维支架的力学性能。将纳米纤维等效处理为具有特定长度的线弹性杆状结构,假设纤维与纤维之间的交点符合泊松分布,以纤维交点之间的纤维片段作为研究对象,并综合考虑纤维密度逾渗阈值的影响,得到了角度随机分布和角度取向分布两种纤维支架的力学性能计算模型。角度随机分布的纤维支架是各向同性,而角度取向分布的纤维支架是正交各向异性,需要分别研究其平行于纤维取向方向和垂直于纤维取向方向的力学性能。对于角度随机分布的纤维支架,模型的计算结果与有限元模拟情况吻合;而对于角度取向分布的纤维支架,模型的计算结果与文献中的实验数据基本吻合,但存在一定的偏差。
     为了研究单根纳米纤维尺度效应对支架力学性能的影响,在支架力学性能计算模型中分别用HSGE和SGE表示纤维在拉伸和弯曲变形中的D-SD尺度效应,得到了包含尺度效应的支架力学性能计算模型。利用该模型分别比较在不考虑尺度效应以及考虑尺度效应两种情况下,支架的弹性模量与其结构参数之间的关系:对于角度随机分布的纤维支架,得到了支架的弹性模量与纤维密度和直径之间的关系;对于角度取向分布的纤维支架,得到了支架两个方向的弹性模量与纤维密度、直径以及角度取向程度之间的关系。
     综上所述,高分子纳米纤维的尺度效应比较复杂。根据对单根纳米纤维的力学建模,在不同的实验条件下,纳米纤维的力学性能可能表现出D-SD或者L-SD的尺度效应。根据对纳米纤维支架的力学建模,支架的力学性能不仅与其结构参数(纤维密度、角度取向程度等)有关,而且会受到单根纤维尺度效应D-SD的影响,因此在纤维结构支架的设计与制备中需要综合考虑以上各种因素的影响。
With the rapid development of tissue engineering,nanofibrous scaffolds have been gaining popularity for use as an extra-cellular matrix for cell seeding.Since the fibers used in these scaffolds are nano-scaled,an accurate quantification of their strength characteristics becomes necessary in order to design a scaffold that meets the specifc strength requirements for handling different cell types.Also,it is necessary to quantify the strength characteristics of the scaffold itself as the nanofiber arrangement in terms of fiber orientation and porosity can be a significant factor.Thus,this thesis is concerned with an investigation of the single-strand nanofiber,as well as,the nanofibrous scaffold.For the modeling of the single-strand nanofiber,we have provided experimental data to verify the predictions.As for the scaffold,we presented limited experimental verifications since there are very few reported experiments on the mechanical testing of the scaffold in the literature.
     In our experimental measurements with single-strand polycaprolactone(PCL) nanofibers,we conducted uniaxial tensile and three-point bending tests using the Nano Universal Tensile Machine and diametral measurements using the atomic force microscopy.The tensile test data shows that the elastic modulus of PCL nanofibers is statistically invariant with changing fiber diameters.Our results appear to contradict one set of reported test data for the same fiber type,where it depicts a size dependent trend in the elastic modulus-diameter plot.For the three-point bending tests both our data and reported experimental results are consistent in that the elastic modulus clearly exhibits a significant inverse size-dependent trend with the fiber diameter.
     Our modeling effort also begins with the single-strand nanofiber as without a prior knowledge of this basic building block,it is not possible to quantify the mechanical properties of the scaffold.We have developed several computational models for studying a single-strand nanofiber under the 2 types of loading;tensile and bending.Recognizing the non-local interactions between discrete elements of the polymeric material,we employed the strain gradient elasticity(SGE) theory to model the size dependent behavior.To handle the reported tensile size dependency,we expanded on the traditional SGE theory by incorporating 2nd-order strain gradients and termed the resulting approach as higher-order strain gradient elasticity(HSGE).
     Our theoretical work indicates that there are 2 kinds of size dependent response; one that pertains to a decreasing fiber length(while still maintaining the fiber aspect ratio) and the other to a decreasing fiber diameter.We referred the former as L-SD (length size-dependency) and the latter as D-SD(diameter size-dependency).The L-SD is observed in our SGE tensile predictions while the D-SD is seen in our HSGE predictions.Since all the reported experiment data(including ours) are designed to measure only D-SD,the agreement between the model predictions and experimental results is very good.In this thesis,we have also presented a modified surface effect (SE) approach to study size-dependency in polymeric nanofibers and showed that its predictions also matched the measured data but not as closely as our HSGE model.
     In the bending size dependency work,we developed computational models using both SGE and SE theories for 3 types of boundary conditions:cantilever,fixed-fixed and simply supported.Application of SGE to the bending deformation of nanofibers produces both L-SD and D-SD,while the application of SE leads to D-SD only.Both D-SD models are able to track the bending size-dependent behavior;however the SGE model appears to produce a better fit with the measured data for polymeric nanofibers.
