用户名: 密码: 验证码:
分布式卫星SAR半实物仿真关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式卫星合成孔径雷达(SAR)是将卫星编队和星载SAR技术有机结合的新体制天基雷达系统,该系统能够获得比多SAR简单组网更多的功能和更高的性能,是全天候、全天时、高效率获取全球高精度无缝隙地面三维数字高程信息(DEM)的优选手段,成为目前国内外的研究热点。但由于该系统关键技术多、系统集成测试复杂、各误差源间存在紧密的耦合关系,仅通过全数字仿真验证已不能完全满足分布式卫星SAR系统集成验证要求,而采用分布式卫星SAR半实物仿真验证技术是解决这一难题的有效途径。本文瞄准分布式卫星SAR半实物仿真这一前沿迫切课题,围绕“信号协同误差建模”、“半实物回波模拟”和“半实物试验应用”这三个半实物仿真关键技术问题展开研究。各章具体内容安排如下:
     第二章研究了分布式卫星SAR信号协同层面相位和时间同步方法,以及信号同步误差的误差模型及其对InSAR性能的影响。分析了相位同步误差对InSAR性能的影响;建立了直达波和双向脉冲交换这两种基于同步信号传递的相位同步方法的补偿相位信号模型,对比分析了各类剩余相位误差的特性和量级;研究了乒乓双站模式下的相位同步处理方法,提出一种在回波域利用相关处理直接进行相位同步处理的方法;研究了时间同步误差对干涉测绘带损失、双站SAR成像和InSAR测高的影响;研究了基于GPS驯服高稳晶振的时间同步方法;建立了通道频域幅相模型及其干涉信号模型,研究了通道一致性误差对干涉相位偏差和标准差的影响。
     第三章研究了分布式卫星SAR数字回波信号高精度高效仿真方法。提出一种分布式卫星SAR数字回波信号高精度快速仿真算法,将回波信号表示成发射信号与场景调制信号的卷积,采用升采样技术确保回波信号仿真精度,通过将场景调制信号降采样到雷达工作采样频率保证了半实物回波模拟过程可在模拟器上实时实现,该算法具有模型适用性广、回波仿真精度高、回波计算效率高的优点;提出回波仿真计算量概念,可用于定量评估回波仿真算法性能和硬件计算能力;研究了基于时空分解的并行回波高性能计算方法和基于GPU加速的回波高性能计算方法。
     第四章针对分布式卫星SAR半实物仿真验证需求,完成了双通道回波信号模拟器的设计与实现。完成了回波模拟器的总体设计,完成了射频子系统、中频子系统、数字处理部分和显控软件的设计与实现,最终完成回波模拟器研制;提出一种基于相关加窗的模拟器高精度幅相特性估计方法,能够有效抑制闭环数据中噪声和杂散的影响;研究了复系数FIR滤波器设计及优化方法,可根据估计出的幅相特性设计出复FIR滤波器系数;完成了复系数FIR滤波器的FPGA实时实现。经测试回波模拟器的工作模式和通道幅相特性达到对回波模拟器的指标要求。
     第五章研究了分布式卫星SAR相位、时间同步与通道一致性误差的半实物仿真与评估。给出半实物仿真系统中数字仿真系统的体系结构和实物仿真系统的组成;提出了一种基于数据分析的半实物误差特性提取方法;提出了一种基于不同设备连接方案的半实物误差隔离和溯源试验评估方法,设计了分布式卫星SAR相位同步误差半实物验证试验,测试得到相位同步误差对干涉测高的影响,验证了双向脉冲交换相位同步方法的工程可行性;设计了分布式卫星SAR时间同步误差半实物验证试验,测试得到时间同步误差对干涉测高的影响,验证了基于GPS驯服高稳频率源的时间同步方法的工程可行性;设计了分布式卫星SAR通道一致性误差半实物验证试验,测试得到通道一致性误差对干涉测高的影响。
Distributed spaceborne synthetic aperture radar (SAR) is an innovative spaceborne radar instrument based on a combination of the satellite formation technique and the SAR technique. It has more function and higher performance than simple integrated SAR constellations and can effectively generate high-resolution global digital elevation model (DEM) in all weather conditions both by day and by night, which has become the hot subject in all over the world. As the system has a lot of key techniques and complicated system integration and testing problem and close coupling among system error sources, the computer-based simulation verification can not completely meet the integration and testing requirements of the distributed spaceborne SAR. Using the hardware-in-the-loop simulation techniques is an effective means to deal with this problem. This thesis focuses on the hardware-in-the-loop simulation of the distributed spaceborne SAR system. The systematic research is carried out about three key techniques of the hardware-in-the-loop simulation in the signal synchronization error modeling, the hardware-in-the-loop raw signal simulation and the hardware-in-the-loop experiment applications. The research in each chapter is arranged as following:
     The synchronization method, error model and its influence on InSAR performance of the signal synchronization error of the distributed spaceborne SAR is studied in chapter 2. The influence of the phase synchronization error on InSAR performance is analyzed. The compensated phase model of the two phase synchronization methods by synchronous signal transmission, the direct-path echo method and the pulsed alternate method, is presented. And the characteristics and amount of the residual phase synchronization errors are analyzed comparatively. The phase synchronization processing method in alternating bistatic mode is studied, and an echo-domain phase synchronization processing method using correlation processing is proposed. The influence of the time synchronization error on the interferometric swath loss, the bistatic SAR imaging, and the interferometric height measurement is analyzed. The time synchronization method based on GPS disciplined USO (Ultra Stable Oscillator) is studied. A channel amplitude and phase mismatch model in frequency domain and its interferometric signal mode is presented, and the influence of channel mismatch error on the InSAR phase deviation and variance is analyzed.
