用户名: 密码: 验证码:
纳米ZnO基有机/无机复合光伏器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种宽禁带直接带隙的半导体材料,在紫外发光与激光、探测器和太阳能电池等很多方面都具有非常广泛的应用。并且与其它材料相比,ZnO具有多种一维纳米结构,这些纳米结构具有较大的比表面积,并且是单晶结构,从而成为制备新型纳米光电器件的构筑单元。本论文就是利用ZnO一维纳米结构的这些特点,设计并制备了有机/无机复合结构光伏器件。并通过在界面处引入CdS和PbS量子点,有效的提高了太阳能电池的效率。论文工作中取得的主要结果如下:
     1.采用电化学沉积的方法生长了ZnO纳米棒阵列,并通过对籽晶层、反应时间和反应溶液的浓度等参数的调节,初步实现了ZnO纳米棒密度、尺寸和长径比的可控生长。
     2.采用电化学沉积方法制备的ZnO纳米棒和聚乙烯咔唑(PVK)成功的制备了具有类p-n结结构的ZnO/PVK复合紫外探测器,并利用ITO,ZnO和PVK特定的吸收位置获得了具有高选择性的紫外响应。这种探测器的响应峰值位于365 nm,响应度可达110 mA/W,响应峰半高宽仅为26 nm。
     3.在带有ZnO籽晶层的ITO玻璃上,用电化学沉积的方法生长ZnO纳米棒,与聚[2-甲氧基-5-(2-乙基己氧基)-1,4-苯撑乙烯撑](MEH-PPV)成功制备了类p-n结结构的有机/无机复合的太阳能电池器件。通过采用化学浴方法在有机无机界面处引入不同的CdS量子点,显著提高了太阳能电池器件的效率。其中六次生长的CdS量子点的电池效率可达到0.65%,是未经敏化电池效率的6.5倍。并发现随着CdS量的增加,电池的效率是先增加后减小,在利用生长六次的CdS量子点进行敏化的电池效率达到了最大值。
     4.通过引入带隙更窄、吸收范围更宽的PbS量子点作为敏化层,利用ZnO纳米棒和MEH-PPV制备了有机/无机复合的太阳能电池器件。其中利用生长四次的PbS量子点进行敏化的电池效率可达到0.42%,是未经敏化电池效率的四倍多。并发现由于PbS量子点之间的导电性不好,很大程度限制了光生载流子的传输,器件的短路电流的较低,导致PbS量子点敏化的太阳能电池的转换效率并不高。
As one of the typical semiconductors with a wide and direct band gap, ZnO has a lot of applications such as ultraviolet lasers, ultraviolet photodetectors, and solar cells. ZnO nanostructures of many versatile appearances have many remarkable properties such as big specific surface area and monocrystalline, which are different with other materials. Therefore, ZnO nanostructures become to one of the units of preparing the new nanostructure optoelectronics. In this work, the hybrid photovoltaic devices were demonstrated based on these merits of ZnO nanostructures. The efficency of the soalr cells sensitized with the CdS and PbS quantum dots were increased greatly. The research is outlined as follows.
     (1) The ZnO nanorods in this work were fabiricated by the electrodeposition method. The ZnO nanorods could be electrodeposited controlled by the seed layer, reaction time and the concentration of the aqueous solution.
     (2) High spectrum selectivity hybrid ultraviolet photodetector was demonstrated by using electrodeposited ZnO nanorods and poly-N-vinylcarbazole as the electron acceptor and donor, respectively. The high spectrum selectivity hybrid ultraviolet photodetector was obtained based on the particular absoption of ITO glass, ZnO nanorods and poly-N-vinylcarbazole. The photoresponse of the photodetector showed a narrow band centered at 365 nm with a responsibilith of 110 mA/W and with a full width at half maximum of only 26 nm.
