用户名: 密码: 验证码:
阵列雷达SAR-GMTI关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(SAR)是现代雷达的一项突破性成就。它具有全天候、全天时和远距离成像的特点,能够从空中实时提供类似光学照片的二维地物地貌图像并且具有良好的空间分辨能力和辐射测量保真度,它的优良性能使它在军事和民用上都得到非常广泛的应用。SAR的初衷是针对地面静止场景成像而发展起来的,在常规的SAR图像中,地面运动目标图像会出现距离走动、散焦、方位位置偏移等现象,动目标往往只能以模糊的形式叠加在静止场景SAR图像上。在实际的应用中,特别是在军事的应用上,人们总是希望通过SAR图像来进行地面动目标检测(GMTI)并将其标注在场景的SAR图像上,SAR-GMTI技术就这样应运而生了。多通道SAR比单通道SAR能够提供更多的系统自由度。就实现GMTI功能而言,雷达阵列沿航向直线分布为最优构型,可以获得最优的杂波抑制性能,能够在地杂波或者海杂波中清楚地区分出运动目标并且能够正确地估计出其运动参数,因而被广泛地应用于战场感知和侦察中。
     目前世界上许多国家都在大力研究基于SAR的多通道地面运动目标检测和定位技术,努力寻求各种高效、实用的动目标检测方法。本文在深入分析国内外SAR-GMTI研究成果的基础上,对合成孔径雷达动目标检测和成像机理进行了较为详细的研究和分析,重点研究了沿航迹正侧视阵列雷达实现SAR-GMTI时所需解决的通道均衡、杂波抑制以及运动目标参数估计等问题。论文的主要内容可概括为以下四个部分:
     1.针对多通道均衡问题,提出了一种对强目标信号污染稳健的自适应通道盲均衡算法。该方法在获得SAR图像的基础上,根据功率挑选准则选取数据样本矢量,并对其模进行归一化处理,对模归一化矢量的协方差矩阵进行特征分解后取其最大特征值对应的特征矢量,最后再将原始数据矢量的各分量除以该特征矢量的对应分量,从而达到均衡通道幅相误差的目的。理论分析、仿真实验和某机载实测数据的处理结果表明该方法能够有效地均衡通道响应误差,对强干扰或目标信号的污染具有稳健性。
     2.针对图像配准误差严重影响传统GMTI算法的目标检测性能的问题,提出了SAR图像域基于联合相关导向矢量模型的自适应目标检测及测速定位方法。该方法在很大程度上增加了系统的自由度,大大提高了系统的杂波抑制性能。仿真实验表明该方法对图像配准误差具有较强的稳健性,在图像配准误差达到一个像素的情况下仍能获得良好的目标检测性能和较高的测速定位精度。
     3.提出了一种稳健的特征子空间投影杂波抑制方法。在理想情况下,传统的特征子空间投影方法具有良好的杂波抑制性能,然而在实际中存在强干扰或目标信号污染时,其杂波抑制性能会受到严重的影响。为此,本文提出了一种新的特征子空间投影方法,理论分析表明该方法对强干扰或目标信号污染具有稳健性。仿真实验和实测数据处理验证了方法的有效性。
     4.提出了一种基于模归一化矢量的自适应波束形成方法。该方法在杂波抑制和目标检测基础上实现SAR-GMTI中的目标定位。它首先利用次优权进行杂波抑制,然后针对目标所在的位置利用最优权进行目标径向速度搜索运算,根据输出信杂噪比最大准则估计目标径向速度,最后在SAR图像上对目标的真实位置进行标定。该方法有效降低了目标信号污染的影响。仿真实验和机载实测数据处理结果验证了该方法的有效性和稳健性。
Synthetic aperture radar (SAR) is a great achievement of modern radar. Like various optical sensors, SAR can provide a two-dimensional image of a scene with good spatial resolution and high precision of radiation measurement, with the advantages of all-weather working, and long-range surveillance. Therefore, SAR is of great value for both civilian and military applications. Traditional SAR radars simply take the“picture”of a stationary scene. If moving targets exist, however, the SAR image will become blurred. A moving target with radial velocity on the SAR image will exhibit displaced from its true position, and the motion in the azimuth direction will cause its image to be dispersed along azimuth. In practical applications, especially in military application, it is always expected to achieve ground moving target indication (GMTI) by using SAR sensors and to relocate ground moving targets on the SAR image of the scene. This technique is called SAR-GMTI. Since along-track multi-channel SAR can provide more degrees of freedom than single channel one, along-track multi-channel SAR, as the optimal system geometry, provides the powerful ability to suppress the land/sea clutter for target detection and parameter estimation. Thus it has been used extensively for air-to-ground surveillance and reconnaissance purposes.
     In recent years, many countries around the world have been making great effort to develop spaceborne/airborne radar for GMTI based on multi-channel SAR, explore new SAR-GMTI technologies and design highly efficient detection and location algorithms. Based on the extensive investigation of the airborne SAR-GMTI, this thesis presents SAR-GMTI theory and investigates moving target detection, parameter estimation and imaging approaches. We deal mainly with channel equalization, clutter suppression and moving parameter estimation in SAR-GMTI for along-track side-looking array radar.
     The main work of the thesis is summarized as follows:
     1. To deal with channel equalization, an adaptive blind channel equalization approach, which can mitigate the influence of strong target signals or interferences contamination, is proposed for multi-channel SAR-GMTI system. Based on the obtained SAR images, firstly, the method chooses pixel data vectors with relatively strong power and enables these vectors modulus-normalized. Secondly, these modulus-normalized vectors are used to construct the covariance matrix and then the eigen-decomposition of the covariance matrix is performed. The eigenvector associated with the largest eigenvalue contains the information regarding the channel imbalance. Finally, the channel imbalance is corrected by dividing each element of the original pixel data vector by the corresponding element of the eigenvector associated with the maximum eigenvalue. The validity and robustness of the proposed approach are confirmed by theoretical analysis and the real data processing.
     2. For the multi-channel SAR-GMTI system, the presence of large image coregistration errors will have serious influence on the performance of the clutter suppression and the precision of parameter estimation. To deal with the problem, a new adaptive approach based on joint correlation steering vector for moving target detection is proposed. The method, in general, can increase the degrees of freedom of adaptive processing, and as a result, its performance of clutter suppression is greatly improved. It has good robustness to image coregistration errors, and can provide accurate estimates of the radial velocities of ground moving targets. The validity and superiority of this method are verified by the simulated data.
