用户名: 密码: 验证码:
干涉合成孔径雷达高程测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达干涉技术(InSAR)发展于20世纪60年代末,它利用合成孔径雷达(SAR)干涉数据中的相位信息,可以获取数字地形信息,地壳微小变化信息和地面慢速运动目标指示。其中,利用InSAR获取数字高程图(DEM)具有全天时、全天候、精度高等优点,能够解决用常规手段无法解决的地形测绘问题。在军事和国民经济建设等领域,有着广泛的应用。本文的工作主要围绕InSAR高程测量的数据处理展开。
     本文第一章绪论,首先回顾SAR和InSAR的起源。然后根据雷达数据的获取方式和雷达的空间放置,讨论了三种InSAR测量系统。结合不同的测量系统,详细阐述了InSAR技术的应用与发展。并对InSAR高程测量的现状进行了分析。最后说明本文的主要研究内容。
     第二章阐述了InSAR高程测量的机理。首先利用成像模式的空间几何模型,从两种角度对InSAR高程测量的工作原理进行了分析。通过公式推导,明确了干涉相位同地面目标高度的关系。接着通过对干涉相位的概率分布密度函数的研究,分析了相关系数对干涉相位概率密度的影响。根据干涉相位噪声的分布特点,建立了复数域干涉相位噪声模型,引入一个新的变量可近似描述干涉相位的质量。最后给出了InSAR高程测量的信号处理流程,对其中的关键步骤分别做了扼要的说明。
     第三章主要研究复图像配准和干涉相位图的生成两部分内容。首先给出了三种配准准则,并分别对其性能进行了分析。接着概述了像素配准和亚像素配准的实现方法。根据InSAR测高原理,从两种角度分析了干涉相位图中平地效应的生成机理。最后利用Etna火山实测数据,给出了图像配准结果,生成了干涉相位图。
     第四章研究了基于小波变换的干涉图滤波算法。根据干涉相位与干涉条纹的特点,指出干涉图滤波处理分别在实部和虚部进行的必要性。建立了基于离散小波变换(DWT)的小波域干涉相位模型,对小波系数的特点做了深入分析。对一种基于DWT的干涉SAR图像滤波算法进行了详细研究。在此基础上,提出了基于静态小波变换(SWT)的小波域干涉相位模型,并利用SWT对基于DWT的滤波算法进行了改进。结合仿真实验结果,对DWT和SWT在该算法中保持条纹特征的能力进行了探讨。根据分析结果,提出了一种将DWT和SWT进行级联组合的滤波方法。该方法在高噪声环境下,可以较好保持条纹连贯性,还能明显改善条纹质量。针对大尺寸的干涉图,进一步提出了基于信噪比门限判断的干涉图两级处理滤波法。最后根据大量的实测数据处理结果,将本章提出的算法,同圆周期均值和中值算法,以及基于小波变换的圆周期均值和中值算法进行了比较,结果表明文章提出的算法在高噪声区域降噪滤波的能力最优,并且同时能够很好地保持致密条纹的连贯性。
     第五章研究了InSAR相位解缠技术。首先讨论了相位解缠原理和残余点的概念,接着利用图例,详细探讨了残余点分布对干涉条纹的影响。在基于路径跟踪的相位解缠算法中,深入研究了Goldstein算法和基于质量图的两种相位解缠算法。针对这两种算法在残余点密度高的区域存在着一定的局限性,提出了一种基于残余点配对的相位解缠算法。该算法能够在残余点密集区域快速有效的进行相位解缠。在基于最小二乘法的相位解缠算法中,研究了一种利用加权因子有效解决平滑效应的最小二乘法。针对该算法没能充分考虑残余点可能带来的误差,提出了一种利用小波变换量化干涉相位可信度的方法,并以此对加权的最小二乘算法的加权因子进行改进。实测数据处理的结果验证了改进的有效性。
     第六章研究了相位值到高度值的转换以及地面位置校正问题,最后给出了数字高程图。
     第七章为结束语,对全文工作进行了总结,指出有待进一步研究的问题。
Synthetic aperture radar interferometry (InSAR) was developed since late 1960's. It can provide the information about the digital terrain, the landform distortion and the slow-moving target indication, by employing the phase information of the interferometric data from synthetic aperture radar. The wide and latent applications of InSAR have been achieved in many areas of military and civil researches. For the all-weather, day and night capability, InSAR can create high resolution digital elevation model (DEM) to help people to deal with many terrain mapping difficulties which can't be solved by general means. In this dissertation, the signal processing of elevation measure is systematically studied.