     (3) Poly[2-methoxy-5-(2-ethylhexyloxy-pphenylenevinylene)]/ZnO nanorods hybrid solar cells were demonstrated sensitized by CdS quantum dots prepared by a chemical bath deposition method. A thin ZnO film was adopted to well control the length of the ZnO nanorods and act as a hole-blocking layer. An appropriate coating of the CdS quantum dots on the ZnO nanorods leads to a maximum power conversion efficiency of 0.65%, which was increased 6.5 times compared with the one without using quantum dots. The efficiency of the devices were increased with the quantum of CdS at first and after that decreased with the quantum of CdS. The efficiency reached the maximum value of 0.65% when the CdS quantum dots were coated by 6 cycles.
     (4) Poly[2-methoxy-5-(2-ethylhexyloxy-pphenylenevinylene)] (MEH-PPV)/ZnO nanorods hybrid solar cells consisting of PbS quantum dots prepared by a chemical bath deposition method were fabricated. An optimum coating of the quantum dots on the ZnO nanorods could strongly improve the performance of the solar cells. And a maximum power conversion efficiency of 0.42% was achieved for the PbS Q quantum dots sensitive solar cell coated by 4 cycles, which was increased almost 5 times compared with the solar cell without using PbS quantum dots. For large clusters the band alignment at the ZnO/PbS interface appears to be unfavorable for carrier transfer due to that the PbS quantum dots are electrically isolated from each other, which result in the decrease of the JSC values and efficiency.
引文
[1]朱跃中,郁聪.当前我国能源消费形势分析[J].中国能源, 2004, 26(7): 13-15.
    [2]顾约伦.全球能源工业的新机遇[J].高桥石化, 2005, 20(1): 55-56.
    [3]子荷.世界环境日:我们一直在行动[J].中国减灾, 2005, 6: 24-26.
    [4]邵强.我国能源现状及可再生能源开发问题[J].西部探矿工程, 2005, 17(4): 208-209.
    [5] Bunre A, Jenog G, Liddell P. A, et al. Porphyrin-sensitized nanoparticulate TiO2 as the photo anode of a hybrid photoelectrochemical biofuel cell[J]. Langmuir, 2004, 20: 8366-8371.
    [6] Zhaedi A. Solar photovoltaic energy: latest developments in the building integrated and hybrid PV systems[J]. Review Energy, 2006, 31(5): 711-718.
    [7] Kazmerski L. L. Solar photovoltaics R & D at the tipping point: A 2005 technology overview[J]. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150(2-3): 105-135.
    [8] Chapin D. M, Fuller C. S, Pearson G. L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. Journal of Applied Physics, 1954, 25(5): 676-77.
    [9]应根裕.光电导物理及其应用[M].电子工业出版社,1990.14-16.
    [10] Goetzberger A, Hebling C, Schock H W, et al. Photovoltaic materials, history, tatus and outlook[J]. Materials Science and Engineering, 2003, 40: l-46.
    [11]梁宗存,沈辉.太阳能电池研究进展[J].能源工程,2004, 4: 8-11.
    [12]倪萌, Leung M. K, Sumathy K.太阳能电池研究的新进展[J].可再生能源2004, 114(2): 9- 11.
    [13] Konovalov I. Material requirements for CIS solar cells[J]. Thin Solid Films, 2004, 451-452(4):413-419.
    [14] Andersson B. A, Azar C, Holmberg J. Material constraints for thin-film solar cells[J]. Enegry, 1998, 23(5): 407-411.
    [15]胡晨明.太阳电池[M].北京:北京大学出版社, 1990.55-58.
    [16]董晓刚.太阳能电池用多层膜的制备和研究[M].大连交通大学, 2006.22-26.
    [17]王文采.太阳能电池[J].现代物理知识, 2003 , (6) : 5-6.
    [18]徐慢,夏冬林,赵修建,等.薄膜太阳能电池[J].材料导报, 2006 , (9) :109-111.
    [19]卢景霄,张宇翔,王海燕,等.硅太阳电池稳步走向薄膜化[J].太阳能学报, 2006, (5): 444- 450.