     3. A robust eigen-subspace projection approach to clutter suppression is proposed for a multi-channel SAR system. In an ideal environment, the conventional eigen-subspace projection method can offer a perfect performance of clutter suppression. In practice, however, it suffers seriously from strong target signals or interferences contamination. To deal with this problem, a new eigen-subspace projection method is presented. Performance analysis shows that the method is robust to strong target signals or interferences contamination. Simulation results and the real data processing confirm the validity of the method.
     4. An adaptive beamforming method based on modulus-normalized vector is proposed. It uses the suboptimal weight vector to suppress clutter and then searches target radial velocity at the detected position of the target using the optimal weight vector. The radial velocity can be estimated according to the criterion of the maximum signal-to-clutter plus noise ratio output. Finally, the moving target can be correctly relocated on the SAR image according to the estimated radial velocity. This method can mitigate the influence of target signals or interferences contamination. Simulation results and the airborne radar real data processing confirm the validity and robustness of the proposed method.
引文
[1] W. G. Carrara, R. S. Goodman, R. M. Majewski. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. Boston: Artech House, 1995.
    [2] G. Franceschetti, R. Lanari. Synthetic Aperture Radar Processing. Boca Raton London New York Washington, D. C. : CRC Press.
    [3] M.Soumekh. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms. John Wiley & Sons Inc, 1999.
    [4] M. Soumekh. Fourier Array Imaging. Prentice Hall Inc, 1994.
    [5]张澄波.综合孔径雷达原理、系统分析与应用.北京:科学出版社, 1989.
    [6]刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社, 1999.
    [7]郭华东.雷达对地观测理论与应用.北京:科学出版社,2000.
    [8]魏钟铨.合成孔径雷达卫星.北京:科学出版社, 2001.
    [9] M I Skolnik.王军等译.雷达手册.北京:电子工业出版社, 2003.
    [10]袁孝康.星载合成孔径雷达导论.北京:国防工业出版社,2003.
    [11]张直中.机载和星载合成孔径雷达导论.北京:电子工业出版社, 2004.
    [12]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [13]王超,张红,刘智.星载合成孔径雷达干涉测量.北京:科学出版社,2002.
    [14] C. W. Sherwin, J. P. Ruina, R. D. Rawcliffe. Some Early Developments in Synthetic Aperture Radar Systems. IRE Trans. On military electronics, 1962, Vol. 6(2): 111-115.
    [15] W. M. Brown, L J Porcello. An Introduction to Synthetic Aperture Radar. IEEE Spectrum, 1969 September, 52-62.
    [16] L. J. Cutrona et al. On the Application of Coherent Optical Processing Techniques to Synthetic Aperture Radar. PIEEE, 1966, Vol.54(8):1026-1032.
    [17] J C. Kirk. Digital synthetic aperture radar technology. IEEE International Radar Conference, 1975.
    [18] C. Elahci, T.Bicknell, R. L. Jordan, and C. Wu, Spaceborne synthetic aperture imaging radars: application, techniques, and technology, Proc. Of IEEE, 1982, Vol.70(10):1174-1209.
    [19] F.Li, R.K.Raney. Prolog to the Special Section on Spaceborne Radars for Earth and Planetary Observations. Proc. IEEE, 1991,Vol.79(6): 773-776.
    [20] Jone C.Curlander. Performance of the SIR-B Digital Imaging Processing Subsystem. IEEE Trans. on Geoscience and Remote Sensing, 1986, 24(4):649-652.
    [21]何映霞.机载SAR运动目标实时检测方案若干技术问题的研究.中科院电子所博士论文, 2000. 8.
    [22]张直中.机载和星载合成孔径雷达导论.电子工业出版社, 2004.
    [23] Attema, E.P.W. The Active Microwave Instrument On-board the ERS-1 Satellite. Proc. of the IEEE, 1991, 79 (6):791-799.
    [24] Way, J., et al. The Evolution of Synthetic Aperture Radar Systems and Their Progression to the EOS SAR. IEEE Trans. on GE, 1991, 29(6).
    [25] Nemoto, Y., et al. Japanese Earth Resources Satellite-1 Synthetic Aperture Radar. Proc. of the IEEE, 1991, 79(6):800-809.
    [26] G.Canavan, D.Thompson and I. Bekey, Distributed Space System, in New World Vistas, Air and Space Power for the 21st Century, United States Air Force, 1996.
    [27] D.Massonnet, The Interferometric Cartwheel:a Constellation of Passive Satellites to Produce Radar Images to be Coherently Combined, International Journal of Remote Sensing , 2001,Vol.22(12):2413-2430.
    [28] Zhenfang Li, Hongyang Wang ,Tao Su and Zheng Bao , Generation of Wide-swath and High-resolution SAR Images from Multichannel Small Spaceborne SAR Systems. IEEE Geoscience and Remote Sensing Letters, 2005,.Vol2(1):82-86.
    [29] M.Bashkansky, R.L.Lucke, E.Funk, L.J.Rickard, etc, Two-dimensional synthetic aperture imaging in the optical domain. Optics Letters, 2002, Vol.27(22):1983 -1985.
    [30] G.R.Sloank, D.F.Dubbert. Affordable, miniaturized SAR for tactical UAV application,Proc. Of SPIE, 2004, Vol. 5409, pp:74-83.
    [31] Zhu Xixing, Zhu Minhui, The development of on-board imaging processor for airborne SAR in China. EUSAR'96, Germany.
    [32]张直中.九十年代合成孔径雷达的发展简况.第七届全国雷达学术年会, 1999.11.
    [33]《CSAR-2003会议》论文集.第一届中国合成孔径雷达会议,合肥, 2003年12月1日至4日.
    [34]《CSAR-2005会议》论文集.第二届中国合成孔径雷达会议,南京, 2005年11月2日至5日.
    [35]袁运能,孙进平,王俊,毛士艺.聚束SAR的快速卷积反投影算法,电子学报,2002, Vol.30(6):864-867.
    [36]王国栋,周荫清,李春升.星载聚束式SAR改进的Frequency Scaling成像算法.电子学报, 2003, Vol.31(3): 381-385.
    [37]穆东,朱兆达,张焕春.干涉合成孔径雷达成像技术研究.遥感技术与应用,2000,Vol.15(4):256-260.
    [38]孙泓波,顾红,苏卫民,刘国岁.基于互Wigner-ville分布的SAR运动目标检测.电子学报. 2002, Vol. 30(3): 348-350.
    [39]刘光炎,黄顺吉. SAR成像处理中多普勒频率的新应用.电子学报,2003, Vol. 31(6): 829-832.
    [40] Zhenfang Li, Zheng Bao, Hai Li and Guisheng Liao. Image Auto-Coregistration and InSAR Interferogram Estimation using Joint Subspace Projection. IEEE Trans. On GRS, 2006, Vol. 44(2): 288-297.