     With the knowledge gained from the modeling of single strand nanofibers,we now consider the micromechanical modeling of a nanofibrous scaffold.The nanofibers are assumed to be linear-elastic straight rods of constant length.However, in the scaffold the nanofibers are not viewed as distinct elements;instead,it is the individual fiber segment between any 2 fiber crossings that is considered.Further,the length of a fiber segment is assumed to obey a Poisson distribution of fiber-to-fiber contacts.In our 2-D scaffold model we studied 2 kinds of fiber distribution - random and aligned,and obtained its elastic modulus that included an exponential decay term to capture the percolation effect for both these 2 cases.For the randomly distributed nanofibers,the elastic modulus predictions agree with results from a finite element analysis to a reasonably good degree of accuracy.For the aligned nanofibers the scaffold is orthotropic in nature and thus,the elastic modulus has 2 components-parallel and perpendicular to the fiber orientation.A comparison of the 2 moduli with published experimental data shows that although the model is able to capture the data trend the agreement still has minor errors.
     We also incorporated size dependency into the micromechanical model of the scaffold.Specifically,we introduced HSGE to capture tensile D-SD and SGE for bending D-SD.We presented several plots of the scaffold's elastic modulus versus the fiber density and fiber diameter for the randomly distributed fibers with and without size-dependency.Likewise,we did the same for the aligned fibers but with an additional parameter - the fiber orientation.
     To summarize,we note that size dependency in polymeric nanofibers is a complex phenomenon.Our research on single strand nanofibers indicates that it can manifest either as a diameter-based and/or a length-based size dependency.The phenomenon in a scaffold is even more complex as it can be affected by additional parameters such as fiber density and fiber orientation.
引文
[1]Langer R,Vacanti J P.Tissue Engineering[J].Science.1993,260(5110):920-926.
    [2]Ishaugriley S L,Crane G M,Gurlek A,et al.Ectopic Bone Formation by Marrow Stromal Osteoblast Transplantation Using Poly(Dl-Lactic-Co-Glycolic Acid) Foams Implanted Into the Rat Mesentery[J].Journal of Biomedical Materials Research.1997,36(1):1-8.
    [3]Schaefer D,Martin I,Shastri P,et al.In Vitro Generation of Osteochondral Composites[J].Biomaterials.2000,21(24):2599-2606.
    [4]Freyman T M,Yannas I V,Gibson L J.Cellular Materials as Porous Scaffolds for Tissue Engineering[J].Progress in Materials Science.2001,46(3-4):273-282.
    [5]Niklason L E,Langer R S.Advances in Tissue Engineering of Blood Vessels and Other Tissues[J].Transplant Immunology.1997,5(4):303-306.
    [6]Evans G R,Brandt K,Widmer M S,et al.In Vivo Evaluation of Poly(L-Lactic Acid) Porous Conduits for Peripheral Nerve Regeneration[J].Biomaterials.1999,20(12):1109-1115.
    [7]Oberpenning F,Meng J,Yoo J J,et al.De Novo Reconstitution of a Functional Mammalian Urinary Bladder by Tissue Engineering[J].Nature Biotechnology.1999,17(2):149-155.
    [8]Opas M.Expression of the Differentiated Phenotype by Epithelial-Cells Invitro is Regulated by Both Biochemistry and Mechanics of the Substratum[J].Developmental Biology.1989,13 I(2):281-293.
    [9]Vernon R B,Angello J C,Iruelaarispe M L,et al.Reorganization of Basement-Membrane Matrices by Cellular Traction Promotes the Formation of Cellular Networks Invitro[J].Laboratory Investigation.1992,66(5):536-547.
    [10]Choquet D,Felsenfeld D P,Sheetz M P.Extracellular Matrix Rigidity Causes Strengthening of Integrin-Cytoskeleton Linkages[J].Cell.1997,88(1):39-48.
    [11]Mitchison T J,Cramer L P.Actin-Based Cell Motility and Cell Locomotion[J].Cell.1996,84(3):371-379.
    [12]Balgude A P,Yu X,Szymanski A,et al.Agarose Gel Stiffness Determines Rate of Drg Neurite Extension in 3D Cultures[J].Biomaterials.2001,22(10):1077-1084.
    [13]Agrawal C M,Ray R B.Biodegradable Polymeric Scaffolds for Musculoskeletal Tissue Engineering[J].Journal of Biomedical Materials Research.2001,55(2):141-150.
    [14]Kim B S,Mooney D J.Development of Biocompatible Synthetic Extracellular Matrices for Tissue Engineering[J].Trends in Biotechnology.1998,16(5):224-230.
    [15]孟洁,孔桦,朱广瑾,et al.纳米纤维结构支架的构建及其对再生医学的意义[J].基础医学与临床.2006,26(7):689-693.