    [20]赵玉文.太阳能电池进展[J].物理, 2004, (2) : 99-105.
    [21]何月.太阳能电池春意盎然[J].电子产品世界, 2001, (3) :61-62.
    [22]钱勇之.单晶硅太阳电池的新进展[J].稀有金属, 1993 , 17(1) :55-60.
    [23]成志秀,王晓丽.太阳能光伏电池综述[J].信息记录材料, 2007 ,8 (2) :41-47.
    [24]梁宗存,沈辉,李戬洪.太阳能电池及材料研究[J].材料导报, 2000 ,14 (8) :38-40.
    [25] Adolf G, Christopher H. Photovoltaic materials, past, present, future. Solar Energy Materials and SolarCells, 2000, 62:1-19.
    [26]罗雪莲,吴麟章,江小涛,等.太阳能电池及其应用[J].武汉科技学院学报, 2005 ,18 (10): 36-38.
    [27]张宇翔.太阳能电池用多晶硅薄膜的制备研究[M].郑州大学: 2005.46-50.
    [28]杨德仁.太阳电池用多晶硅材料的现状和发展[J].中国建设动态(阳光能源), 2007 , (1): 36-39.
    [29]张力,薛钮芝.非晶硅太阳电池的研发进展[J].太阳能, 2004, 2: 24-26.
    [30]郝国强,张德贤.非晶硅太阳能电池的新进展[J].飞通光电子技术, 2002, 2(4): 190-193.
    [31]宋红,耿新华.非晶硅太阳电池的原理[J].太阳能, 2002, 4: 13-14.
    [32]耿新华,孙云,王宗畔.薄膜太阳电池的研究进展[J].物理学和经济建设, 1999, 28(2): 96-102.
    [33]雷永泉,石群,石永康.新型能源材料[J].天津大学出版社, 2000, 88-91.
    [34] Enrnqueza J. P, Mathewa X, Hern G. P. CdTe/CdS Solar cells on flexible molybdenum substrates[J]. Solar Energy Materials and Solar Cells, 2004, 82(l-2): 307-314.
    [35] Romeo N, Bosio A, Tedeschi R. A highly efficient and stable CdTe/CdS thin film solar cell[J],Solar Enegry Materials and SolarCells, 1999, 58(2): 209-218.
    [36] Bonnet D. Manuafcutring of CSS CdTe solar cells[J]. Thin Solid Films, 2000, 361-362: 547-552.
    [37] Buahuis G. J, Schermer J. J, Mtllder P. Thin film GaAs solar cells with increased quantum efficiency due to light reflection[J]. Solar Enegry Materials and Solar Cells, 2004, 83(l): 81-90.
    [38] Imaizumi M, Adachi M, Fujii Y. Low-temperautre growth of GaAs polycrystalline films on glass substrates for space solar cell application[J]. Jounral of Cyrstal Growth, 2000, 221: 688-692.
    [39] Tang C. W. Two-layer organic photovoltaic cell[J]. Applied Physics Letters, 1986, 48(2): 183-185.
    [40] Sch?n J. H, Kloc C, Bucher E, et al. Efficient organic photovoltaic diodes based on doped pentacene[J]. Nature, 2000, 403: 408-410.
    [41] Sch?n J. H, Kloc C, Batlogg B. Efficient photovoltaic energy conversion in pentacene-based heterojunctions[J]. Applied Physics Letters, 2000, 77(16): 177-180.
    [42] Sch?n J. H, Kloc C, Bucher E, et al. Single crystalline pentacene solar cells[J]. Synthetic Metals, 2000, 115: 117-180.
    [43]李甫,徐建梅,张德,等.有机太阳能电池研究现状与进展[J].能源与环境,2007 , (4): 52-54.
    [44]李艳华,曾冬铭,周飞艨.染料敏化纳米晶太阳能电池的研究进展[J].新材料产业, 2005, (7): 26-29.