     The accurate and effective digital raw signal simulation method of the distributed spaceborne SAR is studied in chapter 3. An accurate and fast raw signal simulation algorithm is proposed. The raw signal is expressed as the convolution of the transmitting signal and the scene modulation signal, and a interpolation technique is used to maintain the accuracy of the fast approximation algorithm. The scene modulation signal is decimated to the radar sampling frequency for real-time implementation in the simulator. The method has advantages such as wide applicability, high simulation accuracy and high computation efficiency. The raw signal calculated quantity concept is proposed to quantitatively evaluate the fast raw signal simulation algorithm performance and the hardware computing capability. A parallel raw signal simulation HPC (High Performance Computing) method based on the time and space decomposition, and a GPU accelerated raw signal simulation HPC method is studied.
     The design and implementation of the dual-channel raw signal simulator for the hardware-in-the-loop simulation application of the distributed spaceborne SAR is studied in chapter 4. The raw signal simulator is successfully designed and implemented, including the general design, the radio frequency subsystem, the medium frequency subsystem, the digital signal processing section, and the display and control software. A correlation and windowing method is proposed to accurately extract the simulator amplitude and phase frequency response, which can restrain the influence of the noise and spur in the recorded loop data. A complex FIR filter design and optimization scheme is proposed to design the complex FIR filter coefficients according to the estimated frequency response. A FPGA technique is used to implement the filter in real-time. The measured results of the work mode and the channel amplitude and phase frequency response show that the indexes of simulator satisfy the design requirements.
     The hardware-in-the-loop experiment and evaluation of the phase and time synchronization and the channel mismatch error of the distributed spaceborne SAR is studied in chapter 5. The computer simulation system architecture and the physical simulation system configuration is presented. An error characteristics extraction method based on data analysis is proposed, and an error isolated evaluation method by different hardware configuration is proposed. The hardware-in-the-loop experiment of phase synchronization error is designed to obtain the influence of the error on the InSAR height measurement accuracy, which validates the feasibility of the pulsed alternate phase synchronization method. The hardware-in-the-loop experiment of time synchronization error is designed to obtain the influence of the error on the InSAR height measurement accuracy, which validates the feasibility of the time synchronization method based on GPS disciplined USO. The hardware-in-the-loop experiment of channel mismatch is designed to obtain the influence of the error on the InSAR height measurement accuracy.
引文
[1] Krieger G, Moreira A. Spaceborne bi- and multistatic SAR: potential and challenges[J]. IEE Proc.-Radar Sonar Navig., 2006, 153(3): 184-198.
    [2] Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M. TanDEM-X: A satellite formation for high-resolution SAR interferometry[J]. IEEE Trans. Geosci. Remote Sens., 2007, 45(11): 3317-3341.
    [3]蔡斌.分布式星载InSAR与SAR-GMTI信号处理研究[D].国防科技大学博士学位论文, 2009.
    [4]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法[D].西安电子科技大学博士学位论文, 2006.
    [5]孙造宇.星载分布式InSAR信号仿真与处理研究[D].国防科技大学博士学位论文, 2007.
    [6]张永俊.星载分布式InSAR系统的误差分析与DEM精度提高方法研究[D].国防科技大学博士学位论文, 2011.