    [41] Keith R Raney. Synthetic aperture imaging radar and moving targets. IEEE on Trans. on AES, 1971, Vol. 7(3): 499-505.
    [42] A. Freeman,A. Currie. Synthetic aperture radar images of moving targests. GEC Journal of Research, 1987, Vol. 5(2): 106-115.
    [43]李燕平,邢孟道,保铮.无人机载SAR实时成像的运动补偿方法. CSAR 2005,南京,2005.11,pp: 98-101.
    [44]周峰,邢孟道,保铮.一种UAV机载SAR运动补偿的方法. CSAR2005,南京,2005.11,pp: 182-186.
    [45]周峰,李真芳,保铮.基于两视处理的单通道SAR地面运动目标检测和定位方法.西电学报,2006,Vol. 33(5): 673-677.
    [46] KAZUO.OUCHI. On the mutlilook images of moving targets by synthetic Aperture Radars. IEEE Trans on AP, 1985, Vol. 33(8): 823-827.
    [47]陈广东,朱兆达,朱岱寅.抑制SAR图像中静止背景检测慢速动目标.电子与信息学报,2005,Vol.27(8):1229-1232.
    [48]陈广东,朱兆达,朱岱寅.分数傅立叶变换用于抑制SAR杂波背景检测慢速动目标.航空学报,2005,Vol.26(6):748-753.
    [49]陈广东,朱兆达,朱岱寅,江伟光.检测SAR图像中径向慢速动目标.电子与信息学报,2005,Vol.27(9):1361-1364.
    [50] Barbarossa, S., Farina, A. Detection and imaging of moving objects with synthetic aperture radar. Part 2: Joint time-frequency analysis by Wigner-Ville distribution. IEE Proc. F , 1992, Vol.139 (1): 89-97.
    [51]李真芳,保铮,杨凤凤.基于成像的分布式卫星SAR系统地面动目标检测及定位技术.中国科学(E), 2005,Vol.35(6):597-609.
    [52] Li, Z., Bao, Z., Yang, F. Ground moving target detection and location based on SAR images for distributed spaceborne SAR. Science In China Proc.F., 2005, Vol.48 (5) :632-646.
    [53] Xing, M., Wu, R., Bao, Z. High resolutio ISAR imaging of high speed moving targets. IEE Proc. Radar Sonar Navig., 2005, Vol.152(2):58-67.
    [54] Ju, D., Xue, N., Munson, D.C., Jr. An analysis of time-frequency methods in SAR imaging of moving targets. Proc. IEEE, USA, 16-17 March 2000, pp. 221-225.
    [55]周峰,李亚超,邢孟道,保铮.一种单通道SAR地面运动目标成像和运动参数估计方法.电子学报, 2007, Vol.35(3):62-67.
    [56] R.P., Dipietro, R.C., Fante, R.L. SAR imaging of moving targets. IEEE Trans. Aerosp. Electron. Syst., 1999, Vol.35(1): 188-200.
    [57] J R Moreira, W Keydel. A new MTI-SAR approach using the reflectivity displacement method. IEEE Trans on GRS,1995, Vol.33(5):1238-1244.
    [58] Dias, Jose.M.B., Marques, Paulo.A.C. Multiple moving target detection and trajectory estimation using a single SAR sensor. IEEE Trans.On AES, 2003, Vol.29(2):604-624.
    [59] Mao, Y., Chen, G., Wang, J. SAR/ISAR imaging of multiple moving targets based on combination of WVD and HT. Proc. Radar,1996,8-10 Oct., pp. 342-345.
    [60] Wang, H.S.C. Mainlobe Clutter Cancellation by DPCA for Space-Based Radars, Aerospace Applications Conference, 1991. Digest, 1992 IEEE, 3-8 Feb 1991: 1-128.
    [61] Lightstone L, Faubert D, Remple G. Multiple phase center DPCA for airborne radar, IEEE National Radar Conference, 1991: 36-40.
    [62] Richardson P. G. Relationships between DPCA and adaptive space-time processing techniques for clutter suppression, IEEE International Radar Conference, Paris’94: 295-300.
    [63] Nohara T. J. Comparison of DPCA and STAP for space-based radar, IEEE International Radar Conference, 1995: 113-119.
    [64] Chen Jianwen, Wang Yongliang, Huang Fukan, et al. Research on multiple phase center multiple delay taps DPCA for airborne radar, International Conference on Computational Electromagnetics and Its Applications, Beijing, China, 1999: 1-4.
    [65]陈建文.机载雷达空时自适应处理方法研究,博士学位论文,国防科技大学,2000.3.
    [66]宁蔚.机载/星载雷达地面运动目标检测方法研究,博士学位论文,西安电子科技大学,2005.
    [67] L.E.Brennan and I.S.Reed. Theory of adaptive radar, IEEE Trans on Aerosp Electron Syst, Vol. 9, Mar 1973, pp: 237-252.
    [68] J. Ward. Space-Time Adaptive Processing for Airborne Radar Systems. Lincoln Lab, Mass, Inst Technol, Lexington, MA, Tech Rep 1015, DTIC AD-A293032, 1994.
    [69] R. Klemm. Principles of Space-Time Adaptive Processing. London, U.K.: Inst Elect Eng, 2002.
    [70] Zheng Bao, Guisheng Liao, et al. Adaptive Spatial-temporal Processing for Airborne Radars. Chinese Journal of Electronics, Vol. 2, No. 1, 1993: 1-7.
    [71]廖桂生,保铮,许志勇.机载雷达空时二维自适应处理框架及其应用,中国科学(E辑),Vol. 27, No. 4, 1997: 336-341.
    [72]廖桂生,保铮,张玉洪.机载雷达时-空二维部分联合自适应处理,电子科学学刊,Vol. 15, No. 6, 1993.
    [73]廖桂生.相控阵天线AEW雷达时-空二维自适应处理,博士学位论文,西安电子科技大学,1992.
    [74]王彤.机载雷达简易STAP方法及其应用,博士学位论文,西安电子科技大学,2001.
    [75]王永良.新一代机载预警雷达的空时二维自适应处理,博士学位论文,西安电子科技大学,1994.
    [76]吴仁彪.机载相控阵雷达时空二维自适应滤波的理论与实现,博士学位论文,西安电子科技大学,1993.
    [77]张良.机载相控阵雷达降维STAP研究,博士学位论文,西安电子科技大学,1999.
    [78] J. H. G. Ender. The airborne experimental multi-channel SAR system AER-II. in Proc EUSAR Conf, Germany, 1996: 49-52.
    [79] J.H.G Ender. Signal processing for multi-channel SAR applied to the experimental SAR system AER. Intern. Radar Conf. Paris May 1994.