    [45]安佰超,乔庆东.染料敏化太阳能电池的进展及前景[J].化工科技, 2007, 15 (1): 51-54.
    [46]孟庆波,林原.固态纳晶染料敏化太阳能电池研究进展[J].新材料产业,2006 , (8): 66-69.
    [47] Regan B, Gr?tzel M. A low-cost, high-efficiency solar cells based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 335: 737-739.
    [48] Saito Y, Fukuri N, Senadeera R, et al. Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor[J]. Electrochemistry Communications, 2004, 6: 71-74.
    [49]刘刚,余岳辉,史济群等.半导体器件-电力,敏感,光子,微波器件[M].电子工业出版社, 2000.88-96.
    [50]田等先,龚全宝,张幼平,等.半导体光电器件[M].机械工业出版社, 1982.55-60.
    [51]张松祥,胡齐丰.光辐射探测技术[M].上海交通大学出版社, 1998.102-110.
    [52]齐丕智等.光敏感器件及其应用[M].科学出版社, 1987. 57-62.
    [53] (德) Gerhard Lutz著,刘忠立译.半导体辐射探测器[M]. Semiconductor Radiation Detectors, 2004.66-72.
    [54] King S. L, Gardenlers J. G. E, Boyd I. W. Pulsed-laser deposited ZnO for device application[J]. Appl. Surf. Sci, l996, 811: 96-98.
    [55] Klingshirn. The Luminescence of ZnO under Oneand Two-Quantum Excitation[J]. Phys. Status Solid (b), 1975,71(2): 547.
    [56]宋词,杭寅,徐军.氧化锌晶体的研究进展[J].人工晶体学报, 2004,33(1): 81-87.
    [57] Fung S, Xu X. L, Zhao Y. W. Galium/alurninum interdiffudion between n-GaN and sapphire[J]. Journal of Applied Physics, 1998, 84(4): 2355-2359.
    [58] Xu X. L, Beling C. D, Fung S. Formation mechanism of degenerate thin layer at the interface of a GaN/sapphire system[J]. Applied Physics Letters, 2000, 76(2): 152-154.
    [59] Wang Z. L. Zinc oxide nanostructures: growth, properties and Applications[J], J. Phys. :Condens. Matter 2004,16: 829–858.
    [60] Kong Y. C, Yu D. P, Zhang B, et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach[J]. Appl. Phys. Lett., 2001, 78(4):407-409.
    [61] Lyu S. C, Zhang Y, Ruh H, et al. Low temperature growth and photoluminescence of well-aligned zinc oxid nanowires[J]. Chem. Phys. Lett., 2002, 363(1-2): 134-138.
    [62] Yan H. Q, He R. R, Pham J, et al. Morphogenesis of One-Dimensional ZnO Nano- and Microcrystals[J]. Advanced Material, 2003,15(5): 402-405.
    [63] Wen J. G, Lao J. Y, Wang D. Z, et al. Self-assembly of semiconducting oxide nanowires, nanorods, and nanoribbons[J]. Chem. Phys. Lett., 2003, 372(5-6): 717-722.
    [64] Wang Z. L, Kong X. Y, Ding Y, et al. Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces[J]. Advanced Functional Material, 2004, 14(10): 943-956.
    [65]章金兵,许民,周小英,等.固相法合成纳米氧化锌[J].无机盐工业, 2005, 37(7): 18-20.
    [66]雅著,徐明霞.溶胶-凝胶技术在氧化物薄膜制备方面的应用[J].材料工程, 1996, 5: 21-23.
    [67]孙尚梅,赵莲花,康振晋.溶胶一凝胶技术及其在绿色无机合成化学与新型材料制备中的近期应用进展[J].延边大学学报:自然科学版, 2005, 31(1): 42-48.
    [68]李宁,卢迪芬,陈森风.溶胶一凝胶发制备薄膜的研究进展[J].玻璃与搪瓷, 2004, 32(6): 50-55.