    [7] 3rd TanDEM-X Science Team Meeting: Bistatic Operation & Synchronisation[EB/OL]. http://www.dlr.de/hr/desktopdefault.aspx/tabid-2317/ 3669_read-5488/, 2011.
    [8] Krieger G, Hajnsek I, Papathanassiou K P, Younis M, Moreira A. Interferometric synthetic aperture radar (SAR) missions employing formation flying[J]. Proceedings of the IEEE, 2010, 98(5): 816-843.
    [9] López-Dekker P, Prats P, Zan F D, Schulze D, Krieger G, Moreira A. TanDEM-X first DEM acquisition: a crossing orbit experiment[J]. IEEE Trans. Geosci. Remote Sens. Lett., 2011, 8(5): 943-947.
    [10]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社, 2005.
    [11] Shen Y. Shuttle Radar Topography Mission (SRTM) Flight System Design and Operations Overview[C]. in Proceedings of SPIE, pp. 167-178.
    [12]路兴强,梁甸农,王敏,余安喜.分布式小卫星SAR回波仿真的并行化研究[J].信号处理, 2006, 22(3): 343-347.
    [13]黄海风.分布式星载SAR干涉测高系统技术研究[D].国防科技大学博士学位论文, 2005.
    [14]张永胜.星载分布式InSAR概念系统结构与误差研究[D].国防科技大学博士学位论文, 2007.
    [15] Mori A, Vita F D. A time-domain raw signal simulator for interferometric SAR[J]. IEEE Trans. Geosci. Remote Sens., 2004, 42(9): 1811-1817.
    [16]黄立胜,王贞松,郑天垚.基于FFT的快速SAR分布目标回波模拟算法[J].遥感学报, 2004, 8(2): 128-136.
    [17] Skolnik M I. Radar handbook, Third Edition[M]. New York: McGraw-Hill, 2008.
    [18] Moccia A, Krieger G, Lombardo P. Tutorial: Future SAR systems: principles and applications[C]. in EUSAR, Aachen,Germany, Jun, 2010.
    [19] Rodriguez-Cassola M, Prats P, Schulze D, Tous-Ramon N, Steinbrecher U, Marotti L, Nannini M, Younis M, López-Dekker P, Zink M, Reigber A, Krieger G, Moreira A. First bistatic spaceborne SAR experiments with TanDEM-X[J]. IEEE Trans. Geosci. Remote Sens. Lett., 2011: 943-947.
    [20] Krieger G, Hajnsek I, Papathanassiou K, Eineder M, Younis M, DeZan F, Lopez-DekkerS.Huber P, Werner M, Prats P, Fiedler H, Freeman A, Rosen P, Hensley S, Johnson W, Veilleux L, Grafmueller B, Werninghaus R, Bamler R, Moreira A. Tandem-L: A mission for monitoring earth system dynamics with high resolution SAR interferometry [C]. in EUSAR, Aachen,Germany, Jun, 2010.
    [21] Hélière F, Lin C-C, Fois F, Arcioni M, Lecuyot A, Mangenot C, Klooster K V t, Rinous P, Aloisio M, Gallou N L. Microwave technology activities for future SAR candidate earth explorer core missions [C]. in EUSAR, Aachen,Germany, Jun, 2010.
    [22] Villano M, Moreira A, Miller H, Rott H, Hajnsek I, Bamler R, López-Dekker P, B?rner T, Zan F D, Krieger G, Papathanassiou K P. SIGNAL: mission concept and performance assessment [C]. in EUSAR, Aachen,Germany, Jun, 2010.
    [23]汤子跃,张守融.双站合成孔径雷达系统原理[M].北京:北京科学出版社, 2003.
    [24] Zengliang L, Dazhi Z, Teng L, Wei W, Cheng H. Analysis of time synchronization errors in bistatic SAR[C]. in International Conference on Radar, 2008.
    [25] Yongsheng Z, Diannong L, Zhen D. Analysis of time and frequency synchronization errors in spaceborne parasitic InSAR system[C]. in proc. IGARSS, 2006.
    [26] Wu J, Xiong J, Huang Y, Yang J. Analysis of PRF jitter in bistatic SAR[C]. in International Conference on Radar, 2006.
    [27] Xiaoling Z, Hongbo L, Jianguo W. The analysis of time synchronization error in bistatic SAR system[C]. in proc. IGARSS, 2005.
