用户名: 密码: 验证码:
合成孔径雷达微动目标指示(SAR/MMTI)研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目标微动往往蕴含着对合成孔径雷达(SAR)图像解译极为有利的特征和信息,同时也会造成目标SAR成像模糊等不利影响,且传统的SAR地面运动目标指示(SAR/GMTI)技术无法解决。本文以SAR复杂运动目标探测为背景,系统研究目标微动对SAR和SAR/GMTI的影响以及微动目标检测、参数估计和成像问题。
     第二章研究SAR微动目标与背景建模。建立了目标转动、振动、正弦运动和摆动四种微动模型,以及理想点、展布式、局域式和滑动型四种散射中心模型,提出了旋翼两种散射中心结构,建立了抛物面天线滑动型散射中心模型。给出了基于2D FFT的SAR背景回波快速生成方法适用的充要条件,提出了斜视匀直航迹、匀加速航迹和误差航迹SAR回波快速生成方法,解决了背景回波生成效率低的难题。提出了基于Legendre多项式展开的SAR成像新方法,具有相位近似误差小、适应斜视角大等优点。
     第三章研究目标微动对SAR和SAR/GMTI的影响。发现了反映目标各阶运动参数与相位误差关系的锯齿现象、小幅快速微动的距离徙动敏感性现象和微动目标PFA图像张角效应。提出了锯齿原理和广义成对回波原理,以此为理论基础分析了不同微动类型、参数、目标个数、散射类型对不同成像算法和SAR极限方位分辨率的影响,揭示了微动目标SAR图像的八类典型特征。指出目标微动将严重恶化单通道SAR杂波抑制和目标检测性能,但对多通道杂波抑制方法影响较小。
     第四章研究杂波抑制和微动目标检测问题。提出了基于回波广义似然比(GLRT)的SAR一般微动目标检测方法,从理论上推导了检测器性能。对于大幅微动,提出了基于分段检测积累和断续正弦曲线特征的微动目标检测方法,通过相干-非相干混合积累获得了高信噪比增益。对于小幅微动,提出了基于SAR图像鬼影特征的微动目标检测方法,将脉冲重复周期变换应用于鬼影检测,具有不受多倍周期误差影响等优势。此外还提出了基于偏置相位中心天线(DPCA)的双通道杂波抑制和微动目标检测方法,实现了杂波频带内的微动目标检测。上述算法同时具有一定的参数估计能力。
     第五章研究微动目标重新聚焦成像,包括微动目标距离徙动校正(RCMC)、匀速平动分量补偿、动静目标信号分离、微动目标多普勒解缠、中心频率估计和成像等问题。提出了SAR微动目标需要RCMC的准则,以及基于降带宽思想、相位补偿和多普勒域级联Keystone变换的RCMC方法。对于微动目标所在距离单元,基于正弦调频(SFM)信号特点提出了匀速平动分量补偿的Wigner-Hough变换方法。采用Chirplet分解方法实现了多普勒混叠下的微动-残余静止目标回波的分离。对于方位聚焦,提出了基于序列插值的多普勒解缠方法以恢复微动正弦相位和时频曲线,并采用能量均衡法估计SFM信号中心频率,在此基础上提出了消除微动的目标自聚焦成像和利用微动的目标逆Radon变换伪窄带成像方法,分析得出各向异性散射导致逆Radon变换成像结果只能反映散射系数平均值的结论。
     第六章研究了SAR微动目标检测-成像联合实现技术。首先提出了SAR目标检测-成像联合实现理论框架,包括正问题建模、初值估计/先验建模、逆问题求解三大部分。对任意运动任意散射目标SAR回波用第一类Fredholm方程建立正问题观测模型,对于微动目标又具体化为两种运动-散射混合模型——微动-点散射中心模型和微动-滑动型散射中心模型。接着详细分析了微动目标RCS、距离像、时频分布和二维像特性,发现了旋转抛物面天线SAR图像“蝴蝶结”特征,提出了参数初值估计方法,为逆问题优化求解算法快速全局收敛提供了保证。最后提出了从微动目标层析和参数估计角度对逆问题进行求解的思路,重点围绕参数估计提出了微动目标观测模型优化求解的最大似然估计方法,实现了运动-散射参数联合估计。该框架最大程度地利用了目标模型先验和目标特性,通过引入目标模型先验自动隐含了目标检测与成像,并具有集成运动补偿和对动静目标联合清晰成像的潜力。
     总之,本文在概念、模型、现象、原理、特征、思想和方法等方面对传统SAR/GMTI技术进行了推广,揭示了微动目标SAR图像特征及其形成机理,提出了一系列微动目标检测、成像方法和检测-成像联合实现理论框架,实现了微动目标成像和在SAR图像上的标注。取得的成果对于高分辨对地观测、精细化探测、SAR海量图像快速解译和干扰对抗具有一定的参考价值。
Target micro-motion conveys features and information which are favorable for understanding synthetic aperture radar (SAR) images. However, micro-motion will result in defocusing and other unfavorable effects on target imagery, which can’t be overcome by conventional SAR/ground moving target indication (SAR/GMTI). Therefore, this dissertation aims at micro-motion targets in SAR and detailedly investigates their detection, parameter estimation, and focusing approaches.
     Chapter 2 focuses on models of SAR micro-motion targets and backgrounds. We develop four types of micro-motion models including rotation, vibration, sinusoidal motion and rocking, as well as four types of scattering models including ideal point, distributed, localized and migratory scattering. We propose for blades two scattering center structures, and build a migratory scattering center model for parabolic-reflector antennas. Then background models and SAR echo simulation are studied. We derive a sufficient and necessary condition for applying 2D FFT methods to generate raw echos, and propose three kinds of algorithms for squint looking SAR with a constant velocity, constant acceleration and trajectory deviation, respectively, which enhance the simulation efficiency particularly for large backgrounds. Based on the resultant echoes, a novel approach to range Doppler SAR echo processing based on Legendre orthogonal polynomials is presented with smaller phase approximation errors and improved squint-looking applicability.