    [69] Liu Y. F, Zheng J. H, Zhang W. X, et al. Solvothermal route to Bi3Se4 nanorods at low temperature[J]. J. Mater. Res. 2001, 16: 3361-3365.
    [70] Choy J. H, Jang E. S, Won J. H, et al. Soft Solution Route to Directly Grown ZnO Nanorod Arrays on Si Wafer: Room Temperature Ultraviolet Laser[J]. Adv.Mater. 2003, 15: 1911-1914.
    [71] Tong Y. H, Liu Y.C, Shao C. L, et al. Structural and optical properties of ZnO nanotower bundles[J]. Appl.Phys.Lett. 2006, 88: 123111.
    [72]叶皓,熊金平,赵旭辉.电沉积纳米ZnO薄膜[J].材料保护, 2003, 36(4): 41-45.
    [73]张宇,王刚,崔一平.氧化锌薄膜的电化学沉积法制备及受激发射研究[J].中国激光, 2004, 31(l): 97-100.
    [74] Fbaricius H, Skettrup T, Bisgaard P. Ultraviolet detectors in thin sputtered ZnO films[J]. Applied Optics, 1986, 25(2): 764-766.
    [75] Liu Y, Gorla C. R, Liang S. Ultraviolet detectors based on ZnO films grown by MOCVD[J]. Jounral of Electronic Materials, 2000, 29(l): 60-65.
    [76]吕建国,陈汉鸿,叶志镇. ZnO薄膜的研究与开发应用进展[J].压电与声光, 2002, 24(6): 463-467.
    [77]章天金,石豪爽.应用射频磁控溅射方法制备表面期间用ZnO薄膜[J].湖北大学学报:自然科学版, 2002, 24(3): 232-234.
    [78]李春明,刘会冲,徐花蕊.纳米ZnO材料的制备与应用研究进展[J].材料导报, 2003, 17(5): 39-78.
    [79]吕建国,叶志镇. ZnO薄膜的最新研究进展[J].功能材料, 2002, 33(6): 581-587.
    [80]刘彦松,王连卫,黄继颇.利用ZnO缓冲层制备AIN薄膜[J].压电与声光, 2000,22(5): 322-325.
    [81]吕建国,汪雷,叶志镇. ZnO薄膜应用的最新研究进展[J].功能材料与器件学报, 2002, 8(3): 302-305.
    [82]吕建国,叶志镇,黄靖云.退火处理对ZnO薄膜结晶性能的影响[J].半导体学报, 2003, 24(7): 729-736.
    [83] Look D. C, Reynods D. C, Hemsky J. W. Production and annealing of electron irradiation damage in ZnO[J]. Applied Physics Letters, 1999, 75(6): 811-813.
    [84] Sang B. S, Dairiki K, Yamada A. High-efficiency amorphous silicon solar cells with ZnO as front contact[J]. Japanese Journal of Applied Physics, 1999, 38(9A): 4983-4988.
    [85] Kornaru T, Shimizu S, Kanbe M. Optimization of transparent conductive oxide for improved resistance to reactive and/or high Temperature optoelectric device Processing[J]. Japanese Journal of Applied Physics, 1999, 38(10): 5796-5804.
    [86] Law M, Greene L. E, Johnson J. C, et al. Nanowire dye-sensitized solar cells [J]. Nature materials, 2005, 4: 455-459
    [87] Dittrich T, Kieven D, Rusu M, et al. Current-voltage characteristics and transport mechanismof solar cells based on ZnO nanorods/In2S3 /CuSCN [J]. Applied Physics Letters, 2008, 93: 053113
    [88] Olson D. C, Shaheen S. E, Collins R. T, et al. The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices [J]. Journal of Physical Chemistry C, 2007, 111: 16670-16678
    [89] Liu J, Wang S, Bian Z, et al. Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires [J]. Applied Physics Letters, 2009, 94: 173107
    [90] AéL, Kieven D, Chen J, et al. ZnO nanorod arrays as an ntireflective coating for u(In,Ga)Se2 thin film solar cells [J]. Progress in Photovoltaics: Research and Applications, 2010, 18: 09-213
    [91] Jasenek A, Rau U, Weinert K. Radiation resistance of Cu(In,Ca)Se2 solar cells under 1-MeV electron irradiation[J]. Thin Solid Films, 2001,387(1-2): 228-230.