    [28]张永胜,梁甸农,孙造宇,董臻.时间同步误差对星载寄生式InSAR干涉相位的影响分析[J].宇航学报, 2007, 28(2): 370-374.
    [29]汤晓涛,楼良盛,刘志铭.编队卫星InSAR系统的相位同步分析[J].地球信息科学, 2008, 10(6): 798-801.
    [30] Wei? M. Synchronizaion of bistatic radar systems[C]. in proc. IGARSS, 2004, pp.1750-1753.
    [31] Wei? M. Time and frequency synchronization aspects for bstatic SAR asystems[C]. in EUSAR, 2004, pp. 395-398.
    [32] Krieger G, Younis M. Impact of Oscillator Noise in Bistatic and Multistatic SAR[J]. IEEE GRS Sensing Letters, 2006:
    [33] IEEE standard denitions of physical quantities for fundamental frequency and time metrology-random instabilities[M], 1999.
    [34] Younis M, Metzig R, Krieger G, Bachmann M. Performance prediction and verification for the synchronization link of TanDEM-X[C]. in proc. IGARSS, 2007.
    [35] Younis M, Metzig R, Krieger G. Performance prediction of a phase synchronization link for bistatic SAR[J]. IEEE Trans. Geosci. Remote Sens. Lett., 2006, 3(3): 429-433.
    [36] Wang W, Liang X, Ding C, Wang Y, Hong W. A phase synchronization approach for bistatic SAR[C]. in EUSAR, Dresden, Germany, May, 2006.
    [37] Wang W, Ding C, Liang X. Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems[J]. IET Radar Sonar Navig, 2008, 2(1): 1-11.
    [38] Wang W. GPS-Based time & phase synchronization processing for distributed SAR[J]. IEEE Trans. On GRS Aerospace and Electronic Systems, 2009, 45(3): 1040-1051.
    [39]周鹏.星机双基地SAR系统总体与同步技术研究[D].电子科技大学博士学位论文, 2008.
    [40]潘莉娟.星间高精度时间同步和测距系统的研究[D].中国科学技术大学硕士学位论文, 2008.
    [41]刘光炎,胡学成,林幼权.通道不一致性对SAR成像质量的影响[J].现代雷达, 2009, 31(7): 42-45.
    [42]张群英,杨学贤. LFM信号误差对SAR成像的影响分析[J].电子与信息学报, 2003, 25(2): 229-234.
    [43]矫伟,梁兴东,丁赤飚.基于内定标信号的合成孔径雷达系统幅相误差的提取和校正[J].电子与信息学报, 2005, 27(12): 1183-1186.
    [44]王峰,傅有光,孟兵,陈丽敏.基于傅里叶变换的雷达通道均衡算法性能分析及改进[J].电子学报, 2006, 34(9): 1677-1680.
    [45]杨文军,徐泳,王峰,向勇奇.宽带雷达系统失真补偿信号的提取方法[J].现代雷达, 2006, 28(5): 8-11.
    [46]刘向阳,周争光,廖桂生,毛志杰.一种基于回波数据的机载雷达通道均衡的方法[J].电子学报, 2009, 37(3): 658-663.
    [47] Wu C, Liu K Y, Jin M. Modeling and a correlation algorithm for spaceborne SAR signals[J]. IEEE Trans. Aerospace and Electronic Systems, 1982, AES-18(5): 563-575.
    [48] Franceschetti G, Guida R, Iodice A, Riccio D, Ruello G, Stilla U. Simulation tools for interpretation of high resolution SAR images of urban areas[C]. in Urban Remote Sens. Joint Event, 2007, pp. 1-5.
    [49] Franceschetti G, Iodice A, Riccio D, Ruello G. SAR raw signal simulation for urban structures[J]. IEEE Trans. Geosci. Remote Sens., 2003, 41(9): 1986-1985.
    [50] Franceschetti G, Iodice A, Riccio D, Ruello G, Siviero R. SAR raw signal simulation of oil slicks in ocean environments[J]. IEEE Trans. Geosci. Remote Sens., 2002, 40(9): 1935-949.
    [51] Franceschetti G, Migliaccio M, Riccio D. SAR raw signal simulation of actual ground sites described in terms of sparse input data[J]. IEEE Trans. Geosci. Remote Sens., 1994, 33(6): 1160-1168.
    [52] Franceschetti G, Migliaccio M, Riccio D, Schirinzi G. SARAS: A synthetic aperture radar(SAR) raw signal simulator[J]. IEEE Trans. Geosci. Remote Sens., 1992, 30(1): 110-123.