     Chapter 1 is the introduction of the dissertation. The history of SAR and InSAR technology is outlined. And then based on the mode of radar data acquirement and the placement of radars, three kinds of InSAR systems are discussed. With different InSAR systems, the applications and the developments of InSAR technology are introduced in detail. After the summarization of the current state, the aim and contents of this work are addressed.
     Chapter 2 deals with the InSAR mechanism in elevation measure. We deduce the formula that denotes the connection of interferometric phase and the terrain elevation. The complex coherence coefficient is used to analysis the statistical characteristic of interferometric phase. The complex phase noise model is discussed. And a new variable is imported to describe the quality of interferometric phase instead of the complex coherence coefficient. At last, the procedure of InSAR elevation measure is briefly presented.
     Chapter 3 includes two problems:image registration and interferogram generation. Three rules in image registration are given and discussed. The fulfillings of those two problems are studied respectively. With raw date, we obtain the interferogram.
     Chapter 4 studies the interferogram filtering algorithms based on the wavelet transform. The characteristics of the interferometric phase and the stripes are analyzed to support the necessity that the interferogram filtering should be processed in complex number field. Based on the principle of wavelet transform, we establish the complex wavelet interferometric phase noise model. By the analysis of the wavelet coefficients, we educe the distributing law of the interferometric phase signal and the noise signal. Then a noise reduction algorithm based on discrete wavelet transform (DWT) is introduced. By using the static wavelet transform (SWT), we make an amelioration of this algorithm. The raw data simulations of those two algorithms help us to distinguish the performance of each algorithm with different noise intensity. Based on the analysis of simulation results, a new scheme, which has good performance both in reducing the phase noise and maintaining the continuity of the interferometric strips, is addressed. In addition, a SAR interferogram noise reduction algorithm based on the SNR threshold is proposed to decrease the amount of calculation when deal with the large-scale interferogram. Finally, compared to other niose-filtering algorithms, we make a detailed analysis with raw data simulation.
     Chapter 5 focuses on the phase unwrapping. The principle of phase unwrapping and the mechanism of the residues generation are introduced. Five pieces of interferogram are selected to exemplify different distribution of residues and help us to analyze their influence to the strips. Among the path-following algorithms, we investigate the Goldstein algorithm and the quality-guided path following algorithm. Aiming at the poor performance of those two algorithms in noisy region, we propose the residue-pairing (RP) algorithm, which can effectively decrease the length of brunch cuts and contract the isolated region especially in noisy region. Among the minimum-norm algorithms, a weighting process which can efficiently weaken the smoothing effect is discussed. However, the weight design of this method neglects the effects caused by residues.A method to quantization the reliability of the interferometric phase by wavelet transform is proposed, and we make an amelioration of the weight design.
     Chapter 6 deals with the topographic scale of facor, and the orthorecticfication.The DEM of Atna Mountain is given in the end.
     Chapter 7 summarizes the whole work of this thesis and points out the problems to be solved in the future.
引文
[1]R.O.Harger,Synthetic Aperture Radar Systems Theory and Design, Academic Press,1970.
    [2]D.AAusherman, Kozma A.,J.L.Walker, H.M.Jones, and E.C.Poggio, Development in radar imaging, IEEE Transactions on Aerospace and Electronic Systems,vol.20,no.4,pp.363-400,July 1984.
    [3]M.I.Skolnik, Introduction to Radar Systems,McGraw-Hill,1980.
    [4]D.L.Mensa, High Resolution Radar, Artech House,Inc.1987.
    [5]J.C.Curlander,R.N.McDonough, Synthetic Aperture Radar Systems and Signal Processing, John Wiley&Sons,Inc.1991.
    [6]Jr.C.V.Jakowatz, D.E.Wahl,et al, Spotlight Mode Synthetic Aperture Radar:A Signal Processing Approach, Kluwer Academic Publisher,1996.
    [7]C.A.Wiley, Synthetic Aperture Radars, IEEE Trans.Aerosp.Electron.Syst.,vol.21,no.3,pp.440-443, May 1985.
    [8]S.A.Hovanessian, Introduction to Sythetic Array and Imaging Radars, Artech House,1980.
    [9]H.A.Zebker and R.M.Goldstein, Topographic mapping form interferometric SAR observations, J.Geophys.Res.,vol.91,pp.4993-4999,1986.
    [10]R.M.Goldstein,H.A.Zebker,and C.L.Werner, Satellite radar interferometry:two-dimensional phase unwrapping,Radio Science,vol.23,no.4,pp.713-720,July/August 1988.