     Chapter 3 examines micro-motion effects on SAR and SAR/GMTI. We discover the sawtooth phenomenon between motion and phase orders, the range cell migration (RCM) sensitivity phenomenon incurred by minor-amplitude and fast-frequency micro-motion, and the angular-extent effect of micro-motion targets on images by the polar format algorithm. The sawtooth principle and the generalized paired echo principle are proposed. Then taking this as the rationale, we analyze in detail the effects of micro-motion types, parameters, target numbers and scattering on SAR algorithms and on the resolution limts. Eight typical kinds of features of SAR imagery are revealed, and we also conclude that micro-motion will considerably degrade the detecting performance for single-channel SAR, while has little influence on that of multi-channel SAR.
     Chapter 4 investigates clutter suppression and micro-motion target detection. A generalized likelihood ratio test (GLRT) detector are developed using SAR returns as opposite to images, the detecting performance are derived theoretically. Then for major-amplitude micro-motion, a special detection method is proposed which uses post-detection integration and discontinuous sine curve characteristics to obtain a high signal-to-noise ratio gain. Also for minor-amplitude micro-motion, an alternative based on target ghost images are proposed which uses the pulse repetition interval (PRI) transform to detect the ghost points and dispenses from the multiple period error. In light of limited single-channel performance, we also suggest another approach, based on dual-channel displaced phase center antenna (DPCA), for rejecting clutters and detecting micro-motion targets within the clutter spectra. These detection methods also have the capability of estimating micro-motion parameters.
     Chapter 5 concentrates on the refocusing of micro-motion targets, including translation compensation, RCM correction (RCMC), micro-motion signal separation/extraction, micro-Doppler unwrapping, Doppler centroid estimation and imaging. A norm on when RCM must be corrected is at first proposed. Then three RCMC algorithms are put forward based on bandwidth reduction, phase compensation and the Doppler successive Keystone transform, respectively. For range cells containing micro-motion targets, a Wigner-Hough-transform based method is proposed to compensate the translation, which uses characteristics of sinusoidal frequency-modulated (SFM) signals. In what follows, we use adaptive Chirplet decomposition to separate micro-motion returns from stationary ones, and consider the effect of Doppler aliasing on decomposition. For target azimuthal focusing, a sequence-interpolation based Doppler unwrapping approach is proposed for recovering the sinusoidal phase and time-frequency curve. Afterward the energy balancing method is used to estimate and compensate the Doppler centroid of SFM signals, based on which a micro-motion-eliminated autofocusing method and a micro-motion-utilized imageing method via inverse Radon are suggested respectively. We also conclude that, for anisotropic targets, their image by the inverse Radon transform only reflects the averaged scattering intense.
     Chapter 6 discusses the joint detection and imaging technique for SAR micro-motion targets. We at first propose a theoretical framework for joint detection and imaging of SAR target, including (1) forward problem modeling, (2) initial value estimation and prior information modeling, and (3) inverse problem solving. For (1), we prove that SAR target returns, with arbitrary scattering and/or motion, can be modeled by a Fredholm integral equation of the first kind. For our micro-motion targets, the equation is embodied by a hybrid motion-scattering model, i.e. the micro-motion/point-scattering model and the micro-motion/migratory-scattering model. For (2), we analyze radar cross section, range profiles, time-frequency distribution and 2D image characteristics of micro-targets, and reveal the bowknot-shaped feature of rotating parabolic antennas. Based on this, the initial value estimation method is given which can guarantee fast global convergence when solving the inverse problems. For (3), we propose that the inverse problem can be solved from the viewpoint of either the micro-motion target tomography or parameter estimation, and particular emphasis is placed on the latter one. A maximal likelihood estimation method for solving micro-motion target models is proposed to realize joint estimation of both motion and scattering parameters. This framework exploits prior information on target models and their characteristics to the utmost extent, and implicitly incorporates detection and imaging by introducing target model prior information, while also offers the potiential of incorporating platform motion compensation and jointly imaging both moving and stationary targets.
     To summarize, we have in this dissertation uncovered micro-motion target image characteristics and their formation mechanism, proposed a series of detection and imaging algorithms as well as a theoretical framework for joint detection and imaging. This dissertation has realized micro-motion target imaging and indication on SAR images. These research results bear certain significance for high-resolution and refined earth observation, precison bombing, fast SAR image interpretation and passive SAR jamming as well as its countermeasure.
引文
[1]丁鹭飞,耿富录.雷达原理(第三版)[M].西安:西安电子科技大学出版社, 2005.
    [2] Skolnik M I. Introduction to Radar Systems[M]. New York: McGrwa-Hill, 2004.
    [3] Richards M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill, 2005.
    [4]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [5]常玉林.多通道低频超宽带SAR/GMTI系统长相干积累STAP技术研究[D].国防科学技术大学, 2009.
    [6]吕孝雷.机载多通道SAR-GMTI处理方法的研究[D].西安电子科技大学, 2008.
    [7]划时代的意义--第一架第四代战斗机:F-22 -空军论坛-铁血社区. http://bbs. tiexue.net/post2_2516379_1.html. 2008.
    [8]海湾战争20周年启示录:苏式武器神话破灭. http://www.52nv.com/thread- 568054-1-1.html. 2011.
    [9]央视巨泄:中国版E-8横空出世?. http://military.china.com/zh_cn/head/83/ 20061118/13752274_1.html. 2006.
    [10] Miceli W J, Gross L A. Test Results From the an/Apy-6 SAR/GMTI Surveillance, Tracking and Targeting Radar[C]. IEEE-RADAR, 2001: 13-17.
    [11]美国陆军测试“猎犬”无人机SAR/MTI传感器. http://mil.news.sina.com.cn/ 2003-07-03/134897.html. 2003.
    [12] Lynx SAR-GMTI Radar System. http://www.ga-asi.com/products/sensors /lynxSAR. php. 2010.
    [13]美捕食者B无人机携即插即用型雷达试飞成功. http://www.huaxia.com/thjq /jsxw/gj/2010/06/1911598.html. 2010.
    [14]专家透露美军C4I系统构成强调无人机独特作用. http://www.china.com.cn /military/txt/2009-06/22/content_17992353.htm. 2009.
    [15]说说美军全球鹰的光电探测系统的先进性吧. http://iask.sina.com.cn/b/16498931. html. 2010.