    [16] Ma P X, Zhang R Y. Synthetic Nano-Scale Fibrous Extracellular Matrix[J]. Journal of Biomedical Materials Research. 1999, 46(1): 60-72.
    [17] Nam Y S, Park T G. Porous Biodegradable Polymeric Scaffolds Prepared by Thermally Induced Phase Separation[J]. Journal of Biomedical Materials Research. 1999, 47(1): 8-17.
    [18] Ma P X, Zhang R Y. Microtubular Architecture of Biodegradable Polymer Scaffolds[J]. Journal of Biomedical Materials Research. 2001, 56(4): 469-477.
    [19] Deitzel J M, Kleinmeyer J D, Hirvonen J K, et al. Controlled Deposition of Electrospun Polyethylene Oxide) Fibers[J]. Polymer. 2001,42(19): 8163-8170.
    [20] Yang Q B, Li Z Y, Hong Y L, et al. Influence of Solvents on the Formation of Ultrathin Uniform Poly(Vinyl Pyrrolidone) Nanofibers with Electrospinning[J]. Journal of Polymer Science Part B-Polymer Physics. 2004, 42(20): 3721-3726.
    [21] Kim G, Kim W. Formation of Oriented Nanofibers Using E!ectrospinning[J]. Applied Physics Letters. 2006, 88(23): 233101.
    [22] Feng L, Li S H, Li H J, et al. Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanoflbers[J]. Angewandte Chemie-International Edition. 2002, 41(7): 1221-1223.
    [23] Martin C R. Membrane-Based Synthesis of NanomateriaIs[J]. Chemistry of Materials. 1996, 8(8): 1739-1746.
    [24] Zhang R Y, Ma P X. Synthetic Nano-Fibrillar Extracellular Matrices with Predesigned Macroporous Architectures[J]. Journal of Biomedical Materials Research. 2000, 52(2): 430-438.
    [25] Liu G J, Ding J F, Qiao L J, et al. Polystyrene-Block-Poly (2-Cinnamoylethyl Methacrylate) Nanofibers - Preparation, Characterization, and Liquid Crystalline Properties[J]. Chemistry-a European Journal. 1999, 5(9): 2740-2749.
    [26] Whitesides G M, Grzybowski B. Self-Assembly at All Scales[J]. Science. 2002, 295(5564): 2418-2421.
    [27] Ma P X, Langer R. Morphology and Mechanical Function of Long-Term in Vitro Engineered Cartilage[J]. Journal of Biomedical Materials Research. 1999, 44(2): 217-221.
    [28] Ma Z W, Kotaki M, Inai R, et al. Potential of Nanofiber Matrix as Tissue-Engineering Scaffolds[J]. Tissue Engineering. 2005, 11(1-2): 101-109.
    [29] Folkman J, Moscona A. Role of Cell-Shape in Growth-Control[J]. Nature. 1978, 273(5661): 345-349.
    [30] Palecek S P, Loftus J C, Ginsberg M H, et al. Integrin-Ligand Binding Properties Govern Cell Migration Speed through Cell-Substratum Adhesiveness[J]. Nature. 1997, 385(6616): 537-540.
    [31] Haque M A, Saif M T A. A Review of Mems-Based Microscale and Nanoscale Tensile and Bending Testing[J]. Experimental Mechanics. 2003, 43(3): 248-255.
    [32] Yu M F, Lourie O, Dyer M J, et al. Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load[J]. Science. 2000, 287(5453): 637-640.
    [33] Yu M F, Dyer M J, Skidmore G D, et al. Three-Dimensional Manipulation of Carbon Nanotubes Under a Scanning Electron MicroscopefJ]. Nanotechnology. 1999, 10(3): 244-252.
    [34] Demczyk B G, Wang Y M, Cumings J, et al. Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. 2002, 334(1-2): 173-178.
    [35] Desai A V, Haque M A. Mechanical Properties of Zno Nanowires[J]. Sensors and Actuators A-Physical. 2007, 134(1): 169-176.
    [36] Tan E P S, Goh C N, Sow C H, et al. Tensile Test of a Single Nanofiber Using an Atomic Force Microscope Tip[J]. Applied Physics Letters. 2005, 86(7): 73115.
    [37] Tan E P S, Ng S Y, Lim C T. Tensile Testing of a Single Ultrafine Polymeric Fiber[J]. Biomaterials. 2005,26(13): 1453-1456.
    [38] Lim C T, Tan E P S, Ng S Y. Effects of Crystalline Morphology on the Tensile Properties of Electrospun Polymer Nanofibers[J]. Applied Physics Letters. 2008, 92(14): 141908.
    [39] Samuel B A, Haque M A, Yi B, et al. Mechanical Testing of Pyrolysed Poly-Furfuryl Alcohol Nanofibres[J]. Nanotechnology. 2007, 18(11): 115704.
    [40] Zussman E, Burman M, Yarin A L, et al. m[J]. Journal of Polymer Science Part B-Polymer Physics. 2006,44(10): 1482-1489.
