用户名: 密码: 验证码:
斜视聚束合成孔径雷达成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达能够实施全天候、全天时的观测,目前该雷达较成熟的工作模式有条带(Strip)、扫描(Scan)、干涉(INSAR)和聚束(Spotlight)工作模式。聚束式合成孔径雷达的优点是能够实现较小场景的方位向高分辨率成像。聚束工作模式通过控制雷达方位向天线波束指向,使其沿飞行路径连续照射同一块成像区域以增加其相干时间,此时聚束模式的方位向分辨率不受天线波束宽度的限制,因此为获得1m或小于1m分辨率的雷达图像开辟了一条可实现的途径。本文主要对聚束式合成孔径雷达距离徙动校正和降低高脉冲重复频率两个方面进行了深入的研究。
     距离徙动是由雷达与目标之间的相对运动产生的。通常把距离徙动的线性部分称为距离走动,二次项部分称为距离弯曲。大部分聚束式合成孔径雷达成像算法是基于正侧视模型提出的,此时多普勒中心频率为零,不存在距离走动部分。而在斜视情况下随着多普勒中心频率的增加,距离走动在距离徙动中逐渐起主导作用,已有的主要针对距离弯曲的成像算法无法做到有效的距离徙动校正。
     距离徙动算法是理论上最优的成像算法,其关键步骤是Stolt插值。对于实时成像或大数据量系统来说插值运算是不实际的。频率变标算法就是距离徙动算法较好的近似实现,通过对距离徙动算法的近似来精确校正距离徙动,避免了插值运算。但是基于正侧视模型提出的频率变标算法无法适用于斜视成像,其局限性主要体现在二次距离压缩的近似误差。
     为了降低高脉冲重复频率,通常将长的聚束孔径分成多个子孔径来处理,即方位向子孔径处理。阶梯变换方法是较成熟的子孔径处理方法。算法中影响最后聚焦效果的主要因素有两个,一个是相邻子孔径间谱峰的相对位移要满足整数倍频率间隔的限制条件,另一个是粗分辨率傅立叶变换结果存在高阶误差相位。
     针对以上几个问题,论文做了如下工作并提出了几个改进算法。
     第一:分析了距离徙动算法Stolt插值前信号的波数谱支撑区范围,得出了斜视成像的理论结果和斜视模型成像质量评估的理论值,并以此作为评估其它算法的主要依据。此外还提出了视线插值的距离徙动算法并给出了实验仿真结果。
     第二:针对频率变标算法的局限性,提出了适用于斜视处理的非线性频率变标算法,给出了非线性频率变标函数的最优解,将近似误差的二次项误差完全补偿,确保了大斜视角大场景成像的良好成像效果。
     第三:将自聚焦技术和阶梯变换方法有效地结合起来,用最小熵准则的自适应阶数多项式滤波器估计并去除误差相位,保证了精分辨率傅立叶变换的精度。
     本文最后给出了星载聚束式合成孔径雷达和滑动聚束式合成孔径雷达回波仿真及相应的成像处理结果,以及机载实际数据的处理图像。
Without the restriction of sunlight and weather, synthetic aperture radar (SAR) can perform all-weather and all-time observation. SAR systems have different modes, like the strip, the scan, and the spotlight modes. Different modes have different applications. The advantage of the spotlight mode SAR is that it can perform high azimuth resolution imaging for the illuminated scene. It is implemented by directing the beam of the antenna to the same area during the synthetic aperture time. In this situation, the azimuth resolution of the spotlight SAR does not depends on the width of the beam of antenna. Therefore, the spotlight mode SAR supplies a feasible way to obtain radar images of a 1-m or higher resolution.
     In this dissertation, we will focus on how to correct the range migration and reduce high pulse repetition frequency (PRF)。
     Range migration results from the relative motion between the radar and the target, and cannot be avoided in a SAR system. Usually, the linear part of range migration is called range walk, and the quadratic part is called range curve. Most of spotlight SAR processing algorithms were proposed for the broadside mode, and there is no range walk. For the more general mode, the squint mode, range walk dominates gradually with the increasing of the Doppler centroid. In this case, the imaging algorithms with only range curve considered cannot work well.