    [11]P.A.Rosen,S.Hensley,I.R.Joughin,F.K.Li,S.N.Madsen,E.Rodriguez,and R.M. Goldstein, Synthetic aperture radar interferometry, Proceedings of the IEEE,vol.88,no.3,pp.333-382,March 2000.
    [12]F.Li and R.M.Goldstein, Studies of multibaseline spaceborne interferometric:synthetic aperture radars,IEEE Transactions on Geoscience and Remote Sensing,vol.28,no.1,pp.88-97
    [13]C.W.Sherwin,et al., Some Early Development in Synthetic Aperture Radar Systems, IRE,vol. MIL-6,no.2,pp.111-115,April 1962.
    [14]L,J.Cutrona et al.,A High Resolution Radar Combat-Surveillance Systems, IRE,vol.MIL-5,no.2, pp.127-131, April 1962.
    [15]L,J.Cutrona et al.,A Comparison of Techniques for Achieving Fine Azimuth Resolution,IRE,vol. MIL-6,no.2, pp.129-131, April 1962.
    [16]A.E.E.Rogers and R.P.Ingalls, Venus:Mapping the surface reflectivity by radar interferometry, Science,vol.165,pp.797-799,1969.
    [17]S.H.Zisk,Anew Earth-based radar technique for the measurement of lunar topography,Moon, vol. 4, pp.296-300,1972.
    [18]L.C.Graham, Synthetic interferometric radar for topographic mapping, Proceedings of the IEEE, vol.62,pp.763-768,June 1974.
    [19]R.M.Goldstein,and H.A.Zebker.interferometric radar measurement of ocean surface surrents. Nature,vol.328,pp.707-709,1987
    [20]A.K.Gabriel, and R.M.Goldstein, Crossed orbit interferometry:Theory and experimental results from SIR-B, Int.J.Remote Sensing, vol.9,no.8,pp.857-872,1988.
    [21]R.M.Goldstein,H.Engelhardt,B.Kamb, and R.M.Frolich, Satellite Radar Interferometry for Monitoring Ice Sheet Motion:Application to an Antarctic Ice Stream, Science, vol.262,pp.1525-1530,1993.
    [22]D.Massonnet,K.Feigl,M.Rossi,et al,The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry, Nature,vol.364,pp.138-142,1993.
    [23]D.Massonnet, and K.L.Feigl, Discrimination of geophysical pheomena in satellite radar interferograms, Geophys.Res.Lett., vol.22,no.12,pp.1537-1540,1995.
    [24]Papathanassiou K P and Cloude S R.Polarimetric effects in repeat-pass SAR interferometry.1997 IEEE International Geoscience and Remote Sensing Symposium,Singapore.IGARSS'1997, vol. 03-08,no.4, pp.1926-1928. August 1997.
    [25]Shane Robert Cloude and Konstantinos P.Papathanassiou,Polarimetric SAR Interferometry.IEEE Transactions on Geosciences and Remote Sensing,vol.36,no.5,pp.1551-1565,1998.
    [26]Brandfass M.,Generation of Bald Earth Digital Elevation Models asApplied to Polarimetric SAR Interferometry.IGARSS'02 [C],2002
    [27]Luciano V.D, Marcos T.E, et al. Assessment of Digital Elevation Models Obtained in Brazilian Amazon Based on P and X band Airborne Interferometric Data.IGARSS'02 [C],2002,
    [28]A.Ferretti, C.Prati and F.Rocca. Multibaselin InSAR DEM reconstruction:the wavelet approach, IEEE Trans.Geosci.Remote Sensing,vol.37,no.2,pp.705-715,1999.
    [29]A.Ferretti, C.Prati and F.Rocca.Permanent Scatterers in SAR interferometry, IEEE Trans.Geosci. Remote Sensing, vol.39, no.1, pp.8-20, Jan.2001a.
    [30]A.Ferretti,C.Prati and F.Rocca.,Nonlinear subsidence rate estimation using permanent scatters in differential SAR interferometry, IEEE Trans.Geosci.Remote Sensing,vol.38,no.5,pp.2202-2212, Jan.2001b.
    [31]Bao Mingquan. A nonlinear integral transform between ocean wave spectra and phase imagespectra of a cross-track interferometric SAR.IEEE Trans.Geosci.Remote Sensing Symposium,Hamburger,Germany, vol.5,pp.2619-2621,1999.