    [41] Chen F, Peng X W, Li T T, et al. Mechanical Characterization of Single High-Strength Electrospun Polyimide Nanofibres[J]. Journal of Physics D-Applied Physics. 2008, 41(2): 25308.
    [42] Cappella B, Dietler G. Force-Distance Curves by Atomic Force Microscopy[J]. Surface Science Reports. 1999, 34(1-3): 1-104.
    [43] Bowen W R, Lovitt R W, Wright C J. Application of Atomic Force Microscopy to the Study of Micromechanical Properties of Biological Materials[J]. Biotechnology Letters. 2000, 22(11): 893-903.
    [44] Salvetat J P, Briggs G A, Bonard J M, et al. Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes[J]. Physical Review Letters. 1999, 82(5): 944-947.
    [45] Tombler T W, Zhou C W, Alexseyev L, et al. Reversible Electromechanical Characteristics of Carbon Nanotubes Under Local-Probe Manipulation[J]. Nature. 2000, 405(6788): 769-772.
    [46] Kim G T, Gu G, Waizmann U, et al. Simple Method to Prepare Individual Suspended Nanofibers[J]. Applied Physics Letters. 2002, 80(10): 1815-1817.
    [47] Sundararajan S, Bhushan B, Namazu T, et al. Mechanical Property Measurements of Nanoscale Structures Using an Atomic Force Microscope[J]. Ultramicroscopy. 2002, 91(1-4): 111-118.
    [48] Namazu T, Isono Y, Tanaka T. Plastic Deformation of Nanometric Single Crystal Silicon Wire in Afm Bending Test at Intermediate Temperatures[J]. Journal of Microelectromechanical Systems. 2002, 11(2): 125-135.
    [49] Namazu T, Isono Y. Quasi-Static Bending Test of Nano-Scale Sio2 Wire at Intermediate Temperatures Using Afm-Based Technique[J]. Sensors and Actuators A-Physical. 2003, 104(1): 78-85.
    [50] Tan E, Zhu Y, Yu T, et al. Crystallinity and surface effects on Young's modulus of CuO nanowires[J]. Applied Physics Letters. 2007, 90(16): 163112.
    [51] Shin M K, Kim S I, Kim S J, et al. Size-Dependent Elastic Modulus of Single Electroactive Polymer Nanofibers[J]. Applied Physics Letters. 2006, 89(23): 231929.
    [52] Shanmugham S, Jeong J W, Alkhateeb A, et al. Polymer Nanowire Elastic Moduli Measured with Digital Pulsed Force Mode Afm[J]. Langmuir. 2005, 21(22): 10214-10218.
    [53] Cuenot S, Demoustier-Champagne S, Nysten B. Elastic Modulus of Polypyrrole Nanotubes[J]. Physical Review Letters. 2000, 85(8): 1690-1693.
    [54] Duvail J L, Retho P, Godon C, et al. Physical Properties of Conducting Polymer Nanofibers[J]. Synthetic Metals. 2003, 135(1-3): 329-330.
    [55] Xu W, Mulhern P J, Blackford B L, et al. A New Atomic-Force Microscopy Technique for the Measurement of the Elastic Properties of Biological-Materials[J]. Scanning Microscopy. 1994, 8(3): 499-506.
    [56] Tan E P S, Lim C T. Physical Properties of a Single Polymeric Nanofiber[J]. Applied Physics Letters. 2004,84(9): 1603-1605.
    [57] Wong E W, Sheehan P E, Lieber C M. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes[J]. Science. 1997,277(5334): 1971-1975.
    [58] Kaplan-Ashiri I, Cohen S R, Gartsman K, et al. Mechanical Behavior of Individual Ws2 Nanotubes[J]. Journal of Materials Research. 2004, 19(2): 454-459.
    [59] Wang M, Jin H J, Kaplan D L, et al. Mechanical Properties of Electrospun Silk Fibers[J]. Macromolecules. 2004, 37(18): 6856-6864.
    [60] Li X D, Hao H S, Murphy C J, et al. Nanoindentation of Silver Nanowires[J]. Nano Letters. 2003, 3(11): 1495-1498.
    [61] Oliver W C, Pharr G M. An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments[J]. Journal of Materials Research. 1992,7(6): 1564-1583.
    [62] Ko F, Gogotsi Y, Ali A, et al. Electrospinning of Continuons Carbon Nanotube-Filled Nanofiber Yarns[J]. Advanced Materials. 2003, 15(14): 1161.
    [63] Park J G, Lee S H, Kim B, et al. Electrical Resistivity of Polypyrrole Nanotube Measured by Conductive Scanning Probe Microscope: The Role of Contact Force[J]. Applied Physics Letters. 2002, 81(24): 4625-4627.
    [64] Tan E P S, Lim C T. Nanoindentation Study of Nanofibers[J]. Applied Physics Letters. 2005, 87(12): 123106.