     The range migration algorithm (RMA) is a promising spotlight SAR imaging algorithm and the key to the RMA is the Stolt interpolation. For an actual imaging system, due to the large-storage requirement and computation burden, the interpolation is not practical. The frequency scaling algorithm (FSA) is a preferable approximation of the RMA. It avoids the interpolation of the RMA by an accurate approximation. Unfortunately, the original FSA is based on the broadside mode and does not apply to the squint imaging. The approximation phase error caused by the secondary range compression restricts the performance of the FSA processing for the squint mode.
     In order to reduce high PRF, the long spotlight aperture is usually divided into several sub-apertures to process. The step transform is an effective sub-aperture processing approach. The quality of the final image is limited by two factors. One is that the offset between two adjacent sub-apertures must be a multiple of the frequency interval. The other is that the high order phase error exists in the coarse resolution data.
     Considering the aspects mentioned above, we have obtained following achievements.
     First, the wave-number spectrum extension before the Stolt interpolation of the RMA is analyzed to derive the measure of image quality in the squint imaging. This can be used to evaluate results by other imaging algorithms. Moreover line-of-sight interpolation for the RMA is proposed.
     Second, in order to compensate the phase error from secondary range compression accurately, we derive the optimal nonlinear frequency scaling function. The nonlinear frequency scaling algorithm works very well even for large squint angles and large imaging scenes.
     Third, the step transform is combined with autofocus to improve the sub-aperture processing. The minimum-entropy filter using an adaptive order polynomial model is designed to estimate and remove the phase error.
     Finally, the simulation and processing results for the space-borne spotlight mode SAR system and the space-borne sliding spotlight mode SAR system are given. In addition, some practical airborne data are processed by the chirp scaling algorithm, and the results confirm the validity of the spotlight SAR imaging algorithm presented in this paper.
引文
[1] Jane’s Radar and electronic warfare systems 1999-2000
    [2] Tsunoda S I, Pace F, Stence J, et al. Lynx: A high-resolution synthetic aperture radar. SPIE Proceedings, SPIE Conference on Radar Sensor Technology IV, Apr. 1999 (3704):20~27
    [3] Zahn R W, Velten E H. Enabling Technologies for the TerraSAR mission. IEEE International Geoscience and Remote Sensing Symposium Proceedings, IGARSS’2000, 24-28 Jul. 2000, 3: 1174~1176
    [4] Mittermayer J, Lord R, Bomer E. Sliding Spotlight SAR processing for TerraSAR-X using a new formaulation of the extended chirp scaling algorithm. IEEE International Geoscience and Remote Sensing Symposium Proceedings, IGARSS’03, 21-25 Jul. 2003, 3:1462~1464
    [5] Borner E, Lord R, Mittermayer J, et al. Evaluation of TerraSAR-X Spotlight Processing algorithm accuracy based on a new Spotlight raw data simulator. IEEE International Geoscience and Remote Sensing Symposium Proceedings, IGARSS’03, 21-25 Jul. 2003, 2:1323~1325