    [53]陈杰,周荫清,李春升.星载SAR自然地面场景仿真方法研究[J].电子学报, 2001, 29(9): 1202-1205.
    [54]孙造宇,梁甸农,董臻.星载分布式InSAR系统仿真研究[J].系统仿真学报, 2006, 18(6): 1538-1541.
    [55]万锋,岳海霞,杨汝良.星载SAR分布目标原始数据模拟研究[J].电子与信息学报, 2004, 26(8): 1250-1255.
    [56]武昕伟,张绪锦,张长耀.分布式小卫星SAR回波信号仿真[J].系统仿真学报, 2007, 19(13): 3056-3060.
    [57]岳海霞,杨汝良.复杂场景的SAR原始数据模拟研究[J].遥感技术与应用, 2006, 21(5): 450-455.
    [58] Franceschetti G, Iodice A, Riccio D, Ruello G. A 2-D Fourier domain approach for spotlight SAR raw signal simulation of extended scenes[C]. in proc. IGARSS, 2002, pp. 853-855.
    [59] Franceschetti G, Iodice A, Perna S, Riccio D. 2-D Fourier domain SAR raw signal simulation accounting for sensor trajectory deviations[C]. in proc. IGARSS, 2005, pp. 4045-4048.
    [60] Qiu X, Hu D, Zhou L, Ding C. A bistatic SAR raw data simulator based on inverseω-k algorithm[J]. IEEE Trans. Geosci. Remote Sens., 2010, 48(3): 1540-1547.
    [61] Qiu X, Hu D, Ding C. An Omega–K algorithm with phase error compensation for bistatic SAR of a translational invariant case[J]. IEEE Trans. Geosci. RemoteSens., 2008, 46(8): 2224-2232.
    [62] Khwaja A S, Ferro-Famil L, Pottier E. SAR raw data simulation using high precision focusing methods[C]. in EUSAR, Dresden,Germany, May, 2006.
    [63]苏宇,齐向阳.基于OpenMP的星载SAR回波信号并行仿真[J].中国科学院研究生院学报, 2008, 25(1): 129-132.
    [64]王曦爽,黄立胜,王贞松.分布式星载SAR回波仿真的并行化计算研究[J].系统仿真学报, 2006, 18(8): 2097-2104.
    [65]易予生,刘昕,刘楠,张林让. SAR回波数据并行化模拟研究[J].系统仿真学报, 2008, 20(4): 1064-1067.
    [66] Xiang Z, Wang K, Liu X, Yu W. A GPU based time-domain raw signal simulator for interferometric SAR[C]. in IGARSS, 2009, pp. V2 -V28.
    [67] Wang B, Zhang F, Xiang M. SAR raw signal simulation based on GPU parallel computation[C]. in IGARSS, 2009, pp. IV617-IV620.
    [68] Moore R K. Acoustic simulation of radar returns[J]. Microwaves, 1962, 1(7): 20-35.
    [69]胡小川.机载相控阵雷达模拟器系统设计与实现研究[D].电子科技大学博士学位论文, 2003.
    [70]陈镜.多通道SAR回波信号模拟器幅相误差校正研究[D].国防科技大学硕士学位论文, 2010.
    [71]赵志勇. SAR回波模拟器设计与实现[D].国防科学技术大学硕士学位论文, 2008.
    [72]潘志明,殷成志.雷达目标回波信号仿真实现方法[J].电子技术应用, 2003, 29(7): 56-58.
    [73]姜发玉.高分辨率合成孔径雷达视频模拟器FPGA实现技术研究[D].华南理工大学硕士学位论文, 2005.
    [74]吴淑泉,姜发玉,李韬.高分辨率合成孔径雷达视频模拟器研究[J].系统仿真学报, 2006, 18(2): 350-352.
    [75]苟娟.机载SAR回波信号模拟器研究[D].电子科技大学硕士学位论文, 2006.
    [76]钟科.机载SAR回波信号模拟器的研制[D].电子科技大学硕士学位论文, 2007.
    [77] PengZhi C, RongQing X, RongTan L. C-SAR spaceborne synthetic aperture radar raw data simulator[C]. in Aerospace and Electronics Conference, 1997.
    [78]岳海霞,杨汝良.星载合成孔径雷达回波信号模拟源研究[J].遥感技术与应用, 2004, 19(4): 253-257.