    [80] J. H. G. Ender. Space-time processing for multichannel synthetic aperture radar. Electronics & Communication Engineering Journal, February 1999: 29-38.
    [81] Federica Bordoni, Fulvio Gini, Fabrizio Lombardini and Lucio Verrazzani. A Class of Algorithms for Multibadeline ATI Oceanic Surface Velocity Estimation in Presence of Bimodal Doppler Spectrum. EUSAR 2002, pp117-120.
    [82] Lombardini F., Gini F., and Matteucci P. Multibaseline ATI-SAR for Robust Ocean Surface Velocity Estimation in Presence of Bimodal Doppler Spectrum. 2001. IGARSS’01. IEEE 2001 International, Vol. 1, 2001, pp578-580.
    [83] Richard E. Carnade. Dual Baseline and Frequency Along-Track Ingerferometry. IEEE 1992, pp1585-1588.
    [84] Entzminger J N, Fowler C A, Kenneally W J. Joint STARS and GMTI: past, present and future. IEEE Trans on Aerosp Electron Syst, Vol. 35, No. 2, 1999.
    [85] A Roth. TerraSAR-X Science Plan, Munich, Germany, DLR Oberpfaffenhofen, 2004.
    [86] M Suess, S Riegger, W Pitz, et al. TerraSAR-X: Design and performance. in Proc.-EUSAR, Cologne, Germany, Jun 2002: 49-52.
    [87] J. Mittermayer, H Runge. Conceptual studies for exploiting the TerraSAR-X dualreceive antenna. in Proc.-IGARSS, Toulouse, France, 2003: 2140-2142.
    [88] R Romeiser, H Breit, M Eineder, et al. On the suitability of TerraSAR-X split antenna mode for current measurements by along-track iinterferometry. in Proc.-IGARSS, Toulouse, France, 2003: 1320-1322.
    [89] H. Runge, M Eineder, G Palubinskas, et al. Traffic monitoring with TerraSAR-X. in Proc.-IRS, Berlin, Germany, 2005: 629-634.
    [90] R Romeiser, H Runge. Theoretical evaluation of several possible along-track InSAR modes of TerraSAR-X for Ocean Current Measurements. IEEE Trans on GRS, Vol. 45, No. 1, 2007: 21-35.
    [91] Livingstone C. The addition of MTI modes to commercial SAR satellites. Proc.- of 10th CASI Conference on Astronautics, Ottawa, Canada, 1998: 26-28.
    [92] Luscombe A. the Radarsat Project. IEEE Canadian Review, 1995.
    [93] SAR-GMTI processing with Canada’s Radarsat2 Satellite, IEEE, 2000.
    [94] Friedlander, B., Porat, B. VSAR: A high resolution radar system for detection of moving targets. IEE Proceeding-Radar, Sonar Navigation, Vol. 144, No. 4, 1997: 205-218.
    [95] Friedlander, B., Porat, B. VSAR: A high resolution radar system for ocean imaging. IEEE Trans on Aerosp Electron Syst, Vol. 34, No. 3, 1998: 755-776.
    [96] Iwashashi, Tsutomu Tanaka, Hirokazu. Satellite technology for environmental observation. Mitsubishi Electric Advance, 1996, 74(3):8-10.
    [97] Linnehan, Robert, Perlovsky, Mutz. Detecting multiple slow-moving targets in SAR images. 2004 Sensor Array and Multichannel Signal processing Workshop, 2004:643-647.
    [98] Lo, Martin W. Satellite-constellation design. Computing in Science & Engineering, 1989, 1(1):58-66.
    [99] Folta, David, Newman, et al. Design and implementation of satellite formations and constellations. Advances in the Astronautical Sciences, 1998, 100(1):57-70.
    [100] Paxton, Larry J, Yee, Jeng-Hwa. Use of small satellites in the NASA Earth Science Enterprise(ESE) Earth Observing System(EOS). Acta Astronautica, 2000, 46(2):365-374.
    [101] G. Canavan, D. Thompson, I. Bekey. Distributed Space Systems. New World Vistas, Air and Space Power for the 21st Century, United States Air Force, 1996.
    [102] Burns, McLaughlin, Martin. TechSat 21: Formation design, control, and simulation. IEEE Aerospace Conference Proceedings, 2007: 19-25.
    [103] A Das, R Cobb, M Stallard. TechSat 21: A revolutionary concept in distributedspace based sensing. Proc.-AIAA Defense and Civil Space Programs Conference, Huntsville, AL, 1998: 5255-5263.
    [104] Sedwick, R J Kong, E M C Miller. Exploiting orbital dynamics and micropropulsion for aperture synthesis using distributed satellite systems-Applications to TechSat21. Proc.- AIAA Defense and Civil Space Programs Conference, Huntsville, AL, 1998: 5289-5296.
    [105] Kong, E M C Miller, David W. Minimum energy trajectories for TechSat 21 earth orbiting clusters. AIAA Space 2001-Conference and Exposition, Albuquerque, NM, Aug. 28-30, 2001: 4769-4781.
    [106] M Martin, M Stallard. Distributed satellite missions and technologies-the TechSat 21 program. Proc.-AIAA Space Technology Conference and Exposition, Albuquerque, NM, 1999: 4476-4479.
    [107] M Martin, P Klupar, S Kilberg, et al. TechSat 21 and revolutionizing space missions using microsatellites. Proc.-15th AIAA Conference on Small Satellites, Utah, USA, 2001: 4139-4145.
    [108] Y Jones King, J Garnhan, R Blackledge, et al. Space-based Radar for the next century. NATO IRIS Proceedings, Quebec City, Quebec, Canada, 1998.
    [109] F J Agee, Y J King, J F Janni, et al. An innovative approach to satellite technology. Symposia on Space Based Observation Technologies, Samos, Greece, 2000.
    [110] Massonnet. The interferometric cartwheel: A constellation of passive satellites to produce radar images to be coherently combined. International Journal of Remote Sensing, Vol. 22, No. 12, 2001: 2413-2430.
    [111] Massonnet. Capabilities and limitations of the interferometric cartwheel. IEEE Trans on GRS, Vol. 39, No. 3, 2001: 506-520.
    [112] Zink Manfred, Krieger Gerhard, Amiot Thierry. Interferometric performance of a cartwheel constellation for TerraSAR-L. European Space Agency, 2004: 269-275.
    [113] Ramongassie D, Phalippou L, Thouvenot E, et al. Preliminary design of the payload for the interferometric cartwheel. International Geoscience and Remote Sensing Symposium (IGARSS), 2000: 1004-1006.
    [114] Mittermayer Josef, Krieger Gerhard, Moreira Alberto, et al. Interferometric performance estimation for the interferometric cartwheel in combination with a transmitting SAR-satellite, International Geoscience and Remote Sensing Symposium (IGARSS), 2001: 2955-2957.