    [6] Duchak G D. Discoverer II: A Space Architecture for Information Dominance. 2000 IEEE Aerospace Conference Proceedings, 18-25 Mar. 2000, 2:9~17
    [7] Whelan D A. Discoverer II Program Summary. IEEE International Radar Conference, 18-25 Mar. 2000, 7:7~8
    [8] Caltagirone F, Spera P, Vigliotti R, et al. SkyMed/COSMO mission Overview. IEEE International Geoscience and Remote Sensing Symposium Proceedings, IGARSS’98, 6-10 Jul. 1998, 2: 683~685
    [9]王超,张红,刘智.星载合成孔径雷达干涉测量.北京:科学出版社,2002
    [10] Walker J, Carrara W, Cindrich I. Optical Processing of Rotating-Object Radar Data Using a Polar Recording Format. Technical Report RADC-TR-73-136, AD 526 738, Rome Air Development Center, Rome, NY, May 1973
    [11] Munson D C, Jr., O’Brien J D, et al. A Tomographic Formulation of Spotlight-Mode Synthetic Aperture Radar, Proceedings of The IEEE, Aug. 1983, 71(8):917~925
    [12] Munson D C, Jr., Visentin R L. A signal Processing View of Strip-Mapping Synthetic Aperture Radar. IEEE Transactions on Acoustics, Speech, and Signal Processing. Dec. 1989, 37(12): 2131~2147
    [13] Soumekh M. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms. New York: John Wiley & Sons, Inc., 1999
    [14] Crochiere R E, Rabiner L R. Interpolation and Decimation of Digital Signals-A Tutorial Review. Proceedings of The IEEE, Mar. 1981, 69(3):300~331
    [15] Maisel J E, Morden R E. Rotation of a Two-Dimensional Sampling Set Using One-Dimensional Resampling. IEEE Transactions on Acoustics, Speech, and Signal Processing. Dec. 1981, 29(6):1218~1222
    [16] Zhu Daiyin, Zhu Zhaoda. Range Resampling in the Polar Format Algorithm for Spotlight SAR Image Formation Using the Chirp z-Transform. IEEE Transactions on Signal Processing, Mar. 2007, 55(3):1011~1023
    [17] Jakowatz C V, Jr., Wahl D E, et al. Space-variant filtering for correction of wavefront curvature effects in spotlight-mode SAR imagery formed via polar formatting. SPIE, Jul. 1997, 3070:33~42
    [18] Heesub S, Jaehan J, Jongtae L. Airborne Squinted Spotlight SAR Imaging using Polar Format Algorithm. SICE-ICASE International Joint Conference 2006, Busan, Korea, 18-21 Oct. 2006: 4182~4185
    [19] Yuan Yunneng, Sun Jinping, Mao Shiyi. PFA algorithm for airborne spotlight SAR imaging with nonideal motions. IEE Proceedings-Radar Sonar Navigation, Aug. 2002, 149(4):174~182
    [20] Charles V J, Jr., Daniel E W, et al. Comparison of Algorithms for Use in Real-Time Spotlight-Mode SAR Image Formation. Proceedings of SPIE, 2004, 5427:108~116
    [21] Desai M D, Jenkins W K. Convolution Backprojection Image Reconstruction for Spotlight Mode Synthetic Aperture Radar. IEEE Transactions on Image Processing, Oct. 1992, 1(4):505~517
    [22] Preiss M, Gray D, Stacy N. Space Variant Filtering of Polar Format Spotlight SAR Image for Wavefront Curvature Correction and Interferometric Processing. IEEE International Geoscience and Remote Sensing Symposium, IGARSS’02, 24-28 Jun. 2002, 1:179~181
    [23] Preiss M, Gray D, Stacy N. The Effect of Polar Format Resampling on Uncompensated Motion Phase Errors and the Phase Gradient Autofocus Algorithm. IEEE International Geoscience and Remote Sensing Symposium, IGARSS’01, 9-13 July 2001, 3:1442~1444