    [16] Rq-4全球鹰侦察机. http://baike.baidu.com/view/1904072.htm. 2008.
    [17]谁知道美国E-10侦察机的雷达系统. http://wenda.chinabaike.com/html/20101/ q1156113.html. 2009.
    [18]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社, 2004.
    [19] Ender J H G, Brenner A R. Pamir - A Wideband Phased Array SAR/MTI System[C]. Inst. Elect. Eng., Radar Sonar Navigat., 2003: 165-172.
    [20]英国“守望者”战术无人机(TUAV)系统. http://www.cetin.net.cn/cetin2/ servlet/cetin/action/HtmlDocumentAction?baseid=1&docno=378412. 2011.
    [21]杨凤凤.星载雷达GMTI系统与信号处理研究[D].国防科学技术大学, 2007.
    [22] Neumann C, Senkowski H. Mmw-SAR Seeker Against Ground Targets in a Drone Application[C]. EUSAR, 2002.
    [23] Meyer F, Hinz S, Laika A, et al. Performance Analysis of the Terrasar-X Traffic Monitoring Concept[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(3-4): 225-242.
    [24]蔚婧.合成孔径雷达地面运动目标检测若干关键技术研究[D].西安电子科技大学, 2009.
    [25]时公涛.基于干涉图的多通道SAR地面慢动目标自动检测技术研究[D].国防科学技术大学, 2009.
    [26] Raney R K. Synthetic Aperture Imaging Radar and Moving Targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, 7(3): 499-505.
    [27] Sharma J J, Gierull C H, Collins M J. Compensating the Effects of Target Acceleration in Dual-Channel SAR-GMTI[C]. IEE Proc.-Radar Sonar Navig., 2006: 53-62.
    [28] Rüegg M. Ground Moving Target Indication with Millimeter Wave Synthetic Aperture Radar[J]. Remote Sensing Series, 2007, 48.
    [29] Bethke K, Baumgartner S, Gabele M, et al. Air- And Spaceborne Monitoring of Road Traffic Using SAR Moving Target Indication--Project Tramrad[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(3-4): 243-259.
    [30] Baumgartner S, Krieger G, Bethke K, et al. Traffic Monitoring with SAR: Implications of Target Acceleration[C]. EUSAR, 2006.
    [31] Gray J E, Addison S R. Effect of Nonuniform Target Motion on Radar Backscattered Waveforms[J]. IEE Proceedings-Radar Sonar and Navigation, 2003, 150(4): 262-270.
    [32] Djurovic I, Ioana C, Thayaparan T, et al. Cubic-Phase Function Evaluation for Multicomponent Signals with Application to SAR Imaging[J]. IET Signal Processing, 2010, 4(4): 371-381.
    [33]毛新华,朱岱寅. SAR极坐标格式成像算法对运动目标响应特性[J].航空学报, 2009, 30(8): 1472-1478.
    [34] Eskenazi L. Moving Targets SAR Processing[C]. AP-S, 1991: 221-518.
    [35] Wei S, Wang H. The Improvement of the Conventional GMTI Method with Single-Channel SAR[C]. IGARSS, 2004: 2626-2628.
    [36]李刚,许稼,彭应宁等.基于混合积累的SAR微弱运动目标检测[J].电子学报, 2007(03).
    [37]代大海,刘建成,唐宏斌等.地面慢速运动目标的单天线SAR检测与成像[C].第十二届全国信号处理学术会议,苏州, 2005: 550-554.
    [38]康雪艳,杨汝良.对机载单天线SAR实际数据进行ATI动目标检测的新方法[J].电子学报, 2005(03).
    [39]高飞,孙进平,袁运能等.单通道SAR实现ATI动目标检测的新方法[J].北京航空航天大学学报, 2007, 33(8): 890-893.
    [40] Kasilingam D, Wang J, Lee J S, et al. Focusing of Synthetic Aperture Radar Images of Moving Targets Using Minimum Entropy Adaptive Filters[C]. IGARSS, 2000: 74-76.
    [41] Moreira J R, Keydel W C. A New MTI-SAR Approach Using the Reflectivity Displacement Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(5): 1238-1244.
    [42]雷仲魁,陈广东,朱兆达等. SAR图像中动目标自聚焦检测的方法改进[J].南京航空航天大学学报, 2008(06).
    [43] Barbarossa S, Scaglione A. Autofocusing of SAR Images Based on the Product High-Order Ambiguity Function[J]. IEE Proceedings-Radar Sonar and Navigation, 1998, 145(5): 269-273.
    [44] Fienup J R. Detecting Moving Targets in SAR Imagery by Focusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3).
    [45] Lipps R, Chen V, Bottoms M. Advanced SAR GMTI Techniques[C]. IEEE-RADAR, 2004: 105-110.
    [46] Perry R, Dipietro R, Fante R. SAR Imaging of Moving Targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188-200.
    [47]陈艳.机载单通道SAR地面动目标检测技术研究[D].南京航空航天大学, 2007.
    [48]陈广东,朱兆达,朱岱寅.抑制SAR图像中静止杂波背景检测慢速动目标[J].电子与信息学报, 2005, 27(08): 1229-1262.
    [49]唐正军,刘代志.二维时频面的MTI滤波算法研究[J].上海航天, 2001(1): 7-11.
    [50]李景文.合成孔径雷达动目标检测与成像[D].北京航空航天大学, 1999.
    [51] Barbarossa S, Roma U, Communication D I. Doppler-Rate Filtering for Detecting Moving Targets with Synthetic Aperture Radars[C]. Millimeter Wave and Synthetic Aperture Radar Proceedings, 1989.
    [52] Jahangir M, Coe D, Blake A P, et al. Podsar: A Versatile Real-Time SAR GMTI Surveillance and Targeting System[C]. IEEE-RADAR, 2008: 1-6.
    [53] Dipietro R, Fante R, Perry R. Imaging of Moving Targets Using Synthetic Aperture Radar[C]. IEEE-RADAR, 1997.
    [54]周峰,李亚超,邢孟道等.一种单通道SAR地面运动目标成像和运动参数估计方法[J].电子学报, 2007, 35(03): 543-548.