    [115] H Fiedler, G Krieger, F Jochim, et al. Analysis of bi-static configurations forspaceborne SAR interferometry. EUSAR2002, Cologne, Germany, 2002: 29-33.
    [116] G Krieger, A Moreira. Multi-static SAR satellite formations: Potentials and challenges. Proceeding of IGARSS2005, Seoul, Korea, 2005: 689-694.
    [117] G Krieger, H Fiedler, J Mittermayer, et al. Analysis of multi-static configurations for spaceborne SAR interferometry. IEE Proc.-Radar, Sonar and Navigation, Vol. 150, No. 3, 2003: 87-96.
    [118] Schwerdt Marco, Hounam David, Brautigam Benjamin, et al. TerraSAR-X: Calibration concept of a multiple mode high resolution SAR, International Geoscience and Remote Sensing Symposium (IGARSS), 2005: 4874-4877.
    [119] Moreira Alberto, Krieger Gerhard, Hajnsek Irena, et al, TanDEM-X: A TerraSAR-X add-on satellite for single-pass SAR interferometry. International Geoscience and Remote Sensing Symposium (IGARSS), 2004: 1000-1003.
    [120] Garnham John, Wainwright Ross, Burns Rich. Enabling research and development for flight demonstration of sparse aperture sensing. AIAA Space Conference and Exposition, Albuquerque, NM, 2001: 4552-4561.
    [121] Marais Karen, Sedwick Raymond J. Cluster design for scanned pattern interferometric radar, AIAA Space Conference and Exposition, Albuquerque, NM, 2001: 4654-4660.
    [122] N A Goodman, J M Stiles. Resolution and synthetic aperture characterization of sparse radar arrays. IEEE Trans on Aerosp Electron Syst, Vol. 39, No. 3, 2003: 921-935.
    [123] Steyskal H, Schindler J K, Franchi P, et al. Pattern synthesis for TechSat21-a distributed space based radar system. 2001: 725-732.
    [124]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法.博士学位论文,西安电子科技大学,2006.
    [125]何峰,梁甸农.用星载寄生式SAR提高空间二维分辨率的信号处理,电子学报,Vol. 33, No. 6, 2005: 1128-1131.
    [126]文竹,周荫清,陈杰.分布式小卫星SAR回波信号精确仿真方法研究.宇航学报,Vol. 27, No. 5, 2006: 909-914.
    [127]雷万明,刘光炎,黄顺吉.分布式卫星SAR的波束形成和多视处理成像.电子与信息学报,Vol. 24, No. 11, 2002: 1620-1626.
    [128]闫鸿慧,王岩飞.利用频谱合成实现分布式卫星SAR高距离分辨力成像.电子与信息学报,Vol. 27, No. 6, 2005: 928-931.
    [129]穆冬.干涉合成孔径雷达成像技术研究.博士学位论文,南京航空航天大学,2001.
    [130]李真芳,形孟道,王彤,保铮.分布式小卫星SAR实现全孔径分辨率的信号处理.电子学报,Vol. 31, No. 12, 2003: 1800-1803.
    [131]何峰,梁甸农,董臻.适于大斜视的星载双基地SAR波数域成像算法.电子学报,Vol. 33, No. 6, 2005: 1011-1014.
    [132] Zhengfang Li, Hongyang Wang, Tao Su, et al. Generation of wide-swath and high-resolution SAR images form multichannel small spaceborne SAR systems. IEEE Geoscience and Remote Sensing Letters, Vol. 2, No. 1, 2006: 82-86.
    [133]周荫清,徐华平,陈杰.分布式小卫星合成孔径雷达研究进展,电子学报,Vol. 31, No. 12A, 2003: 1939-1945.
    [134] Zhengfang Li, Zheng Bao, Hongyang Wang. Performance improvement of constellation SAR systems using signal processing techniques. IEEE Trans on Aerosp Electron Syst, Vol. 42, No. 2, 2006: 436-452.
    [135]王彤,保铮,廖桂生.天基分布式雷达GMTI方法.电子学报,Vol. 33, No. 3, 2006: 399-403.
    [136]孙娜,周荫清,李景文.基于DPCA技术的星载SAR/GMTI处理方法.电子与信息学报,Vol. 27, No. 10, 2005: 1564-1568.
    [137]李真芳,保铮,王彤.分布式小卫星系统地面运动目标检测方法.电子学报,Vol. 33, No. 9, 2005: 1664-1666.
    [1]周峰,李真芳,保铮.基于两视处理的单通道SAR地面运动目标检测和定位方法.西电学报,2006,Vol.33(5):673-677.
    [2] KAZUO. UCHI. On the mutlilook images of moving targets by synthetic Aperture Radars. EEE Trans on AP,1985,Vol.33(8):823-827.
    [3]陈广东,朱兆达,朱岱寅.抑制SAR图像中静止背景检测慢速动目标.电子与信息学报,2005,Vol.27(8):1229-1232.
    [4]陈广东,朱兆达,朱岱寅.分数傅立叶变换用于抑制SAR杂波背景检测慢速动目标.航空学报,2005,Vol.26(6):748-753.
    [5]宁蔚.机载/星载雷达地面运动目标检测方法研究,博士学位论文,西安电子科技大学,2005.
    [6] J. H. G. Ender. The airborne experimental multi-channel SAR system AER-II. in Proc EUSAR Conf, Germany, 1996: 49-52.
    [7] J. H. G. Ender. Signal processing for multi-channel SAR applied to the experimental SAR system AER. Intern. Radar Conf. Paris May 1994.
    [8] J. H. G. Ender. Space-time processing for multichannel synthetic aperture radar. Electronics & Communication Engineering Journal, February 1999: 29-38.
    [9] Federica Bordoni, Fulvio Gini, Fabrizio Lombardini and Lucio Verrazzani. A Class of Algorithms for Multibadeline ATI Oceanic Surface Velocity Estimation in Presence of Bimodal Doppler Spectrum. EUSAR 2002, pp117-120.
    [10] Lombardini F., Gini F., and Matteucci P. Multibaseline ATI-SAR for RobustOcean Surface Velocity Estimation in Presence of Bimodal Doppler Spectrum. 2001. IGARSS’01. IEEE 2001 International, Vol. 1, 2001, pp578-580.
    [11] Friedlander, B., Porat, B. VSAR: A high resolution radar system for detection of moving targets. IEE Proceeding-Radar, Sonar Navigation, Vol. 144, No. 4, 1997: 205-218.
    [12] Friedlander, B., Porat, B. VSAR: A high resolution radar system for ocean imaging. IEEE Trans on Aerosp Electron Syst, Vol. 34, No. 3, 1998: 755-776.