    [24] Cafforio C, Prati C, Rocca F. SAR Data Focusing Using Seismic Migration Techniques. IEEE Transactions on Aerospace and Electronic Systems. Mar. 1991, 27(2):194~207
    [25] Prati C, Guarnieri A M, Rocca F. Spot Mode SAR Focusing with the w-k Technique. Proceedings of the 1991 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Espoo, Finland, 3-6 Jun. 1991:631~634
    [26] Milman A, S. SAR Imaging by w-k Migration. International Journal of Remote Sensing, 10, Jul. 1993, 14(10):1965~1979
    [27] Carrara G., Goodman R S, Majewski R M. Spotlight Synthetic Aperture Radar, Norwood, MA:Artech House, 1995
    [28] Vandewal M, Speck R. Efficient and Precise Processing for Squinted Spotlight SAR Through aModified Stolt Mapping. EURASIP Journal on Adavances in Signal Processing, Vol. 2007, Article ID. 59704, 7 Pages
    [29] Heesub S, Jongtae L. Range migration algorithm for airborne squint mode spotlight SAR imaging. IET Radar, Sonar & Navigation, Feb. 2007, 1(1):77~82
    [30] Mittermayer J, Moreira A, Loffeld O. Spotlight SAR Data Processing Using the Frequency Scaling Algorithm. IEEE Transactions on Geoscience and Remote Sensing, Sep. 1999, 37(5):2198~2213
    [31] Mittermayer J, Moreira A, Loffeld O. Spotlight Processing of Wide-Beam Stripmap SAR Data Using the Frequency Scaling Algorithm. IEEE International Geoscience and Remote Sensing Symposium Proceedings, IGARSS’98, 6-10 Jul. 1998, 2:1177~1179
    [32]孙进平,袁运能,柳重堪等.斜视聚束模式合成孔径雷达的频率Scaling成像算法.电子学报,2001年12月,29(12):1593~1596
    [33]王国栋,周荫清,李春升.星载聚束式SAR改进的Frequency Scaling成像算法.电子学报,2003年3月,31(3):381~385
    [34] Ranye R K, Vachon P W. A Phase Preserving SAR Processor. IEEE International Geoscience and Remote Sensing Symposium, IGARSS’89, 10-14 Jul. 1989:2588~2591
    [35] Runge H, Bamler R. A Novel High Precision SAR Focusing Algorithm Based on Chirp Scaling IEEE International Geoscience and Remote Sensing Symposium, IGARSS’92 26-29 May 1992: 372~375
    [36] Raney R K, Runge H, Bamler R, et al. Precision SAR Processing Using Chirp Scaling. IEEE Transactions on Geoscience and Remote Sensing, Jul. 1994, 32(4):786~798
    [37] Raney R K. A New and Fundamental Fourier Transform Pair. IEEE International Geoscience and Remote Sensing Symposium, IGARSS’92, 26-29 May 1992:106~107
    [38] Moreira A, Huang Y. Airborne SAR processing of highly squinted data using a chirp scaling algorithm with integrated motion compensation. IEEE Transactions on Geoscience and Remote Sensing, Sep. 1994, 32(5):1029~1040
    [39] Moreira A, Mittermayer J, Scheiber R. Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and scan SAR imaging modes. IEEE Transactions on Geoscience and Remote Sensing, Sep. 1996, 34(5):1123~1136
    [40] Mittermayer J, Moreira A. Spotlight SAR Processing Using the Extended Chirp Scaling Algorithm. IEEE International Geoscience and Remote Sensing Symposium, IGARSS’97, 3-8 Aug. 1997, 4: 2021~2023
    [41] Mittermayer J, Moreira A. A Generic Formulation of the Extended Chirp Scaling Algorithm (ECS) for Phase Preserving ScanSAR and SpotSAR Processing. IEEE International Geoscience and Remote Sensing Symposium, IGARSS’2000, 24-28 Jul. 2000, 1:108~110
    [42] Sun Jinping, Wang Jun, Yuan Yunneng, et al. Extended Chirp Scaling Algorithm for Spotlight SAR. Chinese Journal of Aeronautics, May 2002, 15(2):103~108