    [55] Li G, Xia X G, Peng Y N. Doppler Keystone Transform: An Approach Suitable for Parallel Implementation of SAR Moving Target Imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 573-577.
    [56]盛蔚.合成孔径雷达对地面运动目标检测和成像的关键技术研究[D].北京航空航天大学, 2003.
    [57] Chapman R D, Hawes C M, Nord M E. Target Motion Ambiguities in Single-Aperture Synthetic Aperture Radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 459-468.
    [58] Marques P A C, Dias J M B. Moving Targets in Synthetic Aperture Images: A Bayesian Approach[C]. IEEE-RADAR, 2000: 685-688.
    [59] Barbarossa S. Detection and Imaging of Moving Objects with Synthetic Aperture Radar. 2. Joint Time-Frequency Analysis by Wigner-Ville Distribution[J]. IEE Processings-F, 1992, 139(1): 89-97.
    [60] Hern-Chung C, Mcgillem C D. Target Motion Compensation in Synthetic Aperture Radar[C]. IEEE Digital Avionics Systems Conference, 1990: 183-188.
    [61]赵志钦,黄顺吉.基于相关法的合成孔径雷达运动目标的参数估计[J].信号处理, 1998(04): 366-371.
    [62] Marques P A C, Dias J M B. Velocity Estimation of Fast Moving Targets Using a Single SAR Sensor[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1): 75-89.
    [63]孙泓波,顾红,苏卫民等.基于互Wigner-Ville分布的SAR运动目标检测[J].电子学报, 2002(03).
    [64]邓彬,秦玉亮,王宏强等.一种改进的基于FrFT的SAR运动目标检测与成像方法[J].电子与信息学报, 2008, 30(2): 326-330.
    [65]许超,柴振明,舒士畏等.基于近似小波变换与时频分析的SAR运动目标检测[J].电子学报, 1997, 25(06): 54-58.
    [66] Thayaparan T, Stankovic L J, Wernik C, et al. Real-Time Motion Compensation, Image Formation and Image Enhancement of Moving Targets in ISAR and SAR Using S-Method-Based Approach[J]. IET Signal Processing, 2008, 2(3): 247-264.
    [67] Dragosevic M V. Autofocusing of Moving Objects in SAR Data Based on Adaptive Notch Filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 384-392.
    [68]孙鸿波,王盛利,刘国岁等.基于改进变采样率处理技术的SAR运动目标检测[J].兵工学报, 2002, 23(2): 191-195.
    [69]盛蔚,毛士艺.一种合成孔径雷达对地面运动目标成像和精确定位的算法[J].电子与信息学报, 2004(04).
    [70] Legg J A. Synthetic Aperture Radar Using Non-Uniform Sampling[D]. The University of Adelaide, 1997.
    [71] Minardi M J, Gorham L A, Zelnio E G. Ground Moving Target Detection and Tracking Based on Generalized SAR Processing and Change Detection (Invited Paper)[C]. SPIE, 2005.
    [72] Yang H, Soumekh M. Blind-Velocity SAR/ISAR Imaging of a Moving Target in a Stationary Background[J]. IEEE Transactions on Image Processing, 1993, 2(1): 80-95.
    [73] S Y, N N, C S M. SAR Moving Target Detection and Identification Using Stochastic Gradient Techniques[C]. ICASSP, 1995: 2145-2148.
    [74] Dias J M B, Marques P A C. Multiple Moving Target Detection and Trajectory Estimation Using a Single SAR Sensor[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 604-624.
    [75] Sj?gren T K, Vu V T, Pettersson M I. Moving Target Relative Speed Estimation in the Presence of Strong Stationary Surrounding Using a Single Antenna UWB SAR System[C]. IGARSS, 2008: 157-160.
    [76] Jakowatz J C V, Wahl D E, Eichel P H. Refocus of Constant-Velocity Moving Targets in Synthetic Aperture Radar Imagery[C]. SPIE, 1998: 85.
    [77] Jao J K. Theory of Synthetic Aperture Radar Imaging of a Moving Target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 1984-1992.
    [78] Cheney M, Borden B. Imaging Moving Targets From Scattered Waves[J]. Inverse Problems, 2008, 24: 1-22.
    [79] Wicks M C, Himed B, Bascom H, et al. Tomography of Moving Targets(Tmt) for Security and Surveillance [C]. NATO Advanced Study Institute Advances in Sensing with Security Applications, 2005.
    [80] Logan C L. An Extimation-Theoretic Technique for Motion-Compensated Synthetic-Aperture Array Imaging[D]. Massachusetts Institute of Technology, 2000.
    [81] Stojanovic I, Karl W C. Imaging of Moving Targets with Multi-Static SAR Using an Overcomplete Dictionary[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 164-176.
    [82]许稼,彭应宁,李刚等.参数化VSAR运动目标检测和定位研究进展[J].雷达科学与技术, 2008, 6(5): 323-333.
    [83] Rüegg M, Meier E, Nuesch D. Capabilities of Dual-Frequency Millimeter Wave SAR with Monopulse Processing for Ground Moving Target Indication[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3): 539-553.
    [84]李涛,张涛.单脉冲SAR地面动目标检测技术初探[J].火控雷达技术, 2007,36(4): 26-30.
    [85] Kantor J, Davis S K. Airborne GMTI Using MIMO Techniques[C]. IEEE-RADAR, 2010: 1344-1349.
    [86]齐维孔,禹卫东.多载频星载MIMO-SAR系统动目标检测技术研究[J].电子与信息学报, 2010(10): 2365-2370.
    [87]张晓光,刘祥峰,付琨.基于MIMO-SAR体制的空频域自适应动目标检测技术研究[J].电子与信息学报, 2010, 32(08): 1997-2001.
    [88]邹博,赖涛,梁甸农.基于步进频率正交信号的星载MIMO-GMTI雷达空时频处理研究[J].国防科技大学学报, 2010(04): 72-77.
    [89]雷鹏正.机载Scan-GMTI技术研究[D].国防科学技术大学, 2009.
    [90] Zhang Y, Amin M, Ahmad F. Localization of Inanimate Moving Targets Using Dual-Frequency Synthetic Aperture Radar and Time-Frequency Analysis[C]. IGARSS, 2008: 33-36.