    [65] Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally High Young'S Modulus Observed for Individual Carbon Nanotubes[J]. Nature. 1996, 381(6584): 678-680.
    [66] Poncharal P, Wang Z L, Ugarte D, et al. Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes[J]. Science. 1999,283(5407): 1513-1516.
    [67] Nam C Y, Jaroenapibal P, Tham D, et al. Diameter-Dependent Electromechanical Properties of Gan Nanowires[J]. Nano Letters. 2006, 6(2): 153-158.
    [68] Boussaad S, Tao N J. Polymer Wire Chemical Sensor Using a Micro fabricated Tuning Fork[J]. Nano Letters. 2003, 3(8): 1173-1176.
    [69] Cuenot S, Fretigny C, Demoustier-Champagne S, et al. Measurement of Elastic Modulus of Nanotubes by Resonant Contact Atomic Force Microscopy[J]. Journal of Applied Physics. 2003, 93(9): 5650-5655.
    [70] Robertson D H, Brenner D W, Mintmire J W. Energetics of Nanoscale Graphitic Tubules[J]. Physical Review B. 1992,45(21): 12592-12595.
    [71] Cornwell C F, Wille L T. Elastic Properties of Single-Walled Carbon Nanotubes in Compression[J]. Solid State Communications. 1997, 101(8): 555-558.
    [72] Yao N, Lordi V. Young'S Modulus of Single-Walled Carbon Nanotubes[J]. Journal of Applied Physics. 1998, 84(4): 1939-1943.
    [73] Peralta-Inga Z, Boyd S, Murray J S, et al. Density Functional Tight-Binding Studies of Carbon Nanotube Structures[J]. Structural Chemistry. 2003, 14(5): 431-443.
    [74] Wen Y J, Zhang Y, Zhu Z Z. Size-Dependent Effects on Equilibrium Stress and Strain in Nickel Nanowires[J]. Physical Review B. 2007, 76(12): 125423.
    [75] Diao J K, Gall K, Dunn M L. Atomistic Simulation of the Structure and Elastic Properties of Gold Nanowires[J]. Journal of the Mechanics and Physics of Solids. 2004, 52(9): 1935-1962.
    [76] Liang H Y, Upmanyu M, Huang H C. Size-Dependent Elasticity of Nanowires: Nonlinear Effects[J]. Physical Review B. 2005, 71(24): 241403.
    [77] Unnikrishnan V U, Unnikrishnan G U, Reddy J N, et al. Atomistic-mesoscale coupled mechanical analysis of polymeric nanofibers[J]. Journal of Material Science. 2007, 42(21): 8844-8852.
    [78] Song J H, Wang X D, Riedo E, et al. Elastic Property of Vertically Aligned Nanowires[J]. Nano Letters. 2005, 5(10): 1954-1958.
    [79] Nikolov S, Han C S, Raabe D. On the Origin of Size Effects in Small-Strain Elasticity of Solid Polymers[J]. International Journal of Solids and Structures. 2007,44(5): 1582-1592.
    [80] Carpinteri A, Puzzi S. A Fractal Approach to Indentation Size Effect[J]. Engineering Fracture Mechanics. 2006, 73(15): 2110-2122.
    [81] Lam D C C, Yang F, Chong A C M, et al. Experiments and Theory in Strain Gradient Elasticity[J]. Journal of the Mechanics and Physics of Solids. 2003, 51(8): 1477-1508.
    [82] Hemker K J, Nix W D. Nanoscale Deformation: Seeing is Believing[J]. Nature Materials. 2008, 7(2): 97-98.
    [83] 易大可,王自强.能量非局部模型和新的应变梯度理论[J].力学学报.2009,41(1):60-66.
    [84] Eringen A C. Nonlocal Polar Elastic Continua[J]. International Journal of Engineering Science. 1972, 10(1): 1-16.
    [85] Eringen A C, Edelen D G B. Nonlocal Elasticity[J], International Journal of Engineering Science. 1972, 10(3): 233-248.
    [86] Askes H, Aifantis E C. Gradient Elasticity Theories in Statics and Dynamics - A Unification of Approaches[J]. International Journal of Fracture. 2006, 139(2): 297-304.
    [87] Mindlin R D. Micro-Structure in Linear ElasticityfJ]. Archive for Rational Mechanics and Analysis. 1964, 16(1): 51-78.
    [88] Mindlin R D. Second Gradient of Strain and Surface Tension in Linear Elasticity[J]. International Journal of Solids and Structures. 1965, 1: 417-438.
    [89] Toupin R A. Elastic Materials with Couple-Stresses[J]. Archive for Rational Mechanics and Analysis. 1963, 11(5): 385-414.
    [90] Fleck N A, Hutchinson J W. A Reformulation of Strain Gradient Plasticity[J]. Journal of the Mechanics and Physics of Solids. 2001, 49(10): 2245-2271.