    [32]Schulz-Stenllenfleth J and L.Susanne.Ocean wave imaging using an airborne single pass across-track interferometric SAR.IEEE Trans.Geosci.Remote Sensing, vol.39,no.1,pp.38-45.2001.
    [33]Goldstein R.M.,T.P.Barnett,H.A.Zebker.Remote sensing of ocean currents.Science,vol.246,pp. 1282-1285.1989.
    [34]Marom.M.,R.M.Goldstein,E.B.Thornton,L.Shemer.Remote sensing of ocean wave spectra by interferometric synthetic aperture radar.Nature,vol.345,pp.793-795,1990.
    [35]Marom.M.,L.Shemer and E.B.Thornton.Energy density directional spectra of a nearshore wave field measured by interferometric synthetic aperture radar. J.Geophys.Res, vol.96no.C12,pp. 22125-22134,1991.
    [36]Shemer.L and E.Kit.Simulation of an interferometric synthetic aperture radar imagery of an ocean system consisting of a current and a monochromatic wave.J.Geophys.Res, vol.96,no.C12, pp.22063-22073,1991.
    [37]Lyzenga D.R.and J.R.Bennett.Estimation of ocean wave spectra using two-antenna SAR system., IEEE Trans.Geosci.Remote Sensing, vol.29,no.3,pp.463-465,1991
    [38]Milman A.S.,A.O.Scheffler,and J.R.Bennett.Ocean imaging with two-antenna radars.IEEE Trans. Geosci.Remote Sensing,vol.40,no.6,pp.597-605,1992.
    [39]Shemer L.On the focusing of the ocean swell images produced by a regular and by an interferometric SAR.Int.J.Remote Sensing, vol.16,no.5,pp.925-947,1995.
    [40]Lyzenga.R and P.Malinas. Azimuth falloff effects in two-antenna SAR measurements of ocean wave spectra.IEEE Trans.Geosci.Remote Sensing, vol.34,no.4,pp.1020-1027,1996.
    [41]Bao Mingquan and W.Alpers.A new nonlinear integral transform relating ocean wave spectra to phase image spectra of an along-track interferometric synthetic aperture radar.IEEE Trans. Geosci.Remote Sensing,vol.37,no.l,pp.461-466,1999.
    [42]He Yijun and W.Alpers.On the nonlinear integral transform of an ocean wave spectrum into an along-track interferometric synthetic aperture radar image spectrum.J.Geophys.Res,vol.108,no. C6,2003.
    [43]A.Currie,C.J.Baker,et al. High resolution 3-D radar imaging.IEEE International radar conference '95,pp.468-472
    [44]穆东,干涉合成孔径雷达成像技术研究,南京航空航天大学博士学位论文,2001.2
    [45]H.A.Zebker, and J.Villasenor, Decorrelation in interferometric radar echoes.IEEE Trans.on GRS, vol.30,no.5,pp.950-959,Sept.1992
    [46]J.Gatelli,A.M.Guarnieri, et al.The wavenumber shift in SAR interferometriy.IEEE Trans.on GRS, vol.32,no.4,pp.855-865,July.1994
    [47]Lee J-S,Hoppel K W, Mango S A and Miller A R, Intensity and phase statistics of mulitlook polarimetric and interferometric SAR imagery, IEEE Trans.Geosci.Remote Sens.vol.32,pp.1012-1028,1994
    [48]Tough R J A,Interferometric detection of sea ice surface features Memorandum,4446 Royal Signals and Radar Establishment, UK,1991
    [49]J.S.Lee,K.W.Hoppel,and S.A.Mango,Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery, IEEE Trans.Geosci Remote Sensing,vol.32,pp.1017-1027,Sept 1994.
    [50]RJ.A.Tough, D.Blacknell,and S.Quegan, A statistical description of polarimetric and interferometric synthetic aperture radar data,Proc.R.Soc.London A,pp.567-589,1995.
    [51]J.S.Lee.K.P.Papathanassiou,T.L.Ainsworth,M.H.Grunes,and A.Reigber.A new technique for noise filtering of SAR interferometric phase images, IEEE Trans.Geosci.Remote Sensing,vol.36,pp. 1456-1465,Sept 1998.
    [52]Curland C. Location of Spaceborne SAR Imagery. IEEE Trans. on Geoscience and Remote Sensing,vol.20,no.3,pp.359-364,1982.
    [53]Zebker H A, Rosen P A,Hensley S. Atmospheric Effects in Interferometric Synthetic Aperture Radar Surface Deformation and Topographic Maps[J]. Journal of Geophysical Research, vol.102, no.B4,pp.7547-7563,1997.