    [91] Meta A, Hoogeboom P. Signal Processing Algorithms for Fmcw Moving Target Indicator Synthetic Aperture Radar[C]. IGARSS, 2005: 4.
    [92] Rigling B D. Adaptive Noise Radar for Simultaneous Bistatic SAR and GMTI[C]. SPIE, 2005: 166-177.
    [93] Li G, Xu J, Peng Y N, et al. Location and Imaging of Moving Targets Using Nonuniform Linear Antenna Array SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1214-1220.
    [94] Wang C, Xia X. Detection, Location, and Imaging of Fast Moving Targets Using Multifrequency Antenna Array SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1): 345-355.
    [95] Chen V C, Li F, Ho S S, et al. Micro-Doppler Effect in Radar: Phenomenon, Model, and Simulation Study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2-21.
    [96] Deng B, Wu G Z, Qin Y L, et al. SAR/MMTI: An Extension to Conventional SAR/GMTI and a Combination of SAR and Micromotion Techniques[C]. IET-RADAR, 2009: 42-45.
    [97]黄培康,殷红成,徐小剑.雷达目标特性[M].北京:电子工业出版社, 2005.
    [98] Thayaparan T, Abrol S, Qian S. Micro-Doppler Analysis of Rotating Target in SAR[R]. Ottawa, Canada: DRDC, 2005.
    [99] Thayaparan T. Separation of Target Rigid Body and Micro-Doppler Effects in ISAR/SAR Imaging[R]. Ottawa: DRDC, 2006.
    [100] Thayaparan T, Suresh K, Qian S, et al. Micro-Doppler Analysis of a Rotating Target in Synthetic Aperture Radar[J]. IET Signal Processing, 2010, 4(3): 245-255.
    [101] Sparr T, Krane B. Micro-Doppler Analysis of Vibrating Targets in SAR[J]. IEEProceedings-Radar Sonar and Navigation, 2003, 150(4): 277-283.
    [102] Sparr T, Krane B. Analysis of Phase Modulation Caused by Target Motion in SAR Images[C]. SPIE, 2003: 578-588.
    [103]Rüegg M, Meier E, Nüesch D. Vibration and Rotation in Millimeter-Wave SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2): 293-304.
    [104] Sparr T. A Moving Target in a SAR Image Analysed with Time-Frequency Methods[C]. EUSAR, 2004: 833-836.
    [105] Sparr T. Time-Frequency Signatures of a Moving Target in SAR Images[C]. RTO-MAP-SET, 2004: 1-8.
    [106] Sparr T. Moving Target Motion Estimation and Focusing in SAR Images[C]. IEEE RADAR, 2005: 290-294.
    [107] Remund B. High-Range-Resolution (HRR) GMTI[J]. Sandia Remote Sensing E-magazine, 2005.
    [108]孙光才,白雪茹,周峰, et al.一种新的无源压制性SAR干扰方法[J].电子与信息学报, 2009, 31(3).
    [109]吴晓芳. SAR-GMTI运动调制干扰技术研究[D].长沙:国防科技大学, 2009.
    [110] Sharma J J. The Influence of Target Acceleration on Dual-Channel SAR-GMTI Data[D]. The University of Calgary, Canada, 2004.
    [111] Sharma J J, Gierull C H, Collins M J. The Influence of Target Acceleration on Velocity Estimation in Dual-Channel SAR-GMTI[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(1): 134-147.
    [112] Werness S A, Stuff M A, Fienup J R. Two-Dimensional Imaging of Moving Targets in SAR Data[C]. ACSSC, 1990: 16-22.
    [113]邓彬.机载SAR地面运动目标检测方法研究[D].长沙:国防科技大学, 2006.
    [114] Carrara W G, Goodman R S, Majewski R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Artch house, 1995.
    [115] Subotic N S, Thelen B J, Carrara D A. Cyclostationary Signal Models for the Detection and Characterization of Vibrating Objects in SAR Data[C]. ACSSC, 1998: 1304-1308.
    [116] Sparr T, Krane B. Oscillating Targets in Airborne SAR Images[C]. SPIE, 2003: 20-26.
    [117] Sparr T, Krane B. Time-Frequency Analysis of Vibrating Targets in Airborne SAR Systems[J]. IEE Proceedings-Radar Sonar and Navigation, 2003, 150(3): 173-176.
    [118] Silverstein S D, Hawkins C E. Synthetic Aperture Radar Image Signatures of Rotating Objects[C]. ACSSC, 2004: 1663-1667.
    [119] Thayaparan T. Micro-Doppler Analysis of the Rotation Antenna in Airborne SAR Image Collected by the Apy-6 Radar[C]. IRS, Berlin, 2005.
    [120] Rüegg M, Meier E, Nüesch D. Constant Motion, Acceleration, Vibration, and Rotation of Objects in SAR Data[C]. SPIE, 2005: 598001-598005.
    [121] Barber B C. Imaging the Rotor Blades of Hovering Helicopters with SAR[C]. IEEE-RADAR, 2008: 652-657.
    [122] Rigling B D. Image-Quality Focusing of Rotating SAR Targets[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 750-754.
    [123] Fasih A R, Rigling B D, Moses R L. Analysis of Target Rotation and Translation in SAR Imagery[C]. SPIE, Orlando, FL, United states, 2009.
    [124]沈斌. Thz频段SAR成像及微多普勒目标检测与分离技术研究[D].电子科技大学, 2008.
    [125]董玲.合成孔径雷达微多普勒特征研究[D].电子科技大学, 2009.
    [126]张伟,童创明,张群等.基于DPCA杂波抑制的地面振动目标微多普勒提取[J].系统工程与电子技术, 2011, 33(04): 738-741.
    [127]张伟,童创明,张群.双站SAR雷达目标旋转部件的微多普勒效应[J].现代雷达, 2011, 33(03): 51-54.
    [128] Gerry M J, Potter L C, Gupta I J, et al. A Parametric Model for Synthetic Aperture Radar Measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179-1188.
    [129] Garmatyuk D S, Narayanan R M. Ultra-Wideband Continuous-Wave Random Noise Arc-SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(12): 2543-2552.