    [92] PeiróA. M, Ravirajan P, Govender K, et al. Hybrid polymer metal oxide solar cells based on ZnO columnar structures[J]. Journal of Materials Chemistry, 2006, 16: 2088-2096.
    [93] Ravirajan P, PeiróA. M., Nazeeruddin M. K, et al. Hybrid Polymer Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer[J]. The Journal of Physical Chemistry part B, 2006, 110: 7635-7639.
    [94] Beek W. J. E, Wienk M. M, Janssen R. A. J. Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles[J]. Advanced Functional Materials, 2006, 16: 1112-1116.
    [95] Brabec C. J, Dyakonov V, Sariciftci N. S, et al. Investigation of photoexcitations of conjugated polymer/fullerene composites embedded in conventional polymers[J]. Journal of Chemical Physics, 1998, 109: 1185-1195.
    [96] Shirakawa T, Umeda T, Hashimoto Y, et al. Effect of ZnO layer on characteristics of conducting polymer C60 photovoltaic cell[J]. Journal of Physics D: Applied Physics, 2004, 37: 847-850.
    [97] Umeda T, Shirakawa T, Fujii A, et al. Improvement of Characteristics of Organic Photovoltaic Devices[J]. Japanese Journal of Applied Physics, 2003, 42: 1475-1477.
    [98] Takanezawa K, Hirota K, Wei Q. S, et al. Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices[J]. The Journal of Physical Chemistry C 2007, 111, 7218-7223.
    [99] Jongh P. E. D, Vanmaekelbergh D. Trap-limited electronic transport in nanometer-size TiO2 particles[J]. Journal of physical Review Letters, 1996, 77: 3427-3430.
    [100]丛秋滋.多晶二维X射线衍射[M].科学出版, 1997.34-46.
    [101]马金鑫,朱国凯.扫描电子显微镜入门[M].科学出版, 1985.48-63.
    [102]沈学础.半导体光学性质[M].科学出版社, 2001.76-81.
    [103] Pankove J. I. Optical Processes in Semicounductor[J]. Pretice-Hall, Englewood Clifts, 1971.
    [104] Kim H. M, Kim D. S, Kim D. Y, et al. Growth and characterization of single-crystal GaN nanorods by hydride vapor phase epitaxy[J]. Appl.Phys.Lett., 2002,81: 2193-2195.
    [105] Morales A. M, Lieber C. M. A Laser Ablation Method for the Synthesis of CrystallineSemiconductor Nanowires[J]. Science, 1998, 279: 208-211.
    [106] Zhang X. T, Liu Z, Leng Y. P, et al. Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition[J]. Appl. Phys. Lett., 2003, 83,: 5533-5535.
    [107] Kim T. W, Kawazoe T, Yamazaki S, et al. Low-temperature orientation-selective growth and ultraviolet emission of single-crystal ZnO nanowires[J]. Appl. Phys.Lett., 2004, 84: 3358-3360.
    [108] Zhao Q. X, Willander M, Morjan R. E, et al. Optical recombination of ZnO nanowires grown on sapphire and Si substrates[J]. Appl. Phys. Lett., 2003, 83: 165-167.
    [109] Banerjee D, Lao J. Y, Wang D. Z, et al. Large-quantity free-standing ZnO nanowires[J]. Appl.Phys.Lett., 2003, 83: 2061-2063.