    [91] Fleck N A, Mulller G M, Ashby M F, et al. Strain Gradient Plasticity: Theory and Experiments[J]. Acta Metall. Mater. 1994, 42: 475-487.
    [92] Gao H, Huang Y, Nix W D, et al. Mechanism-Based Strain Gradient Plasticity- I. Theory[J]. Journal of the Mechanics and Physics of Solids. 1999,47(6): 1239-1263.
    [93] Yang F, Chong A C M, Lam D C C, et al. Couple Stress Based Strain Gradient Theory for Elasticity[J]. International Journal of Solids and Structures. 2002, 39(10): 2731-2743.
    [94] Fleck N A, Hutchinson J W. Strain Gradient Plasticity[J]. Advances in Applied Mechanics. 1997, 33: 295-361.
    [95] Altan B S, Evensen H A, Aifantis E C. Longitudinal Vibrations of a Beam: A Gradient Elasticity Approach[J]. Mechanics Research Communications. 1996, 23(1): 35-40.
    [96] Aifantis E C. Strain Gradient Interpretation of Size Effects[J]. International Journal of Fracture. 1999, 95(1-4): 299-314.
    [97] Aifantis E C. On the Role of Gradients in the Localization of Deformation and Fracture[J]. International Journal of Engineering Science. 1992, 30(10): 1279-1299.
    [98] Vardoulakis I, Exadaktylos G, Kourkoulis S K. Bending of Marble with Intrinsic Length Scales: A Gradient Theory with Surface Energy and Size Effects[J]. Journal De Physique Iv. 1998, 8(P8): 399-406.
    [99] Papargyri-Beskou S, Tsepoura K G, Polyzos D, et al. Bending and Stability Analysis of Gradient Elastic Beams[J]. International Journal of Solids and Structures. 2003, 40(2): 385-400.
    [100] Tsepoura K G, Papargyri-Beskou S, Polyzos D, et al. Static and Dynamic Analysis of a Gradient-Elastic Bar in Tension[J]. Archive of Applied Mechanics. 2002, 72(6-7): 483-497.
    [101] Bakogianni D G, Lazopoulos K A. Stability of Strain Gradient Elastic Bars in Tension[J]. Optimization Letters. 2007, 1(4): 407-420.
    [102] Wang C M, Zhang Y Y, Kitipornchai S. Vibration of Initially Stressed Micro- And Nano-Beams[J]. International Journal of Structural Stability and Dynamics. 2007, 7(4): 555-570.
    [103] Wang Q, Wang C M. The Constitutive Relation and Small Scale Parameter of Nonlocal Continuum Mechanics for Modelling Carbon Nanotubes[J]. Nanotechnology. 2007, 18(7): 75702.
    [104] Challamel N, Wang C M. The Small Length Scale Effect for a Non-Local Cantilever Beam: A Paradox Solved[J]. Nanotechnology. 2008, 19(34): 345703.
    [105] Cammarata R C, Sieradzki K. Effects of Surface Stress on the Elastic-Moduli of Thin-Films and Superlattices[J]. Physical Review Letters. 1989, 62(17): 2005-2008.
    [106] Cammarata R C. Surface and Interface Stress Effects on the Growth of Thin Films[J]. Journal of Electronic Materials. 1997, 26(9): 966-968.
    [107] Cammarata R C. Surface and Interface Stress Effects in Thin-Films[J]. Progress in Surface Science. 1994,46(1): 1-38.
    [108] Dingreville R, Qu J M, Cherkaoui M. Surface Free Energy and its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films[J]. Journal of the Mechanics and Physics of Solids. 2005, 53(8): 1827-1854.
    [109] Zhou L G, Huang H C. Are Surfaces Elastically Softer or Stiffer?[J]. Applied Physics Letters. 2004, 84(11): 1940-1942.
    [110] Diao J K, Gall K, Dunn M L. Surface-Stress-Induced Phase Transformation in Metal Nanowires[J]. Nature Materials. 2003, 2(10): 656-660.
    [111] Gurtin M E, Murdoch A I. Continuum Theory of Elastic-Material Surfaces[J]. Archive for Rational Mechanics and Analysis. 1975, 57(4): 291-323.
    [112] Miller R E, Shenoy V B. Size-Dependent Elastic Properties of Nanosized Structural Elements[J]. Nanotechnology. 2000, 11(3): 139-147.
    [113] Shenoy V B. Atomistic Calculations of Elastic Properties of Metallic Fcc Crystal Surfaces[J]. Physical Review B. 2005, 71(9): 94104.
    [114] Sharma P, Ganti S, Bhate N. Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities[J]. Applied Physics Letters. 2003, 82(4): 535-537.
    [115] Sharma P, Ganti S. Size-Dependent Eshelby'S Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies[J]. Journal of Applied Mechanics-Transactions of the Asme. 2004, 71(5): 663-671.