    [130] Klausing H, Bartsch N, Boesswetter C. A Mm-Wave SAR-Design for Helicopter Application (ROSAR)[C]. European Microwave Conference, 1986: 317-328.
    [131] Krikorian K V, Rosen R A, Gubala M. Wide Area High Resolution SAR From a Moving and Hovering Helicopter[P]. 2009.
    [132] Vigurs G J, Wood M S. Non-Linear Synthetic Aperture Radar Techniques[C]. 2nd EMRS DTC Technical Conference, 2005.
    [133] Ishimaru A, Chan T K, Kuga Y. Imaging Technique Using Confocal Circular Synthetic Aperture Radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1524-1530.
    [134] Tarchi D, Lukin K, Leva D, et al. Implementation of Noise Radar Technology in Ground Based SAR for Short Range Applications[C]. MSMW, 2007: 442-444.
    [135] Varshney K R, ?etin M, Fisher J W, et al. Wide-Angle SAR Image Formation with Migratory Scattering Centers and Regularization in Hough Space[C]. ASAP, 2006: 1-6.
    [136] Friedlander B, Porat B. VSAR: A High Resolution Radar System for Detection of Moving Targets[J]. IEE Proceedings-Radar Sonar and Navigation, 1997, 144(4): 205-218.
    [137] Zuo Y, Li G, Xu J, et al. Detection and Location of Fast Moving Targets Using Minimum Redundancy Linear Array SAR[C]. IEEE-RADAR, 2006.
    [138] Liu Y, Quan Y, Li J, et al. SAR Imaging of Multiple Ships Based on Compressed Sensing[C]. APSAR, 2009.
    [139]王银波,张晓玲.一种新型双站稀疏线阵三维成像SAR系统模型[C].第十届全国雷达学术年会,北京, 2008.
    [140] Yarman C E, Yazici B. Synthetic Aperture Hitchhiker Imaging[J]. IEEE Transactions on Image Processing, 2008, 17(11): 2156-2173.
    [141] Borden B, Cheney M. Doppler-Only Imaging of Stationary Targets[C]. SPIE, 2005: 132-141.
    [142] Zaugg E C, Long D G. Theory and Application of Motion Compensation for LFM-Cw SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 2990-2998.
    [143] Kulpa K, Lukin K, Miceli W, et al. Signal Processing in Noise Radar Technology [Editorial][J]. IET Radar, Sonar and Navigation, 2008, 2(4): 229-232.
    [144] De Zan F, Guarnieri A M. Topsar: Terrain Observation by Progressive Scans[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2352-2360.
    [145] J M, R L, E B. Sliding Spotlight SAR Processing for Terrasar-X Using a New Formulation of the Extended Chirp Scaling Algorithm[C]. IGARSS, 2003: 1462-1464.
    [146] Zeng T, Zhang X L, Wang Y B. A Bistatic-Based Two Sparse Linear Arrays 3D Imaging SAR Model[C]. IET-Radar, 2009.
    [147] Pastina D, Montanari A, Aprile A. Motion Estimation and Optimum Time Selection for Ship ISAR Imaging[C]. IEEE-RADAR, 2003: 7-14.
    [148]阮颖铮等译.雷达散射截面——预估、测量和减缩[M].北京:电子工业出版社, 1988.
    [149] Hurst M, Mittra R. Scattering Center Analysis Via Prony's Method[J]. IEEE Transactions on Antennas and Propagation, 1987, 35(8): 986-988.
    [150] Potter L C, Chiang D M, Carriere R, et al. A GTD-Based Parametric Model for Radar Scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058-1067.
    [151] Potter L C, Moses R L. Attributed Scattering Centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 6(1): 79-91.
    [152] Jonsson R, Gennel A, Loesaus D, et al. Scattering Center Parameter Estimation Using a Polynomial Model for the Amplitude Aspect Dependence[C]. SPIE, 2002: 46-57.
    [153] Varshney K R, ?etin M, Fisher J W, et al. Sparse Representation in Structured Dictionaries with Application to Synthetic Aperture Radar[J]. IEEE Transactionson Signal Processing, 2008, 56(8): 3548-3561.
    [154]汪雄良,冉承其,王正明.基于紧致字典的基追踪方法在SAR图像超分辨中的应用[J].电子学报, 2006, 34(6): 996-1001.
    [155] Fuller D F, Terzuoli A J, Collins P J, et al. Approach to Object Classification Using Dispersive Scattering Centres[J]. IEE Proceedings-Radar Sonar and Navigation, 2004, 151(2): 85-90.
    [156]贺思三.雷达成像中的非理想散射现象分析[D].国防科技大学, 2005.
    [157] Kim A J, Dogan S, Iii J W F, et al. Attributing Scatterer Anisotropy for Model-Based ATR[C]. SPIE, 2000: 176-188.
    [158] Varshney K R. Joint Anisotropy Characterization and Image Formation in Wide-Angle Synthetic Aperture Radar[D]. Massachusetts Institute of Technology, 2006.
    [159]周剑雄.光学区雷达目标三维散射中心重构理论与技术[D].国防科技大学, 2006.
    [160]傅文斌.微波技术与天线[M].北京:机械工业出版社, 2007.
    [161]邓书辉,阮颖铮.反射器天线的散射截面积[J].电子科技大学学报, 1990, 19(5): 519-526.
    [162] James G L. Geometrical Theory of Diffraction for Electromagnetic Waves[R]. Peter Peregrinus Ltd. England, 1981.
    [163] Rius J M, Jofre L. High-Frequency RCS of Complex Radar Targets in Real-Time[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(9): 1308-1319.
    [164] Zhang S, Zeng T, Long T, et al. Research on Echo Simulation of Space-Borne Bistatic SAR[C]. CIE-ICR, 2007.
    [165] Haixia Y, Boxiong H, Ruliang Y. Research on Spaceborne SAR Raw Data Simulation[C]. CIE-ICR, 2007.
    [166] Franceschetti G, Migliaccio M, Riccio D, et al. SARAS: A Synthetic Aperture Radar (SAR) Raw Signal Simulator[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(1): 110-123.