    [54]Giorgio Franceschetti,R.L., Synthetic Aperture Radar Processing. CRC Press,1999.
    [55]段克清,向家彬,汪枫InSAR相位条纹图的加权圆周中值滤波算法.空军雷达学院学报.vol.19,no.1,pp.4-6,2005.3
    [56]Martinez C L, Fabregas X. Modeling and reduction of SAR interferometric phase noise in the wavelet domain. IEEE Trans. On Geoscience and Remote Sensing,vol.40,no.12,pp.2553-2566, 2002
    [57]汪鲁才,王耀南.基于小波包分析的InSAR干涉图滤波算法研究.湖南科技大学学报(自然科学版).vol.20,no.2,pp.72-75,2005.6.
    [58]汪鲁才,王耀南,毛六平.基于小波变换和中值滤波的InSAR干涉图像滤波方法.测绘学报.vol.34,no.2,pp.108-112,2005.5.
    [59]岳焕印,郭华东,王长林等.SAR干涉图的静态小波域MAP法滤波.遥感学报.vol.6,no.6,pp.456-463,2002.11.
    [60]岳焕印,郭华东,范典等.基于静态小波分解的SAR干涉图滤波.高技术通信.no.5,pp.5-9,2002.
    [61]Maxim.V.Vinogradov,Igor.V.Elizavetin. Phase Unwrapping Method for the Multifrequenct and Multibaseline Interferometry.IEEE.1998.
    [62]Otmar Loffeld,Rainer Kramer. Phase Unwrapping for SAR Interferometry.IEEE.1994
    [63]Kucera L.Using ERS SAR interferometry for DEM creation in the Czech Republic In:Proc Fringe'99(CD).Liege,Belgium:ESA Publication Div,1999.
    [64]Castllano L. ERS tandem data quality check for DEM generation In:Proc Fringe'99(CD).Liege, Belgium:ESA Publication Div,1999.
    [65]KooijM V D. Operational production of DEMs from ERS tandem data In:Proc Fringe'99(CD). Liege,Belgium:ESA Publication Div,1999.
    [66]S.Stan,W.Knoepfle and D. Scale, Registration of ascending-descending SAR images for the SRTM mission,Proc.IGARSS,pp.497-500,2000
    [67]W.Forstner,A feature based correspondence algorithm for image matching,Intl,Arch.Photogram. Rem.Sens,vol.26,pp.150-166,1986
    [68]T.M.Calloway,P.H.Eichel and C.V.Jakowatz,Iterative registration of SAR imagery.SPIE,vol.1349, pp.412-420,1990
    [69]G.Brown,A survey of images registration techniques,ACM,vol.24,pp.325-376,1992
    [70]A.Goshtasby,G.C. Stockman,et al, A region-based approach to digital image registration with subpixel accuracy,IEEE Trans.Geosci.Rem.Sens, vol.24,pp.390-399,1986
    [71]GFornaor,GFranceschetti,Image registration in interferometric SAR processing,IEE Proc,Radar, Sonar,Navig,vol.142,pp.313-320,1995.
    [72]D.M.Mount,N.S.Netanyahu and J.Le Moigne,Efficient algrothm for robust feature matching, Pattern Recognition,vol.32,pp.17-38,1999
    [73]S.Ranade and A.Rosenfeld,Point pattern matching by relaxation,Pattern Recognition,vol.12,pp. 269-275,1980
    [74]J.Ton and A.K. Jain, Resgistering landsat images by point pattern matching,IEEE Trans.Geosci. Rem.Sens,vol.27,pp.642-651,1989
    [75]Qian Lin,Vesecky J F,Zebker H A. Registration of interferometric SAR images [J]. IEEE Trans. On GRS,vol.20,no.2,pp.1579-1581,1992
    [76]王超,张红,刘智.星载合成孔径雷达干涉测量,北京:科学出版社,pp.33-35,2002
    [77]魏钟铨等,合成孔径雷达卫星,北京:科学出版社,pp.247-248,2001.
    [78]Goldstein R.M.,Werner C.L., Adaptive filter of SAR interferograms. National Aeronautics and Space Administration Technical Support Package, http://www.nasatech.com.TSP/PDFTSP/ NPO20440.pdf
    [79]Ghiglia D,Pritt M D.Two-dimensional phase unwrapping.New York:John Wiley & Sons,1998.