    [13] Keith R Raney. Synthetic aperture imaging radar and moving targets. IEEE on Trans.on AES, 1971,Vol. 7(3):499-505.
    [14] J. Curlander and R. McDonough. Synthetic aperture radar: systemd and signal processing. John Wiley & Sons, New York, 1991.
    [15]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [16] R. P. Perry, R. C. Dipietro and R. L. Fante. SAR Imaging of Moving Target. IEEE Trans. on AES, vol. 35, No. 1, pp. 188-200, 1999.
    [17] B. Zitova and J. Flusser. Image registration methods: A survey. Image Vis. Comput., 2003,21(11):977-1000.
    [18]穆冬.干涉合成孔径雷达成像技术研究.南京航空航天大学博士学位论文, 2001.
    [19] R. Scheiber and A. Moreira. Coregistration of interferometric SAR images using spectral diversity. IEEE Trans. Geosci. Remote Sensing, Sep. 2000 38(5): 2179–2191.
    [20] A. Moreira and R. Scheiber. A new method for accurate co-registration of interferometric SAR images. in Proc. IGARSS’98, July 1998.
    [21] G. Fornaro and G. Franceschetti. Image registration in interferometric SAR processing. Proc. Inst. Elect. Eng. Radar Sonar Nav, Dec. 1995, 142(6): 313–320.
    [22] J. Le Moigne,W. J. Campbell, and R. F. Cromp. An automated parallel image registration technique based on the correlation of wavelet features. IEEE Trans. On GRS, 2002, 40(8):1849-1864.
    [23] A. A. Cole-Rhodes, K. L. Johnson, J. Le Moigne, and I. Zavorin. Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient. IEEE Trans. Image Process., vol. 12, pp. 1495–1511, Dec. 2003.
    [24] J. Flusser and T. Suk. A moment-based approach to registration of images with affine geometric distortion. IEEE Trans. On GRS, 1994, 32(3):382-387.
    [25] X. Dai and S. Khorram. A feature-based image registration algorithm using improved chain-code representation combined with invariant moments. IEEE Trans. On GRS, 1999, 37(5):2351-2362.
    [26] G. Stockman, S. Kopstein, S. Benett. Matching images to models for registration and object detection via clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 4 (1982) 229–241.
    [27] J. Ton, A.K. Jain. Registering landsat images by point matching. IEEE Transactions on Geoscience and Remote Sensing, Sep. 1989, 27(5): 642–651.
    [28] A.D. Ventura, A. Rampini, R. Schettini. Image registration by recognition of corresponding structures. IEEE Transactions on Geoscience and Remote Sensing, May. 1990, 28(3): 305–314.
    [29] J. Matas, S. Obdrzalek, O. Chum. Local affine frames for widebaseline stereo. in: R. Kasturi, D. Laurendeau, C. Suen (Eds.), 16th International Conference on Pattern Recognition ICPR 2002, 4: 363–366.
    [30] J. Flusser, T. Suk. Degraded image analysis: an invariant approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, Jun. 1998, 20(6): 590–603.
    [31] H. Li, B.S. Manjunath, S.K. Mitra. A contour-based approach to multisensor image registration. IEEE Transactions on Image Processing, Mar. 1995, 4(3): 320–334.
    [32] J. le Moigne. Parallel registratin of multi-sensor remotely sensed imagery using wavelet coefficients. Proceedings of the SPIE: Wavelet Applications, Orlando, Florida, 2242, 1994: 432–443.
    [33] I. S. Reed, J. D. Mallett and L. E. Brennan. Rapid Convergence Rate in Adaptive Arrays, IEEE Trans. on AES, 1974, 10(6): 853-863.
    [34] Frost O L. An Algorithm for Linearly Constrained Adaptive Array Processing. Proc IEEE, 1972,60(8):926-935.
    [1] Wang H S C. Mainlobe clutter cancellation by DPCA for Space-Based Radars. IEEE Aerospace Applications Conference, New York Piscataway:1991, 1-128.
    [2] Callow Hayden J, Saebo Torstein O, Hansen Roy E. Towands robust quality assessment of SAS imagery using the DPCA algorith. Oceans 2005-Europe, 2005: 1095-1100.
    [3] Lightstone L, Faubert D, Remple G. Multiple phase center DPCA for airborne radar. IEEE National Radar Conference, 1991: 36-40.
    [4] Fielding P J. GMTI performance estimation for airborne E-scan radar employing DPCA motion compensation. IEE Conference Publication, 2002: 286-290.
    [5] Richardson P. G. Relationships between DPCA and adaptive space-time processingtechniques for clutter suppression. IEEE International Radar Conference, Paris’94: 295-300.
    [6] Nohara T. J. Comparison of DPCA and STAP for space-based radar. IEEE International Radar Conference, 1995: 113-119.
    [7] Chen Jianwen, Wang Yongliang, Huang Fukan, et al. Research on multiple phase center multiple delay taps DPCA for airborne radar. International Conference on Computational Electromagnetics and Its Applications, Beijing, China, 1999: 1-4.
    [8]郑明洁,杨汝良.一种改进的DPCA运动目标检测方法.电子学报,2004,32(9):1429-1432.
    [9] Chapin Elaine, Chen Curtis W. GMTI along-track interferometry experiment. IEEE Aerospace and Electronic System Magazine, 2006, 21(3): 15-20.
    [10] Sikaneta Ishuwa, Gierull Christoph. Ground moving target detection for along-track interferometric SAR data. IEEE Aerospace Conference Proceedings, 2004: 2227-2235.
    [11] Chen Curtis W. Performance assessment of along-track interferometry for detection ground moving targets. IEEE National Radar Conference Proceedings, 2004: 99-104.
    [12] C H Gierull. Statistical Analysis of Multilook SAR Interferograms for CFAR Detection of Ground Moving Targets. IEEE Trans on GRS, Vol. 42, No. 4, 2004: 691-701.
    [13] C H Gierull. Statistics of Multilook SAR Interferograms for CFAR Detection of Ground Moving Targets. in Proc.-EUSAR Conference, Cologne, Germany, 2002: 625-628.
    [14]孙娜,周荫清,李景文.一种新的双孔径天线干涉SAR动目标检测方法.电子学报,2003,31(12):1820-1823.
    [15] J. H. G. Ender. The airborne experimental multi-channel SAR system AER-II. in Proc EUSAR Conf, Germany, 1996: 49-52.
    [16] J. H. G Ender. Signal processing for multi-channel SAR applied to the experimental SAR system AER. Intern. Radar Conf. Paris May 1994.