    [116] Cuenot S, Fretigny C, Demoustier-Champagne S, et al. Surface Tension Effect on the Mechanical Properties of Nanomaterials Measured by Atomic Force Microscopy[J]. Physical Review B. 2004, 69(16): 165410.
    [117] Jing G Y, Duan H L, Sun X M, et al. Surface Effects on Elastic Properties of Silver Nanowires: Contact Atomic-Force MicroscopyfJ]. Physical Review B. 2006, 73(23): 235409.
    [118] Exadaktylos G E, Vardoulakis I. Microstructure in Linear Elasticity and Scale Effects: A Reconsideration of Basic Rock Mechanics and Rock Fracture Mechanics[J]. Tectonophysics. 2001, 335(1-2): 81-109.
    [119] Chen C Q, Shi Y, Zhang Y S, et al. Size Dependence of Young'S Modulus in Zno Nanowires[J]. Physical Review Letters. 2006, 96(7): 75505.
    [120] Wen B M, Sader J E, Boland J J. Mechanical Properties of Zno Nanowires[J]. Physical Review Letters. 2008, 101(17): 175502.
    [121] Arinstein A, Burman M, Gendelman O, et al. Effect of Supramolecular Structure on Polymer Nanofibre Elasticity[J]. Nature Nanotechnology. 2007, 2(1): 59-62.
    [122] Wan Y, Cao X Y, Zhang S M, et al. Fibrous Poly(Chitosan-G-Dl-Lactic Acid) Scaffolds Prepared Via Electro-Wet-Spinning[J]. Acta Biomaterialia. 2008,4(4): 876-886.
    [123] Li W J, Mauck R L, Cooper J A, et al. Engineering Controllable Anisotropy in Electrospun Biodegradable Nanofibrous Scaffolds for Musculoskeletal Tissue Engineering[J]. Journal of Biomechanics. 2007, 40(8): 1686-1693.
    [124] Inai R, Kotaki M, Ramakrishna S. Deformation Behavior of Electrospun Poly(L-Lactide-Co-Epsilon-Caprolactone) Nonwoven Membranes Under Uniaxial Tensile Loading[J]. Journal of Polymer Science Part B-Polymer Physics. 2005, 43(22): 3205-3212.
    [125] Thomas V, Jagani S, Johnson K, et al. Electrospun Bioactive Nanocomposite Scaffolds of Polycaprolactone and Nanohydroxyapatite for Bone Tissue Engineering[J]. Journal of Nanoscience and Nanotechnology. 2006, 6(2): 487-493.
    [126] He W, Yong T, Ma Z W, et al. Biodegradable Polymer Nanofiber Mesh to Maintain Functions of Endothelial Cells[J]. Tissue Engineering. 2006, 12(9): 2457-2466.
    [127] Stylianopoulos T, Bashur C A, Goldstein A S, et al. Computational Predictions of the Tensile Properties of Electrospun Fibre Meshes: Effect of Fibre Diameter and Fibre Orientation[J]. Journal of the Mechanical Behavior of Biomedical Materials. 2008, 1(4): 326-335.
    [128]Nerurkar N L,Elliot/D M,Mauck R L.Mechanics of Oriented Electrospun Nanofibrous Scaffolds for Annulus Fibrosus Tissue Engineering[J].Journal of Orthopaedic Research.2007,25(8):1018-1028.
    [129]Yin L Z,Elliot/D M.A Homogenization Model of the Annulus Fibrosus[J].Journal of Biomechanics.2005,38(8):1674-1684.
    [130]沈观林.复合材料力学[M].北京:清华大学出版社,1996.
    [131]Cox H L.The Elasticity and Strength of Paper and Other Fibrous Materials[J].British Journal of Applied Physics.1952,3(MAR):72-79.
    [132]Narter M A,Batra S K,Buchanan D R.Micromechanics of Three-Dimensional Fibrewebs:Constitutive Equations[J].Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences.1999,455(1989):3543-3563.
    [133]Astrom J A,Makinen J P,Alava M J,et al.Elasticity of Poissonian Fiber Networks[J].Physical Review E.2000,61(5):5550-5556.
    [134]Astrom J A,Makinen J P,Hirvonen H,et al.Stiffness of Compressed Fiber Mats[J].Journal of Applied Physics.2000,88(9):5056-5061.
    [135]Wu X F,Dzenis Y A.Elasticity of Planar Fiber Networks[J].Journal of Applied Physics.2005,98(9):93501.
    [136]Chatterjee A P.A Model for the Elastic Moduli of Three-Dimensional Fiber Networks and Nanocomposites[J].Journal of Applied Physics.2006,100(5):54302.
    [137]Brode G L,Koleske J V.Lactone Polymerization and Polymer Properties[M].Polymerization of heterocycles,Vogl O,Furukawa J,New York:Marcell Dekker,1973,97-116.