    [80]P.H.Eichel, D.C.Ghiglia, et al.Spotlight SAR interferometry for terrain elevation mapping and interferometric change detection.Sandia National Labs Tech.Report, SAND93,pp.2539-2546, Dec.1993
    [81]R.Lanari,GFornaro,et al.Generation of digital elevation models by using SIR-C/X-SAR multifrequency two-pass interferometry:the etna case study.IEEE.Trans.on GRS,vol.34,no.5, pp.1097-1114,Sept.1996
    [82]罗永光,王海云,稳健信号处理概论,国防科技大学出版社,1987.11
    [83]程正兴,小波分析算法与应用,西安:西安交通大学出版社,1998.
    [84]刘贵忠,邸双亮,小波分析及其应用,西安:西安电子科技大学出版社,1992.
    [85]崔锦泰著,小波分析导论,西安:西安交通大学出版社,1995.
    [86]王安娜,杨铭如,刘坐乾等,基于小波和SOM网络的医学图像融合,计算机工程,vol.35,no.21,pp.200-202,2009.
    [87]J.M Shaprio, Emedded image coding using zerotrees of wavelet coefficients,IEEE Trans. Signal Processing,vol.41,pp.3445-3462,Dec 1994.
    [88]D.E. Carrasco, SAR interferometry for digital elevation model generation and differential applications,Ph.D.thesis,Univ.Politecnica de Catalunya,Barcelona, Spain,1998.
    [89]G.P.Nason, B W Silverman. The stationary wavelet transform and some statixtical applications in wavelets and statistics. Ser.Lecture Notes statist.103, A.Antoniadis and G.Oppenheim, Eds, New York:Springer-verlag,pp.281-299,1995
    [90]D.L.Donoho.De-noising by soft-thresholding[J].IEEE Trans.on Inf. Theory, vol.41,no.3,pp.613-627,1995.
    [91]Mark J.Shensa. The discrete transform:wedding the A trous and mallat algorithms. IEEE Trans. Signal Processing. vol.40,no.l0,pp.2464-2482, Oct 1992.
    [92]张旭升,周桃庚,沙定国,数字图像噪声估计的方法和数学模型,光学技术,vol.31,no.5,pp.719-722,2005.9.
    [93]Itoh K.Analysis of the phase unwrapping problem[J].Applied Optics,vol.21,no.14,pp.2470-2478. 1982.
    [94]Ghiglia D C,Mastin G A,Romero L.A. Cellular-automata method for phase unwrapping[J].J Opt, Soc,vol.4,no.l,pp.267-280,1987.
    [95]R.Cusack,J.M.Huntley. Noise-immune phase unwrapping algorithm.Applied Optics,vol.28,no.15, pp.3268-3270,1989.
    [96]J.R.Buckland,J.M.Huntly and S.R.E.Turner. Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm.Applied Optics,vol.34,no.23,pp.5100-5108,1995.
    [97]D.J.Bone.Fourier fringe analysis:The two-dimensional phase unwrapping problem.Applied Optics,vol.30,no.25,pp.3627-3632.1991
    [98]J.A.Quiroga,A.Gonzalez-Cano and E.Bernabeu. Phase-unwrapping algorithm based on an adaptive criterion, applied Optics,vol 34,no.14,pp.2560-2563,1995.
    [99]W.Xu and I.Cumming.1996.A region growing algorithm for InSAR phase unwrapping. Proceedings of the 1996 International geoscience and Remote Sensing Symposium.Lincoln. NE.IEEE,Piscataway.NJ, pp.2044-2046,May 1996.
    [100]M.W.Roth. Phase unwrapping for interferometric SAR by the least-error path. Johns Hopkins University Applied Physics Lab Technical Report.Laurel.MD.March 30 1995.
    [101]D.C.Ghiglia and L.A.Romero. Robust two-dimensional weighted and unweigthed phase unwrapping that uses fast transforms and iterative methods.J.Opt.Sco.Am.A,vol.11,no.1,pp.107-117,1995.
    [102]Pritt M D,Shipman J S, Least-Squares two-dimensional phase unwrapping using FFT's[J].IEEE Trans.Geosci.Remote Sens, vol.32,no.3,pp.706-708,1995.
    [103]R.Bamler, N.A dam,et al.Noise-induced slope distortion in 2-D phase unwrapping by linear estimators with application to SAR interferometry.IEEE Trans on GRS,vol.36,no.3,pp.913-921, May 1998.
    [104]穆东,朱兆达,张焕春.干涉SAR最小二乘二维相位展开方法的改进.现代雷达,vol.23,no.2,pp.23-26,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700