    [43] Potsis A, Reigber A, Alivisatos E, et al. Comparison of Chirp Scaling and Wavenumber Domain Algorithms for Airborne Low Frequency SAR Data Processing. SPIE Proceedings, 2003, 4883:11~19
    [44]黄永红,Moreira A,毛士艺.一种适于机载前斜视SAR成像处理的Chirp Scaling算法.电子学报,1996年3月,24(3):37~41
    [45]李春升,黄岩,王璇等.基于Chirp Scaling算法的星载SAR成像处理实现方法.电子学报,1996年6月,24(6):20~24
    [46]黄岩,李春升,冯世章.机载前斜视合成孔径雷达成像处理的精确Chirp Scaling算法.现代雷达,1996年10月,5:1~6
    [47]黄岩,李春升,陈杰等.高分辨星载SAR改进ChirpScaling成像算法.电子学报,2000年3月,28(3):35~38
    [48]胡学成,杨绿溪.斜视模式下Chirp Scaling成像算法.现代雷达,2001年10月,5:47~49
    [49]刘光平,梁甸农. ChirpScaling成像算法应用研究.现代雷达,2004年3月,26(3):50~53
    [50]汪亮,禹卫东.机载SAR大斜视角成像算法及其性能分析.电子与信息学报,2006年3月,28(3):502~506
    [51] Davidson G W, Cumming I G, Ito M R. A Chirp Scaling Approach for Processing Squint Mode SAR Data. IEEE Transactions on Aerospace and Electronic Systems, Jan. 1996, 32(1):121~133
    [52] Wong F W, Yeo T S. New Applications of Nonlinear Chirp Scaling in SAR Data Processing. IEEE Transactions on Geoscience and Remote Sensing, May 2001, 39(5):946~953
    [53] Wong F W, Yeo T S, Tan N L. New Applications of Non-Linear Chirp Scaling in SAR Data Processing. IEEE International Geoscience and Remote Sensing Symposium, IGARSS’2000, 24-28 Jul. 2000, 1:96~98
    [54] Wang Kaizhi, Liu Xingzhao. A Quartic Algorithm for Squint SAR Imaging. IEEE International Conference on Acustics, Speech and Signal Processing, ICASSP’2006, 14-19 May 2006, 4(IV):1157~1160
    [55]王亮,黄晓涛,周智敏.非线性Chirp Scaling在机载SAR成像中的应用.系统工程与电子技术,2007年5月,29(5):723~727
    [56] Sack M, Sc M A, Ito M R, et al. Application of Efficient Linear FM Matched Filtering Algorithms to Synthetic Aperture Radar Processing. IEE Proceedings-F, Feb. 1985, 132(1):45~57
    [57] McGoey-Smith A D, Vant M R. Modification of the SAR Step Transform Algorithm. IEEE Transactions on Aerospace and Electronic Systems, Jul. 1992, 28(3):666~674
    [58] Yeo T S, Tan N L, Zhang Chengbo, et al. A New Subaperture Approach to High Squint SAR Processing. IEEE Transactions on Geoscience and Remote Sensing, May 2001, 39(5):954~968
    [59] Sun Xiaobing, Yeo T S, Zhang Chengbo, et al. An Improved Step Transform Algorithm for High Squint Angle SAR Imaging. IEEE International Geoscience and Remote Sensing Symposium Proceedings, IGARSS’98, 6-10 Jul. 1998, 2:1156~1158
    [60] Wenzel D, Mittermayer J, Moreira A. Analysis of Two Different Implementations of the SPECAN Algorithm for Real-Time Range Compression of SAR Data. IEEE International Geoscience and Remote Sensing Symposium Proceedings, IGARSS’99, 28 Jun-2 Jul. 1999, 3:1764~1766
    [61] Prats P, Broquetas M, MallorquíJ. Design and Validation of a Subaperture SAR Processor for Airborne Systems. A: Proceedings 4th European Conference on Synthetic Aperture Radar, EUSAR 2002. VDE-Verlag, 2002:91~94
    [62] Pillai S U, Kim Y L, Guerci J R. Generalized forward backward subaperture smoothing techniques for sample starved STAP. IEEE Transactions on Signal Processing, Dec. 2000, 48(12):3569~3574
    [63] Li Yong, Zhu Daiyin, Zhu Zhaoda. Geometric Distortion Correction in the Subaperture Processing for High Squint Airborne SAR Imaging. IEEE International Geoscience and Remote Sensing Symposium Proceedings, IGARSS’04, 2004, 6:3919~3922
    [64] Wong F H, Yeo T S. Processing Spotlight SAR Data without Azimuth Oversampling in Range Migration Algorithm. Microwave Conference, 1999 Asia Pacific, 30 Nov.-3 Dec. 1999, 2: 527~530