    [138]Hutmacher D W.Scaffolds in Tissue Engineering Bone and Cartilage[J].Biomaterials.2000,21(24):2529-2543.
    [139]Williamson M R,Coombes A G A.Gravity Spinning of Polycaprolactone Fibres for Applications in Tissue Engineering[J].Biomaterials.2004,25(3):459-465.
    [140]Zhang Y,Ouyang H,Lim C T,et al.Electrospinning of Gelatin Fibers and Gelatin/Pcl Composite Fibrous Scaffolds[J].Journal of Biomedical Materials Research.2005,72B(I):156-165.
    [141]Pitt C G.Poly(E-Caprolactone) and its Copolymers[M].Biodegradable polymers as drug delivery systems,Langer R C M,New York:Marcel Dekker,1990,71-120.
    [142]Shin Y M,Hohman M M,Brenner M P,et al.Experimental Characterization of Electrospinning:The Electrically Forced Jet and Instabilities[J].Polymer.2001,42(25):9955-9967.
    [143]Fong H,Liu W D,Wang C S,et al.Generation of Electrospun Fibers of Nylon 6 and Nylon 6-Montmorillonite Nanocomposite[J].Polymer.2002,43(3):775-780.
    [144]Ng S Y.Nanomechanical Characterization of a Single Electrospun Nanofiber[D].Singapore:Natl Univ Singapore,2006.
    [145]孙亮.一维纳米结构力学性能尺寸效应的实验及理论研究[D].上海:复旦大学,2008.
    [146]Wu X F,Dzenis Y A.Size Effect in Polymer Nanofibers Under Tension[J].Journal of Applied Physics.2007,102(4):44306.
    [147]徐芝纶。弹性力学 上册[M].高等教育出版社,2006.
    [148]Mcfarland A W,Colton J S.Role of Material Microstructure in Plate Stiffness with Relevance to Microcantilever Sensors[J]. Journal of Micromechanics and Microengineering. 2005, 15(5): 1060-1067.
    [149] Sun L, Han R P S, Wang J, et al. Modeling the Size-Dependent Elastic Properties of Polymeric Nanofibers[J]. Nanotechnology. 2008, 19(45): 455706.
    [150] Aifantis E C. Update on a Class of Gradient Theories[J]. Mechanics of Materials. 2003, 35(3-6): 259-280.
    [151] Gu S Y, Wu Q L, Ren J, et al. Mechanical Properties of a Single Electrospun Fiber and its Structures[J]. Macromolecular Rapid Communications. 2005, 26(9): 716-720.
    [152] Li W J, Laurencin C T, Caterson E J, et al. Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering[J]. Journal of Biomedical Materials Research. 2002, 60(4): 613-621.
    [153] Yoshimoto H, Shin Y M, Terai H, et al. A Biodegradable Nanofiber Scaffold by Electrospinning and its Potential for Bone Tissue Engineering[J]. Biomaterials. 2003, 24(12): 2077-2082.
    [154] Pike G E, Seager C H. Percolation and Conductivity - Computer Study .l.[J]. Physical Review B. 1974, 10(4): 1421-1434.
    [155] Zhong S P, Teo W E, Zhu X, et al. An Aligned Nanofibrous Collagen Scaffold by Electrospinning and its Effects on in Vitro Fibroblast Culture[J]. Journal of Biomedical Materials Research Part A. 2006, 79A(3): 456-463.
    [156] Inai R, Kotaki M, Ramakrishna S. Structure and Properties of Electrospun Pita Single Nanofibres[J]. Nanotechnology. 2005, 16(2): 208-213.
    [157] Theron A, Zussman E, Yarin A L. Electrostatic Field-Assisted Alignment of Electrospun Nanofibres[J]. Nanotechnology. 2001, 12(3): 384-390.
    [158] FisherN I. Statistical Analysis of Circular Data[M]. Cambridge University Press, 1993: 295.
    [159] Balberg I, Anderson C H, Alexander S, et al. Excluded Volume and its Relation to the Onset of Percolation[J]. Physical Review B. 1984, 30(7): 3933-3943.
    [160] Foygel M, Morris R D, Anez D, et al. Theoretical and Computational Studies of Carbon Nanotube Composites and Suspensions: Electrical and Thermal Conductivity[J]. Physical Review B. 2005, 71(10): 104201.
    [161] Sun Z C, Zussman E, Yarin A L, et al. Compound Core-Shell Polymer Nanofibers by Co-ElectrospinningtJ]. Advanced Materials.2003, 15(22): 1929-1932.
    [162] Kidoaki S, Kwon I K, Matsuda T. Mesoscopic Spatial Designs of Nano- And Microfiber Meshes for Tissue-Engineering Matrix and Scaffold Based on Newly Devised Multilayering and Mixing Electrospinning Techniques[J]. Biomaterials. 2005, 26(1): 37-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700