    [17] J. H. G. Ender. Space-time processing for multichannel synthetic aperture radar. Electronics & Communication Engineering Journal, February 1999: 29-38.
    [18] Weiss A. J and Friedlander B. Eigen-structure Methods for Direction Finding with Sensor Gain and Phase Uncertainties. Circuits Systems Signal Process. 1990. No.3: 271-300.
    [19] Weiss A. J. and Friedlander B. Almost Blind Steering Vector Estimation UsingSecond Order Moments. IEEE Trans on Signal Processing, Vol. 44, No. 2, 1996: 1024-1027.
    [20] Weiss A. J. and Friedlander B. DOA and Steering Vector Estimation Using a Partially Calibrated Array. IEEE Trans on Aerospace and Electronic Systems, Vol. 32, No. 3, 1996: 1047-1057. [21 ]C M S See. Sensor array calibration in the presence of mutual coupling and unknown sensor gains and phases. Electronics Letters, Vol. 30, No. 5, 1994: 373-374.
    [22] C M S See. Method for array calibration in high-resolution sensor array processing. IEE Proc.-Radar, Sonar, Navigation, Vol. 142, No. 3, 1995: 90-96.
    [23] Hee-Young Park, Chungyong Lee, Hong-Goo Kang, Dae-Hee Youn. Generalization of the subspace-based array shape estimations. IEEE Journal of Oceanic Engineering, Vol. 29, No. 3, 2004: 847-856.
    [24]刘颖,王洪洋,廖桂生等.分布式小卫星系统误差估计的新方法.宇航学报,Vol. 24, No. 1, 2007: 233-237.
    [25] Koerbor M A. Fuhrmann D R. Radar antenna calibration using renge-Doppler data. IEEE 7th SP Workshop on Statistical Signal & Array processing. Quebec: IEEE, 1994. 441-444.
    [26]杨志伟,廖桂生,曾操.基于雷达回波数据相位矢量的通道盲均衡.电子学报,2008,36(9):1682-1686.
    [27]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社. 2006.
    [28]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法.西安:西安电子科技大学,2006.
    [1] R. Klemm. Principles of Space-Time Adaptive Processing. London, U.K.: Inst Elect Eng, 2002.
    [2] Zheng Bao, Guisheng Liao, et al. Adaptive Spatial-temporal Processing for Airborne Radars. Chinese Journal of Electronics, Vol. 2, No. 1, 1993: 1-7.
    [3]廖桂生,保铮,许志勇.机载雷达空时二维自适应处理框架及其应用.中国科学(E辑),Vol. 27, No. 4, 1997: 336-341.
    [4]廖桂生,保铮,张玉洪.机载雷达时-空二维部分联合自适应处理.电子科学学刊,Vol. 15, No. 6, 1993.
    [5]廖桂生.相控阵天线AEW雷达时-空二维自适应处理.博士学位论文,西安电子科技大学,1992.
    [6]王彤.机载雷达简易STAP方法及其应用.博士学位论文,西安电子科技大学,2001.
    [7]王永良.新一代机载预警雷达的空时二维自适应处理.博士学位论文,西安电子科技大学,1994.
    [8]吴仁彪.机载相控阵雷达时空二维自适应滤波的理论与实现.博士学位论文,西安电子科技大学,1993.
    [9]张良.机载相控阵雷达降维STAP研究.博士学位论文,西安电子科技大学,1999.
    [10] Lo Martin W. Satellite-constellation design. Computing in Science & Engineering, Vol. 1, No. 1, 1989: 58-66.
    [11] Folta, David, Newman, et al. Design and implementation of satellite formations and constellations. Advance in the Astronautical Sciences, Vol. 100, No. 1, 1998: 57-70.
    [12] G. Canavan, D. Thompson, I. Bekey. Distributed Space Systems. New World Vistas, Air and Space Power for the 21st Century, United States Air Force, 1996.
    [13] Klemm R. Introduction to space2time adaptive processing. Electronics & Communication Engineering J ournal, 1999, 27(2): 5-12.
    [14] Wang H S C. Mainlobe clutter cancellation by DPCA for space2 based radars. IEEE Aerospace Applications Conference. New York Piscataway: IEEE, 1991. 1 - 128.
    [15] Frasier S J. Dual-beam interferometry for ocean surface current vector mapping. IEEE Transaction on Geoscience and Re2mote Sensing, 2001, 39 (2): 401 - 414.
    [16] Li Z F, Bao Z, Yang F F. Ground Moving Target Detection and Location based on SAR Images for Distributed Spaceborne SAR. Science in China Series F, Vol. 48, No. 5, 2005: 632-646.
    [17] M Soumekh. Signal Subspace Fusing of Uncalibrated Sensors with Application in SAR and Diagnostic Medicine. IEEE Trans on Image Processing, Vol. 8, No. 1, 1999: 127-137.
    [18] M Soumekh. Moving target detection and imaging using an X band along-track monopulse SAR. IEEE Trans on Aerospace and Electronic Systems, Vol. 38, Issue. 1, 2002: 315-333.
    [19] K I Ranney, M Soumekh. Signal subspace change detection in averaged multilook SAR imagery. IEEE Trans on GRS, Vol. 44, No. 1, 2006: 201-212.
    [20] Zhenfang Li, Zheng Bao, et al. Image Autocoregistration and InSAR Interferogram Estimation Using Joint Subspace Projection. IEEE Transaction on GRS, Vol. 44, No. 2, 2006: 288-297.
    [21]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法.西安:西安电子科技大学, 2006.
    [22]刘颖,廖桂生,周争光.对图像配准误差稳健的分布式星载SAR地面动目标检测及高精度的测速定位方法.电子学报, 2007, 35(6):1009-1014.
    [23] R P Perry, R C Dipietro and R L Fante. SAR Imaging of Moving Targets. IEEE Trans on Aeros and Elect Sys, 1999, 35(1): 188-200.
    [24]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社. 2006.
    [1] Wang H S C. Mainlobe clutter cancellation by DPCA for Space-Based Radars. IEEE Aerospace Applications Conference, New York Piscataway: 1991, 112-128.
    [2] Callow Hayden J, Saebo Torstein O, Hansen Roy E. Towards robust quality assement of SAS imagery using the DPCA algorithm. Oceans 2005-Europe, 2005: 1095-1100.
    [3] Lightstone L, Faubert D, Rempel G. Multiple phase centre DPCA for airborne radar. 1991 IEEE National Radar Conference, 1991: 36-40.
    [4] Fielding P J. GMTI performance estimation for airborne E-scan radar employing DPCA motion compensation. IEE Conference Publication, 2002: 286-290.
    [5]孙娜,周荫清,李景文.基于DPCA技术的星载SAR/GMTI处理方.电子与信息学报,2005,27(10): 1564-1568.