    [65] Moreira A. Real-Time Synthetic Aperture Radar (SAR) Processing with a New Subaperture Approach. IEEE Transactions on Geoscience and Remote Sensing, Jul. 1992, 30(45):714~722
    [66] Mesnager G, Castanie F, Lambert-Nebout C. Spatial resolution improvement using a SPECAN approach in SAR data processing. IEEE International Geoscience and Remote Sensing Symposium Proceedings, IGARSS’95, 10-14 Jul. 1995, 3:2295~2297
    [67] Sun Xiaobing, Yeo T S, Zhang Chengbo, et al. Time-Varying Step-Transform Algorithm for High Squint SAR Imaging. IEEE Transactions on Geoscience and Remote Sensing, Nov. 1999, 37(6):2668~2677
    [68] Burns B L, Cordaro J T. A SAR Image Formation Algorithm that Compensates for the Spatially-Variant Effects of Antenna Motion. SPIE Conference Proceedings, Apr. 1994, 2230:14~24
    [69] Karaman M, O’Donnell M. Subaperture Processing for Ultrasonic Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Jan. 1998, 45(1):126~135
    [70] Tavh B, Karaman M. Correlation processing for correction of phase distortions in subaperture imaging. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Nov. 1999, 46(6):1477~1488
    [71] Doerry A W. Synthetic Aperture Radar Processing with Tiered Subaperture. Sandia National Laboratories Report SAND 1994:1 390
    [72] Doerry A W. Patch Diameter Limits for Tiered Subaperture SAR Image Formation Algorithms. SPIE Jun. 1995, 2487:132~143
    [73]曾海彬,曾涛,李涛.聚束式SAR斜视模型子孔径CS算法.北京理工大学学报,2006年4月,26(4):249~252
    [74]谢冬冬,禹卫东,徐峰等.利用OSA算法处理条带SAR数据.系统工程与电子技术,2005年6月,27(6):1003~1006
    [75]李肖冬,梁甸农.基于相参子孔径的SAR实时成像方法.系统工程与电子技术,2004年3月,26(3):329~333
    [76]李明峰,王贞松.斜视模式SAR的子孔径算法分析及实现.电子与信息学报,2004年5月,26(5):727~732
    [77]谢冬冬,禹卫东. OSA在基于去斜率技术的SAR成像中的应用.现代雷达,2004年9月,26(9):11~14
    [78]程玉平. SAR成像中几个问题的研究.西安电子科技大学博士学位论文,2001年6月
    [79]刘永坦等著.雷达成像技术.哈尔滨工业大学出版社,1999年
    [80]李明峰.合成孔径雷达多种工作模式的信号分析和成像处理——机载高分辨率Dechirp、星载ScanSAR模式.中国科学院电子学研究所博士学位论文,2004年
    [81]金丽花,刘兴钊,周志鑫.星载聚束式合成孔径雷达线性调频信号的频率scaling算法.上海交通大学学报,2004年,38:1777~1780
    [82] Jin Lihua, Liu Xingzhao, Zhou Zhixin. Spaceborne Spotlight SAR Processing Using the Frequency Scaling Algorithm. Proceedings of the IEEE Radar Conference, 2004:563~567
    [83] Jin Lihua, Liu Xingzhao. Nonlinear FM Frequency Scaling Method For Processing Squint Mode Spotlight SAR. 2005 IEEE International Radar Conference, 2005
    [84] Jin Lihua, Liu Xingzhao. Nonlinear Frequency Scaling Algorithm for High Squint Spotlight SAR Data Processing. EURASIP Journal on Advances in Signal Processing, Vol. 2008, Article ID 657081, 8 pages
    [85] Brown W D, Ghiglia D C. Some methods for reducing propagation-induced phase errors in coherent imaging systems. I. Formalism. Journal of the Optical Society of America, Vol. 5, No. 6, Jun. 1988, 5(6):924~941
    [86] Ghiglia D C, Brown W D. Some methods for reducing propagation-induced phase errors in coherent imaging systems. II. Numerical results. Journal of the Optical Society of America, Jun. 1988, 5(6):942~957
    [87] Calloway T M, Donohoe G W. Subaperture Autofocus for Synthetic Aperture Radar. IEEE Transactions on Aerospace and Electronic Systems, Apr. 1994, 30(2):617~621