    [167] Wang Y, Zhang Z, Deng Y. Squint Spotlight SAR Raw Signal Simulation in the Frequency Domain Using Optical Principles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8): 2208-2215.
    [168] Eldhuset K. Raw Signal Simulation for Very High Resolution SAR Based on Polarimetric Scattering Theory[C]. IGARSS, 2004: 1774-1777.
    [169] Khwaja A S, Ferro-Famil L, Pottier E. SAR Raw Data Simulation Using High Precision Focusing Methods[C]. EURAD, 2005: 49-52.
    [170]卢剑奇,赵拥军.基于Zmnl的雷达杂波仿真研究[J].电子对抗, 2006(2): 31-35.
    [171]金玉荣.星载SAR信号仿真研究[D].国防科技大学, 2006.
    [172] Franceschetti G, Lanari R. Synthetic Apertureradar Processing[M]. Napoli, Italy: CRC Press LLC, 1999.
    [173] Cumming I, Wong F. Digital Processing of Synthetic Aperture Radar: Algorithms and Implementation[M]. USA: Artch House, 2004.
    [174] Cimmino S, Franceschetti G, Iodice A, et al. Efficient Spotlight SAR Raw Signal Simulation of Extended Scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2329-2337.
    [175] Franceschetti G, Guida R, Iodice A, et al. Efficient Simulation of Hybrid Stripmap/Spotlight SAR Raw Signals From Extended Scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2385-2396.
    [176] Franceschetti G, Migliaccio M, Riccio D. The SAR Simulation: An Overview[C]. IGARSS, 1995: 2283-2285.
    [177] Franceschetti G, Pascazio V, Schirinzi G. A SAR Raw-Data Simulator of Nonstationary Scenes[C]. IGARSS, 1990: 2045-2048.
    [178] Sun B, Zhou Y, Chen J, et al. Ca-ECS Algorithm for Squinted SAR Imaging Based on Constant Acceleration Model[J]. Acta Electronica Sinica, 2006, 34(9): 1595-1599.
    [179] Franceschetti G, Iodice A, Riccio D, et al. A 2-D Fourier Domain Approach for Spotlight SAR Raw Signal Simulation of Extended Scenes[C]. IGARSS, 2002: 853-855.
    [180] Franceschetti G, Iodice A, Perna S, et al. SAR Sensor Trajectory Deviations: Fourier Domain Formulation and Extended Scene Simulation of Raw Signal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2323-2334.
    [181] Lu H, Cao N, Wang B. SAR Raw Data Simulation Including Arbitrary Trajectory Deviations in Hybrid Domain[C]. ISAPE, 2008: 766-769.
    [182] Mori A, De Vita F. A Time-Domain Raw Signal Simulator for Interferometric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(9): 1811-1817.
    [183] Franceschetti G, Iodice A, Perna S, et al. 2-D Fourier Domain SAR Raw Signal Simulation Accounting for Sensor Trajectory Deviations[C]. IGARSS, 2005: 4045-4048.
    [184] Khwaja A S, Ferro-Famil L, Pottier E. SAR Raw Data Simulation in Case of Motion Errors[C]. RADAR, 2008.
    [185] Franceschetti G, Iodice A, Perna S, et al. Efficient Simulation of Airborne SAR Raw Data of Extended Scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2851-2860.
    [186] Vandewal M, Speck R, Suess H. Efficient SAR Raw Data Generation IncludingLow Squint Angles and Platform Instabilities[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1): 26-30.
    [187] Mittermayer J, Moreira A, Loffeld O. Spotlight SAR Data Processing Using the Frequency Scaling Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2198-2214.
    [188] Pengbo W, Zhou Y, Chen J, et al. A Deramp Frequency Scaling Algorithm for Processing Space-Borne Spotlight SAR Data[C]. IEEE International Symposium on Geoscience and Remote Sensing, 2006: 3148-3151.
    [189] Bao Z, Xing M D, Wang T. Radar Imaging Technology (in Chinese)[M]. Beijing: Electronic industry press, 2005.
    [190] R B. A Comparison of Range-Doppler and Wavenumber Domain SAR Focusing Algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 706-713.
    [191] W H, K G, J P G. A Comparison of the Range-Doppler and Chirp Scaling Algorithms with Reference to Radarsat[C]. IGARSS, 1996: 1221-1223.
    [192] M H J. An Extension to Range-Doppler SAR Processing to Accommodate Severe Range Curvature[C]. IGARSS, 1999: 535-537.
    [193]张澄波.综合孔径雷达——原理、系统分析与应用[M].北京:科学出版社, 1989.
    [194] Zhu S Q, Liao G S, Qu Y, et al. Ground Moving Targets Detection and Unambiguous Motion Parameter Estimation Based on Multi-Channel SAR System[C]. IET-RADAR, 2009.
    [195] Zhang C B. Synthetic Aperture Radar: Principles, System Analysis, and Applications[M]. Beijing: Science Press, 1989.
    [196] Hu G, Xiang J, Wang F. The Limitations of Cubic Phase Error on SAR Azimuth Resolution[J]. Acta Electronica Sinica, 2005, 33(12A): 2366-2369.
    [197]叶其孝,沈永欢.实用数学手册(第二版)[M].北京:科学出版社, 2006.
    [198] Axelsson S R J. Position Correction of Moving Targets in SAR Imagery[C]. SPIE, 2004: 80-92.
    [199] Krishnan S, Rangayyan R M. Detection of Nonlinear Frequency-Modulated Components in the Time-Frequency Plane Using an Array of Accumulators[C]. IEEE-SP, 1998: 557-560.
    [200] Gini F, Giannakis G B. Hybrid FM-Polynomial Phase Signal Modeling: Parameter Estimation and Cramer-Rao Bounds[J]. IEEE Transactions on Signal Processing, 1999, 47(2): 363-377.
    [201] Setlur P, Amin M, Ahmad F. Optimal and Suboptimal Micro-Doppler Estimation Schemes Using Carrier Diverse Doppler Radars[C]. ICASSP, 2009: 3265-3268.
    [202]Gianfelici F, Biagetti G, Crippa P, et al. Multicomponent Am-FM Representations:An Asymptotically Exact Approach[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(3): 823-837.