    [6]郑明洁,杨汝良.一种改进的DPCA运动目标检测方法.电子学报,2004,32(9):1429-1432.
    [7] Chapin Elaine, Chen Curtis W. GMTI along-track interferometry experiment. IEEE Aerospace and Electronic Systems Magazine, 2006, 21(3): 15-20.
    [8] Sikaneta Ishuwa, Gierull Christoph. Ground moving target detection for along-track interferometric SAR data. IEEE Aerospace Conference Proceedings, 2004: 2227-2235.
    [9] Chen Curtis W. Performance assessment of along-track interferometry for detecting ground moving targets. IEEE National Radar Conference-Proceedings, Proceedings of the IEEE Radar Conference, 2004: 99-104.
    [10]孙娜,周荫清,李景文.基于ATI技术和像素匹配的星载SAR/GMTI实现方法.宇航学报, 2004, 25(5): 560-565.
    [11]高飞,毛士艺,玉振明等.一种全自动的检测方法用SAR-ATI的GMTI.航空学报, 2005, 26(1): 84-89.
    [12] R Klemm. Introduction to Space-time Adaptive Processing. Electronics & Communication Engineering Journal, 1999,2: 5-12.
    [13] Xu Jianjun, Yeo Tatsoon, Kooi PangDShyan. Simulated STAP performance for multi-channel SAR processing. International Geoscience and Remote Sensing Symposium(IGARSS), 2000: 2284-2286.
    [14] Varadarajan Vijay, Krolik Jeffrey. Joint space-inme interpolation for bistatic STAP. Conference Record of the Asilomar Conference on Signals, Systems and Computers, v 1, Conference Record of the Thirty-Seventh Sailomar Confenence on Signals, Systems and Computers, 2003: 60-65.
    [15] Griffiths Lloyd J. Linear constrains in pre-Doppler STAP processing. ICASSP, IEEE International Conference on Acoustic, Speech and Signal Processing-Proceedings, v 5, Statistical Signal and Array Processing, Applications 1997: 3481-3484.
    [16]魏俊,孙进平,袁运能等.一种基于频域STAP处理的多通道SAR-GMTI算法.系统工程与电子技术. 2008,30(1):1-5.
    [17]康雪艳,江碧涛,张云华等.星载GMTI稀疏阵雷达的STAP研究.系统工程与电子技术, 2007, 29(9): 1461-1463.
    [18] E F Stockburger, D N Held. Interferometric moving ground target imaging. IEEE International Radar Conference, 1995: 438-443.
    [19] R Klemm. Applications of Space-Time Adaptive Processing. London: The Institution of Electrical Engineers, 2004.
    [20]保铮,张玉洪,廖桂生,王永良,吴仁彪.机载空时二维信号处理.现代雷达1994, 16(1): 38-48.
    [21] J. R. Moreira, W. Keydel. A new MTI-SAR approach using the reflectivity displacement method. IEEE Trans on GRS, 1995, Vol. 33 No.5 pp: 1238-1244.
    [22] Barbarossa, S., Farina, A. Detection and imaging of moving objects with synthetic aperture radar. Part 2: Joint time-frequency analysis by Wigner-Ville distribution, IEE Proc.F ,1992, Vol. 139 No. 1 pp: 89-97.
    [23] KAZUO.OUCHI. On the mutlilook images of moving targets by synthetic Aperture Radars.IEEE Trans on AP,1985,Vol. 33 No. 8 pp: 823-827.
    [24]周峰,李真芳,保铮.基于两视处理的单通道SAR地面运动目标检测和定位方法.西安电子科技大学学报,2006, 33(5): 673-677.
    [25]李真芳,保铮,杨凤凤.基于成像的分布式卫星SAR系统地面运动目标检测(GMTI)及定位技术.中国科学(E辑), 2005, 35(6): 597-609.
    [26] C. H. Gierull and C. E. Livingstone. The Application of Space-Time Processing, chapter SAR GMTI concept for RADARSAT-2. IEE Publishers, 2003.
    [27] Sikaneta I. Detection of ground moving objects with synthetic aperture radar. Ottawa: Univ. of Ottawa. 2004.
    [28]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法.博士学位论文,西安电子科技大学,2006.
    [29]杨志伟,廖桂生,曾操.基于联合特征空间投影的SAR图像域杂波抑制.电子学报,2007,35(12): 2298-2301.
    [30] Li Z F,Bao Z and Yang F F. Ground Moving Target Detection and Location based on SAR Images for Distributed Spaceborne SAR. Science in China Series F,2005,48(5):632-646
    [31]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社. 2006
    [1]丁鹭飞,耿富录.雷达原理.西安:西安电子科技大学出版社, 1997.
    [2] John Clarke. Airborne early warning radar. Proc. of IEEE, 1985, 73(2): 312-314.
    [3] William C. Morchin and Stephen L. Johnston. Modern airborne early warning radar. Microwave Journal, 1991, 30-47.
    [4]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社, 2005.
    [5] S.Barbarossa. Detection and Imaging of Moving Objects with Synthetic Apertureradar, part 1: Optimal Detection and parameter Estimation Theory. IEE Proceedings-F, Radar and Signal Processing, 1992, 139 (1):79-88.
    [6] Eli Yadin. Evaluation of Noise and Clutter Induced Relocation Errors in SAR MTI.IEEE International Radar Conference, 1995, 650-655.
    [7] R. Keith Raney. Synthetic Aperture Imaging Radar and Moving Targets. IEEETrans on Aerosp. Electron. Syst , 1971, 7 (3):499-505.
    [8] Freeman A, Curie A.. Synthetic Aperture Radar Imaging for Moving Targets. GECJournal of research, 1987, 106-115.
    [9] William B. Gogers. Method and Apparatus for Imaging the Slowly Moving Target Detection Capabilities of an AMTI Synthetic Aperture Radar, AD-D000787, 1975, 3.
    [10] R. Klemm. Adaptive Airborne MTI: An Auxiliary Channel Approach. IEEProceedings, 1987, 134 (3):269-276.
    [11] J. Ender, Dipl. math, R. Klemm, and Dr. Eneng. Airborne MTI via Digital Filter, IEE Proceedings-F, Radar and Signal Processing , 1989, 136(l):22-28.
    [12]李真芳,保铮,杨凤凤.基于成像的分布式卫星SAR系统地面运动目标检测(GMTI)及定位技术.中国科学(E辑),2005,35(6):597-609.
    [13]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法.博士学位论文,西安电子科技大学,2006.
    [14] Frost O L. An algorithm for linearly constrained adptive array processing. Proc IEEE, 1972, 60(8): 926-935.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700