    [88] Prodi F, Vinelli F, Dente F. An Autofocusing Technique of SAR Data based on Superresolution. IEEE Transactions on Geoscience and Remote Sensing Symposium, IGARSS’93, 18-21 Aug. 1993, 4:1586~1588
    [89] Dall J. A Fast Autofocus Algorithm for Synthetic Aperture Radar Processing. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-92, 23-26 Mar. 1992, 3:5~8
    [90]唐浩漾,齐长远,赵健等.子孔径相关算法研究.西北大学学报(自然科学版),2005年12月,35(6):720~722
    [91] Berizzi F, Corsini G. Autofocusing of Inverse Synthetic Aperture Radar Image Using Contrast Optimization. IEEE Transactions on Aerospace and Electronic Systems, Oct. 1996, 32(3):1185~1191
    [92] Xu Jia, Peng Yingning, Xia Xianggen. Parametric Autofocus of SAR Imaging-Inherent Accuracy Limitations and Realization. IEEE Transactions on Geoscience and Remote Sensing, Nov. 2004, 42(11):2397~2411
    [93] Fortune S A, Gough P T, Hayes M P. Statistical Autofocus of Synthetic Aperture Sonar Images Using Image Contrast Optimisation. IEEE International Geoscience and Remote Sensing Symposium, IGARSS’01, 9-13 Jul. 2001, 3:1509~1511
    [94] Berizzi F, Corsini G, Diani M, et al. Autofocus of Wide Azimuth Angle SAR Images by Contrast Optimisation. IEEE International Geoscience and Remote Sensing Symposium, IGARSS’96, 27-31 May 1996, 2:1230~1232
    [95] Blacknell D, Blake A P, Oliver C J, et al. A Comparision of SAR Multilook Registration and Contrast Optimisation Autofocus Algorithms Applied to Real SAR Data. IEEE International Radar Conference, 12-13 Oct. 1992:363~366
    [96] Li Xi, Liu Guosui, Ni Jinlin. Autofocusing of ISAR Images Based on Entropy Minimization. IEEE Transactions on Aerospace and Electronic Systems, Oct. 1999, 35(4):1240~1252
    [97] Wang Junfeng, Liu Xingzhao. SAR Minimum-Entropy Autofocus Using an Adaptive-Order Polynomial Model. IEEE Geoscience and Remote Sensing Letters, Oct. 2006, 3(4): 512~516
    [98] Wahl D E, Eichel P H, Ghiglia D C, et al. Phase Gradient Autofocus-A Robust Tool for High Resolution SAR Phase Correction. IEEE Transactions on Aerospace and Electronic Systems, Jul. 1994, 30(3):827~835
    [99] Eichel P H, Jakowatz J, Phase-gradient Algorithm as An Optical Estimator of the Phase Derivative Optics Letters, 1989, 14(20):1101~1103
    [100]李燕平,刑孟道,保铮.一种改进的相位梯度自聚焦算法.西安电子科技大学学报(自然科学版),2007年6月, 34(3):386~391
    [101]唐禹,王岩飞,张冰尘.滑动聚束SAR成像模式研究.电子与信息学报,2007年1月,29(1):26~29
    [102] Cantalloube H, Dubois-Fernandez P. Airborne X-band SAR imaging with 10 cm resolution: technical challenge and preliminary results. IEE Proceedings- Radar, Sonar and Navigation, Apr. 2006, 153(2):163~176
    [103] Lampropoulos G A. A New Two-Dimensional Squint Mode SAR Processor. IEEE Transactions on Aerospace and Electronic Systems, Apr. 1996, 32(2):854~863
    [104] Wong F H, Yeo T S. A Novel Technique for the Processing of Short-Dwell Spotlight SAR Data. IEEE Transactions on Geoscience and Remote Sensing, May 2003, 41(5):953~963
    [105] Davidson G W, Cumming I. Signal Properties of Spaceborne Squint-Mode SAR. IEEE Transactions on Geoscience and Remote Sensing, May 1997, 35(3):611~617
    [106] Curlander J C, McDonough R H. Synthetic Aperture Radar: Systems and Signal Processing. New York:John Wiley & Sons, Inc., 1991
    [107]保铮,刑孟道,王彤著.雷达成像技术.电子工业出版社,2006年
    [108]曹鹏志.星载合成孔径雷达数字图像仿真的研究.哈尔滨工业大学博士学位论文,1998年7月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700