    [110] Zhang B. P, Binh N. T, Segawa Y, et al. Optical properties of ZnO rods formed by metalorganic chemical vapor deposition[J]. Appl. Phys.Lett., 2003, 83: 1635-1637.
    [111] Heo Y. W, Varadarajan V, Kaufman M, et al. Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy[J]. Appl. Phys. Lett., 2002, 81: 3046-3048.
    [112] Chik H, Liang J, Cloutier S. G, et al. Periodic array of uniform ZnO nanorods by second-order self-assembly[J]. Appl. Phys. Lett., 2004, 84: 3376-3378.
    [113] Park W. I, Yi G. C. Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN[J]. Adv. Mater., 2004, 16: 87-90.
    [114] Meng X. M, Liu J, Jiang Y, et al. Structure- and size-controlled ultrafine ZnS nanowires[J]. Chem. Phys. Lett., 2003, 382: 434-438.
    [115] Wang Y. W, Zhang L. D, Liang C. H, et al. Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires[J]. Chem. Phys. Lett., 2002, 357: 314-318.
    [116] Baganall D. M, Chen Y. F, Zhu Z, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers[J]. Appl. Phys. Lett., 1998, 73: 1038-1040.
    [117] Jung S. W, Park W. I, Cheong H. D, et al. Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy [J]. Appl. Phys. Lett., 2002, 80: 1924-1926.
    [118] Yi G. C, Park W. ZnO Nanoneedles Grown Vertically on Si Substrates by Non-Catalytic Vapor-Phase Epitaxy[J]. Adv. Mater., 2002, 14(24): 1841-1843.
    [119] Hung N. C, Wang G. Z, Yan M. Y, et al. New method of producing well-alignes ZnO nanorods on a Si-SiO2 substrate[J]. J. Mater.Res., 2004, 19(8): 2226-2229.
    [120] Som T, Satpati B, Satyam P. V, et al. Nanomixing: A way to synthesize surface nanoalloys[J]. J.Appl. Phys., 2004, 97: 014305.
    [121] Gao P. X, Ding, Y, Mai W. J, et al. Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices[J]. ,Science, 2005, 309: 1700-1704.
    [122] Tseng Y. K, Huang C. J, Cheng H. M,et al. Characteristion and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films[J].Adv.Mater., 2003, 13: 811-814.
    [123] Vayssierses L. Growth of Arrayed Nanorods and Nanowires of ZnO From Aqueous Solutions[J]. Adv.Mater., 2003, 15: 464-466.
    [124] Lin Y. Y, Chen C. W, Yen W. C, et al. Near-ultraviolet photdetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes[J]. Applied Physics Letter, 2008, 92: 233301.
    [125] Baxter B. J, Aydil S. E. Nanowier-based dye-sensitized solar cells[J]. Appl. Phys. Lett., 2005, 86: 053114.
    [126] Li Q. H, Liang Y. X, Wan Q, et al. Oxygen sensing characteristics of individual ZnO nanowire transistors[J]. Appl. Phys. Lett., 2004, 85: 6389-6391.
    [127] Wang H. T, Kang B. S, Ren F, et al. Hydrogen-selective sensing at room temperature with ZnO nanorods[J]. Appl. Phys. Lett., 2005, 86: 243503.
    [128] Wang J. X, Sun X. W, Wei A, et al. Zinc oxide nanocomb biosensor for glucose detection[J]. Appl. Phys. Lett., 2006, 88: 233106-233108.
    [129] Fan Z. Y, Wang D. W, Chang P. C, et al. ZnO nanowire field-effect transistor and oxygen sensing propert[J]. Appl. Phys. Lett., 2004, 85: 5923-5925.
    [130] Sun B. Q, Sirringhaus H. Solution-Processed Zinc Oxide Field-Effect Transistors Based on Self-Assembly of Colloidal Nanorods[J]. Nano. Lett., 2005, 5: 2408-2413.