    [79] Wessels G J, Kirby M E. SARSIM: A spaceborne SAR simulation package[C]. in proc. IGARSS, 1986, pp. 1655-1660
    [80] Oliver C J, Tajbakhsh S, Franceschetti G, Shiue J C. SiSAR: advanced SAR simulation[C]. in SPIE, 1995, pp. 391-339.
    [81] Wang M, Liang D, Huang H, Dong Z. SBRAS-an advanced simulator of spaceborne radar[C]. in proc. IGARSS, 2007.
    [82] Shaoshi Y, Yueli L, Jianyang L, Zhimin Z. A semi-physical simulator of an airborne UWB SAR[J]. APSAR, 2009: 382-385.
    [83]陈筠力.分布SAR图像质量指标及地面仿真测试方法研究[J].航天器总体技术与仿真研讨会论文集, 2008: 365-371.
    [84]王业坤,陈崚,盛骥松.雷达信号半实物仿真中脉冲丢失概率的研究[J].系统工程与电子技术, 2004, 26(11): 1585-1587.
    [85]丁建江,华中和,赵志强.雷达组网系统考核试验方法[J].系统工程与电子技术, 2009, 31(10): 2422-2425.
    [86] TanDEM-X Blog[EB/OL]. http://www.dlr.de/blogs/en/desktopdefault.aspx/ tabid-5919/, 2011.
    [87]张锦绣,穆冬,曹喜滨,陈筠力.编队干涉SAR系统空间构形倾角确定准则研究[J].系统工程与电子技术, 2009, 31(5): 1087-1092.
    [88] Bingnan W, Fan Z, Maosheng X. Influence of baseline oscillations on SAR interferometric phase[J]. Journal of Remote Sensing, 2010, 14(6): 1171-1181.
    [89]杨凤凤.星载雷达GMTI系统与信号处理研究[D].国防科技大学博士学位论文, 2007.
    [90] Krieger G, Cassola M R, Younis M, Metzig R. Impact of oscillator noise in bistatic and multistatic SAR[C]. in proc. IGARSS, 2005.
    [91] Krieger G, Younis M. Impact of oscillator noise in bistatic and multistatic SAR[J]. IEEE Trans. Geosci. Remote Sens. Lett., 2006, 3(3): 424-428.
    [92] Zhang S, Yang R. Analysis of oscillator phase noise effects on bistatic SAR[C]. in EUSAR, Dresden, Germany, May, 2006.
    [93]谢先明,皮亦鸣.频率源噪声对双基SAR成像的影响及评估[J].系统工程与电子技术, 2010, 32(2): 275-278.
    [94]张升康,杨汝良.振荡器相位噪声对双站SAR成像影响分析[J].测试技术学报, 2008, 22(1): 7-12.
    [95]周良将,梁兴东,丁赤飚.频率源相位噪声对双站SAR性能影响分析[J].微计算机应用, 2009, 30(12): 7-12.
    [96] Zhang Y, Liang D, Dong Z. Analysis of frequency synchronization error in space-borne parasitic interferometric SAR system[C]. in EUSAR, Dresden, Germany, May, 2006.
    [97] Lei T, Zeng T, Hu C. Effect of time and frequency synchronization errors on bistatic SAR image formation[C]. in EUSAR, 2006.
    [98] Eineder M. Oscillator clock drift compensation in bistatic interferometric SAR[C]. in proc. IGARSS, 2003, pp. 1449-1451.
    [99]雷科,汪学刚,公岷.基于双向同步技术的机载双站SAR同步研究[J].系统工程与电子技术, 2008, 30(4): 641-643.
    [100] Rutman J. Characterization of phase and frequency instabilities in precision frequency sources: Fifteen years of progress[J]. Proceedings of the IEEE, 1978, 66(9): 1048-1073.
    [101] Rutman J, Walls F L. Characterization of frequency stability in precision frequency sources[J]. Proceedings of the IEEE, 1991, 79(6): 952-960.
    [102] Walter T. Characterizing frequency stability: a continuous power-law model with discrete sampling[J]. IEEE Trans. Instrum. Meas., 1994, 43(1): 69-69.
    [103] Riley W J. Handbook of frequency stability analysis[M]. Beaufort: Hamilton Technical Services, 2007.
    [104] Kasdin N J, Walter T. Discrete simulation of powerlaw noise[C]. in IEEE Frequency Control Symposium, 1992, pp. 274-283.
    [105]朱祥维.卫星导航系统时间同步关键技术研究[D].国防科技大学博士学位论文, 2007.