    [203] Barbarossa S. Detection and Imaging of Moving Objects with Synthetic Aperture Radar. 1. Optimal Detection and Parameter Estimation Theory[J]. IEE Processings-F, 1992, 139(1): 79-88.
    [204] Setlur P, Amin M, Ahmad F. Analysis of Micro-Doppler Signals Using Linear FM Basis Decomposition[C]. SPIE, 2006: 1-11.
    [205] Kay S M. Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory[M]. Prentice Hall, 1998.
    [206] Sullivan R J. Radar Foundations for Imaging and Advanced Concepts[M]. SciTech Publishing, 2004.
    [207]邹长春,史謌.一类正弦曲线的Hough变换快速检测方法[J].计算机工程与应用, 2002, 38(4): 1-4.
    [208] Changchun Z, Ge S. A Hough Transform-Based Method for Fast Detection of Fixed Period Sinusoidal Curves in Images[C]. ICSP, 2002: 909-912.
    [209]吴志芳.基于Hough变换识别单周期正弦曲线图像的算法及实现[J].仲恺农业技术学院学报, 2006, 19(03): 43-46.
    [210] Nishiguchi K, Kobayashi M. Improved Algorithm for Estimating Pulse Repetition Intervals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 407-421.
    [211] Sun Z, Yu Z, Li B. Research on Application of Keystone Transform in Radar[C]. APSAR, 2009.
    [212]郑明洁,杨汝良.一种改进的DPCA运动目标检测方法[J].电子学报, 2004, 32(9): 1429-1432.
    [213]郑君里,应启珩,杨为理.信号与系统(第二版)[M].北京:高等教育出版社, 2000.
    [214] Li J. Model-Based Signal Processing for Radar Imaging of Targets with Complex Motions[D]. United States -- Texas: The University of Texas at Austin, 2002.
    [215] Li J, Ling H. Application of Adaptive Chirplet Representation for ISAR Feature Extraction From Targets with Rotating Parts[J]. IEE Proceedings-Radar Sonar and Navigation, 2003, 150(4): 284-291.
    [216] Bin L, Jian-Wei W, Kang-Ze Y, et al. ISAR Based on Micro-Doppler Analysis and Chirplet Parameter Separation[C]. APSAR, 2007: 379-384.
    [217] Thayaparan T, Abrol S, Riseborough E. Micro-Doppler Radar Signatures for Intelligent Target Recognition[R]. Ottawa: DRDC, 2005.
    [218] Thayaparan T, Abrol S, Riseborough E, et al. Analysis of Radar Micro-Doppler Signatures From Experimental Helicopter and Human Data[J]. IET Radar, Sonar and Navigation, 2007, 1(4): 289-299.
    [219] Bai X, Xing M, Zhou F, et al. Imaging of Micromotion Targets with Rotating Parts Based on Empirical-Mode Decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3514-3523.
    [220]贺思三,周剑雄,赵会宁, et al.基于Am-LFM分解的微动信号提取[J].电子与信息学报, 2010, 32(3).
    [221] Stankovic L, Djukanovic S. Order Adaptive Local Polynomial FT Based Interference Rejection in Spread Spectrum Communication Systems[J]. IEEE Transactions on Instrumentation and Measurement , 2005, 54(6): 2156-2162.
    [222] Zhang Q, Yeo T S, Tan H S, et al. Imaging of a Moving Target with Rotating Parts Based on the Hough Transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 291-299.
    [223]罗迎,张群,封同安, et al.强杂波下含旋转部件的目标成像及微多普勒提取[J].系统工程与电子技术, 2009, 31(2): 261-266.
    [224]李开明,李宏静,张群, et al.强地杂波背景下线性调频信号雷达微多普勒提取新方法[J].电光与控制, 2010, 17(2): 82-89.
    [225]尹治平.分数阶Fourier变换在逆合成孔径雷达成像处理中的应用[D].中国科学技术大学, 2008.
    [226]金光虎.中段弹道目标ISAR成像及物理特性反演技术研究[D].国防科学技术大学, 2009.
    [227] Yin Q, Qian S, Feng A. A Fast Refinement for Adaptive Gaussian Chirplet Decomposition[J]. IEEE Transactions on Signal Processing, 2002, 50(6): 1298-1306.
    [228]程佩青.数字信号处理教程[M].北京:清华大学出版社, 2001.
    [229]陈轶,金亚秋. SAR图像中运动目标重聚焦改进的最小熵方法[J].电子与信息学报, 2003(02).
    [230] Samczynski P, Kulpa K. Non Iterative Map-Drift Technique[C]. RADAR, 2008: 76-81.
    [231]蔡骏.基于相位误差估计的SAR动目标检测技术研究[D].南京航空航天大学, 2003.
    [232]危嵩.机载合成孔径雷达动目标检测与成像研究[D].华中科技大学, 2005.
    [233]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社, 1998.
    [234] Chaney R D, Willsky A S, Novak L M. Coherent Aspect-Dependent SAR Image Formation[C]. SPIE, 1994: 256-274.
    [235]Benitz G R. High-Definition Vector Imaging[J]. Lincoln Laboratory Journal, 1997, 10(2): 147-169.
    [236]蒋咏梅.叶簇穿透超宽带SAR目标检测方法研究[D].长沙:国防科技大学,1999.
    [237]董臻. UWB-SAR图像中二面角目标的检测[D].国防科技大学, 2001.
    [238] Moses R L, Potter L C. Noncoherent 2D and 3D SAR Reconstruction From Wide-Angle Measurements[C]. ASAP, 2005: 1-6.
    [239]王正明,朱炬波,等. SAR图像提高分辨率技术[M].北京:科学出版社, 2006.
    [240]Groetsh C. W著,程晋,谭永基等译.反问题——大学生的科技活动[M].北京:清华大学出版社, 2006.
    [241]肖庭延,于慎根,王彦飞.反问题的数值解法[M].北京:科学出版社, 2003.
    [242]张关泉,张宇.漫谈反问题:从”盲人听鼓“说起[J].科学中国人, 1997(1).
    [243] Rigling B D. Use of Nonquadratic Regularization in Fourier Imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(1): 250-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700