    [131] Zhu Y. W, Zhang H. Z, Sun X. C, et al. Efficient field emission from ZnO nanoneedle arrays[J]. Appl. Phys. Lett., 2003, 83: 144-146.
    [132] Dong L. F, Jiao J, Tuggle W. D, et al. ZnO nanowires formed on tungsten substrates and their electron field emission properties[J]. Appl. Phys. Lett., 2003, 82: 1096-1098.
    [133] Li H. G, Wu G, Shi M. M, et al. ZnO/poly(9,9-dihexylfluorene) based inorganic/organic hybrid ultraviolet photodetector[J]. Applied Physics Letter, 2008, 93: 153309.
    [134] Beek W. J, Wienk M. M, Janssen R. A. Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles[J]. Adv. Func. Mater., 2006, 16(8): 1112-1116.
    [135] Zhu D, He Q, Cao H, et al. Poly(phenylene ethynylene)-coated aligned ZnO nanorod arrays for 2,4,6-trinitrotoluene detection[J]. Appl. Phys. Lett., 2008, 93(26): 261909.
    [136] Li F, Cho S. W, Son D. I, et al. UV photovoltaic cells based on conjugated ZnO quantum dot/multiwalled carbon nanotube heterostructures[J]. Appl. Phys. Lett., 2009, 94(11): 111906.
    [137] Yoo Y. Z, Jin Z. W, Chikyow T, et al. S doping in ZnO film by supplying ZnS species with pulsed-laser-deposition method[J]. Appl. Phys. Lett. 2002, 81: 3798-3800.
    [138] Bernard J. E, Zunger A. Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys[J]. Phys. Rev. B, 1987, 36: 3199-3228.
    [139] Lee H, Leventis H.C, Moon S, et al. PbS and CdS Quantum Dot-Sensitized Solid-State Solar Cells:“Old Concepts, New Results”[J]. Adv. Func. Mater., 2009,19: 2735-2742.
    [140] Lira-Cantu M, Krebs F. C. Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2–TiO2) Performance improvementduring long time irradiation[J]. Sol. Energy Mater. Sol. Cells., 2006, 90: 2076-2086.
    [141] Huang M. H, Mao S, Feick H, et al. Room-Temperature Ultraviolet Nanowire Nanolasers[J]. Science, 2001, 292: 1897-1899.
    [142] Olson D. C, Shaheen S. E, White M. S, et al. Band-Offset Engineering for Enhanced Open-Circuit Voltage in Polymer–Oxide Hybrid Solar Cells[J]. Adv. Func. Mater., 2007, 17: 264-269.
    [143] Baker D. R, Kamat P. V. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures[J]. Adv. Func. Mater., 2009, 19: 805-811.
    [144] Tak Y, Hong S. J, Lee J. S, et al. Solution-Based Synthesis of a CdS Nanoparticle/ZnO Nanowire Heterostructure Array[J]. Cryst. Growth Des., 2009, 9: 2627-2632.
    [145] Im S. H, Chang J. A, Kim S. W, et al. Near-infrared photodectection based on PbS colloidal quantum dots/organic hole conductor[J]. Organic Electronics, 2010, 11: 696-699.
    [146] Hoyer P, Konenkamp R. Photoconduction in porous TiO2 sensitized by PbS quantum dots[J]. Appl. Phys. Lett., 1995, 66: 349-351.
    [147] Plass R, Pelet S, Krueger J, et al. Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells[J]. J. Phys. Chem. B, 2002, 106(31): 7578-7580.
    [148] Wang L. D, Zhao D. X, Su Z. S, et al. High spectrum selectivity organic/inorganic hybrid visible-blind ultraviolet photodetector based on ZnO nanorods[J]. Organic Electronics, 2010, 11: 1318-1322.
    [149] Gunes S, Fritz K. P, Neugebauer H, et al. Hybrid solar cells using PbS nanoparticles[J]. Sol. Energy Mater. Sol. Cells., 2007, 91: 420-423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700