    [106]愈建国,张钦宇,刘梅.幂率谱噪声的离散仿真生成[J].现代电子技术, 2008, 21: 184-187.
    [107] Kasdin N J. Discrete simulation of colored noise and stochastic processes and 1/f^a power law noise generation[J]. Proceedings of the IEEE, 1995, 83(5): 802-827.
    [108] Just D, Bamler R. Phase statistics of interferograms with application to synthetic aperture radar[J]. Applied Optics, 1994, 33(20): 4361-4368.
    [109] Zebker H A, Villasenor J. Decorrelation in interferometric radar echoes[J]. IEEE Trans. Geosci. Remote Sens., 1992, 30(5): 950-959.
    [110]李红波,张晓玲,王建国.收发分置合成孔径雷达的时间同步分析[J].雷达科学与技术, 2005, 3(3): 167-171.
    [111] Weiming T, Haibo L, Tao Z. Frequency and time synchronization error analysis based on generalized signal model for bistatic SAR[C]. IET International Radar Conference, 2009.
    [112] HJ5436A-II GPS同步时钟源[EB/OL]. http://www.gpstime.com.cn.
    [113] Tycho GPS Frequency Reference[EB/OL]. http://www.endruntechnologies.com.
    [114]张永胜,黄海风,梁甸农,朱炬波.星载分布式InSAR测高性能的理论及系统仿真评价方法[J].电子学报, 2008, 36(7): 1273-1278.
    [115] Curlander J C, McDonough R N. Synthetic aperture radar: system and signal processing[M]. New York: John Wiley&Sons, 1991.
    [116] He Z, He F, Huang H, Chen J. Influence of channel mismatch on interferometric SAR performance and experiment validation[C]. in EUSAR, Aachen, Germany, Jun., 2010.
    [117]何峰,梁甸农,刘建平.星载寄生式SAR系统干涉信号模型与相对高程测量性能分析[J].国防科技大学学报, 2005, 27(3): 72-76.
    [118] Bamlery R, Hartlz P. Synthetic aperture radar interferometry[J]. Inverse Problems, 1998, 14(4): 1-51.
    [119]孙进平,白霞,毛士艺.扩展场景的双基地SAR快速回波仿真算法[J].系统仿真学报, 2009, 21(8): 2142-2144.
    [120] Cimmino S, Franceschetti G, Iodice A, Riccio D, Ruello G. Ef?cient spotlight SAR raw signal simulation of extended scenes[J]. IEEE Trans. Geosci. Remote Sens., 2003, 41(10): 2329-2337.
    [121] Franceschetti G, Iodice A, Perna S, Riccio D. SAR sensor trajectory deviations: Fourier domain formulation and extended scene simulation of raw signal[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44(9): 2323-2334.
    [122] Deng B, Li X, Wang H, Qin Y, Wang J. Fast raw-signal simulation of extended scenes for missile-borne SAR with constant acceleration[J]. IEEE Trans. Geosci. Remote Sens. Lett., 2011, 8(1): 44-48.
    [123] Zhang S, Chen J. A echo smulation algorithm for natural scene[C]. in Proc. RADAR, 2008, pp. 464-468.
    [124] Franceschetti G, Iodice A, Perna S, Riccio D. Ef?cient simulation of airborne SAR raw data of extended scenes[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44(10): 2851-2860.
    [125] Xiang Z, Wang K, Liu X, Yu W. A GPU based time-domain raw signal simulator for interferometric SAR[C]. in proc. IGARSS, 2009, pp. V2 -V28.
    [126]兰天.滑动聚束式SAR技术研究[D].国防科技大学硕士学位论文, 2009.
    [127] Chenhui Z, Zheng X, Kaizhi W, Xingzhao L. A two-level simulator for spaceborne SAR[C]. in APSAR, 2009, pp. 369-372.
    [128] Wang B, Zhang F, Xiang M. SAR raw signal simulation based on GPU parallel computation[C]. in proc. IGARSS, 2009, pp. IV617-IV620.
    [129]王海华.基于GPU的合成孔径雷达回波仿真技术研究[D].电子科技大学硕士学位论文, 2009.
    [130]张文彬,邓云凯,倪江.基于光延迟线的星载SAR目标回波信号模拟[J].系统工程与电子技术, 2005, 27(9): 1652-1654.
    [131]何东元,辛培泉,费君,徐辉.利用目标模拟器评估SAR性能的方法[J].现代雷达, 2007, 29(8): 15-21.
    [132]何东元,辛培泉,费君,徐辉.利用目标模拟器产生SAR场景目标回波方法[J].中国电子科学研究院学报, 2007, 2(1): 66-69.
    [133]姜祝,韩松.基于LabVIEW的机载SAR回波模拟器设计[J].电子测量技术, 2009, 32(7): 98-101.
    [134]毛钧杰,王展,柴舜连.辐射式雷达目标模拟器研制[C]. in电子科学与工程学院2009学术年会, 2009.
    [135] Wen L, Zeng T. Design and implementation of real-time SAR echo simulator for natural scene[C]. in Information Management and Engineering (ICIME), 2010, pp. 201-204.
    [136]赵菲,王生水,柴舜连,刘海涛,毛钧杰.辐射式雷达目标模拟器射频前端设计与集成[J].国防科技大学学报, 2010, 32(3): 109-114.
    [137]邱兆坤,马云,王伟,陈曾平.基于FPGA的数字化正交解调接收机最优设计[J].电子与信息学报, 2006, 28(1): 41-44.
    [138]董骞,张平.数字合成孔径雷达接收机设计[J].电子器件, 2006, 31(2): 572-575.
    [139]黄广民,杨汝良.多相滤波在合成孔径雷达数字正交解调中的应用[J].电子与信息学报, 2007, 27(1): 10-12.
    [140]杨小牛,楼才义,廖小群.软件无线电原理与应用[M].北京:电子工业出版社, 2003.
    [141]陈曾平.数字阵列雷达进展及宽带全数字接收机关键技术研究[C].电子科学与工程学院2009学术年会, 2009.
    [142]牛亚莉,苏涛.中频数字正交解调参数的优化设计[J].遥感技术与应用, 2007, 22(2): 272-276.
    [143] Using DriverStudio development Tools(Release 3.1)[Z].Compuware Ltd.,2003.
    [144]张月,鲍庆龙,杨剑,陈曾平.宽带数字整列雷达通道均衡方法的设计与实现[J].信号处理, 2010, 26(3): 453-457.
    [145]万永伦,姒强,吕幼新,王洪. DDWS的波形误差校正算法及实现[J].系统工程与电子技术, 2006, 28(2): 209-211.
    [146]陆必应,周智敏,宋千,梁甸农.用复系数数字FIR滤波器实现超宽带正交解调接收系统的幅相误差校正[J].电子学报, 2000, 28(9): 59-61.
    [147]朱国富,梁甸农.超宽带正交解调接收机的误差分析与数字补偿方法[J].信号处理, 2002, 8(1): 32-35.
    [148] Cumming I G, Wong F H. Digital processing of synthetic aperture radar: algorithms and implementation[M]. London: Artech House, 2005.
    [149] Karam L J. Design of complex digital FIR filters in the chebyshev sense[D]. Georgia Institute of Technology, Ph.D, 1995.
    [150]赵瑞杰,赖晓平.复FIR数字滤波器幅值约束Chebyshev设计[J].电子学报, 2006, 34(9): 1694-1699.
    [151] Karam L J, McClellan J H. Chebyshev digital FIR filter design[J]. Signal Processing, 1999, 76: 17-36.
    [152]李善姬,王晓丹.利用遗传算法优化设计FIR数字滤波器[J].计算机工程与设计, 2007, 28(11): 2665-2666.
    [153] González J H, Bachmann M, Krieger G, Fiedler H. Development of the TanDEM-X calibration concept: analysis of systematic errors[J]. IEEE Trans. Geosci. Remote Sens., 2010, 48(2): 716-726.
    [154] Buckreuss S, Sch?ttler B. The TerraSAR-X ground segment[J]. IEEE Trans. Geosci. Remote Sens., 2010, 48(2): 623-632.
    [155]符文星,彭勤素.程控试飞器半实物仿真系统研究[J].固体火箭技术, 2009, 32(2): 127-130.
    [156]胡楚锋,许家栋,李南京,张麟兮.全极化SAR半实物仿真系统[J].系统工程与电子技术, 2010, 32(7): 1537-1539.
    [157]张绪锦,朱兆达,张卫华,龚晓凌. SAR回波模拟半实物仿真平台的构建[J].现代雷达, 2007, 29(9): 9-12.
    [158] IEEE STD1471-2000 Standards[EB/OL]. http://standards.ieee.org/reading/ieee/ std_public/description/se/1471-2000_desc.html, 2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700