用户名: 密码: 验证码:
弹载SAR景象匹配制导关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将合成孔径雷达(Synthetic Aperture Radar,SAR)技术应用于精确制导武器,不但可以有效提高其全天时、全天候的工作能力,而且增加了探测隐蔽和伪装目标的能力。紧密结合我军当前精确制导技术的发展需求,本文围绕SAR回波模拟技术、SAR实时图预处理技术、SAR基准图制备技术和SAR景象匹配技术四个方面开展了研究。
     本文主要工作及创新点概括如下:
     1.研究了高动态飞行条件下复杂地形SAR回波模拟方法。针对传统电磁建模方法无法同时模拟地物散射特性差异和地面高程起伏的问题,提出一种结合数字高程模型(Digital Elevation Model,DEM)和正射图的电磁建模方法,提高了三维场景电磁建模的逼真度。详细分析了雷达平台运动误差对瞬时斜距和回波信号的影响,推导了雷达平台存在视线误差时回波信号的二维频域表达式。针对弹载平台的高机动飞行条件,提出一种时频域处理相结合的SAR回波快速模拟方法,并分析了该方法的有效性。
     2.研究了SAR实时图中相干斑噪声和图像几何畸变的处理方法。主要包括两个方面:(1)针对传统相干斑抑制方法耗时过长的问题,设计了一种在抑制效果和运算速度上折中的相干斑抑制方法;(2)针对弹载SAR多普勒中心频率与地面高程起伏无关的特点,提出将SAR图像方位向几何校正与运动补偿一起完成,然后校正距离向畸变,大幅度降低了几何校正的处理难度。为进一步提高几何校正方法的实时性,对所提方法进行了有效的改进,并根据不同地形区的SAR实时图进行了实验,得到了几何校正方法选取的准则。
     3.研究了复杂地形SAR基准图制备技术。具体工作为:(1)针对SAR适配区选择制约因素多、参数设计难和适配性预测函数构建复杂等问题,提出一种SAR适配区分层选择方法。该方法通过适配性特征参数的逐层筛选降低了预测函数的复杂度,为选取高性能的SAR适配区提供了参考。(2)针对复杂地形SAR图像特征点提取难度大的问题,提出一种基于DEM和图像叠掩特征的SAR基准图自动制备方法。该方法通过改进的特征点提取方法和两级特征点匹配方法,提高了基准图的制备精度。详细分析了平台运动误差和DEM高程误差对基准图制备精度的影响,为基准图制备方法的实际应用提供了指导。
     4.研究了SAR景象匹配技术。针对弹载SAR实时图与基准图尺寸大,而且二者的成像角度、成像平台等可能存在差异等特点,提出将图像灰度和尺度不变特征变换(Scale Invariant Feature Transform,SIFT)特征点结合起来,采用由粗到精的方式完成实时图与基准图的匹配。该方法通过一种基于小波变换和变尺度圆模板相融合的匹配方法,解决了灰度相关法耗时长及对图像旋转和尺度变化敏感的问题,提高了图像匹配的实时性和鲁棒性;通过一种预处理方法和特征点外点筛选方法,解决了SIFT算法运用于SAR图像时出现的问题,提高了特征点的匹配精度,实现了亚像素级的图像匹配。
     本文基于大量的仿真数据和实测数据,开展了充分的实验验证,展示了本文研究成果良好的实际应用价值。
The precision guided weapon, which makes use of synthetic aperture radar (SAR) technology, not only improves the all-weather and all-day capabilities, but also increases the capabilities of detecting concealed and camouflage targets. Focused on the exigent requirements of precision guidance technology, four subjects are researched in this dissertation: SAR raw signal simulation, SAR real-time image preprocessing, SAR reference image preparation and SAR scene matching.
     The main achievements and contributions of the dissertation are as follows:
     1. The technology of SAR raw signal simulation under conditions of flight trajectory deviation and complex terrain is studied. A method of backscatter modeling, which combines the digital elevation model (DEM) and orthography, is introduced since the traditional modeling methods have problems in simulating the difference in backscatter properties and terrain undulation simultaneously. The method models the three-dimensional scene with high fidelity. The influence of flight trajectory deviation on slant range and raw signal is analyzed, and the two-dimensional expression in frequency domain of raw signal with motio errors is derived. A fast raw signal simulation method which combines the time domain and the frequency domain is proposed based on the large flight trajectory diviation, and the validity of the method is also discussed.
     2. The preprocessing method for speckle noise suppression and geometric distortion correction in SAR real-time image is studied, which includes two main aspects: (1) In order to decrease the computation time of traditional methods for speckle noise suppression, a compromise method between suppression performance and calculation speed is introduced. (2) A novel geometric correction method, which corrects the geometric distortion in azimuth direction in the process of motion compensation, and then corrects the geometric distortion in range direction in succession, is proposed based on the fact that the Doppler center has no relationship with the terrain undulation for missile-borne SAR. The method decreases the computation complexity greatly. In order to refine the method, several improvements are made on it. Then, some experiments are accomplished based on the refined methods, and some rules of geometric correction method selection are acquired.
     3. The technology of SAR reference image preparation under complex terrain is studied, which includes: (1) In order to resolve the problems of SAR matching area selection, such as the constrain conditions are excessive, and the construction of feature criterions and predicting functions is difficult, a hierarchical way of selecting optimal scene matching area is presented. The method solves the difficulties in constructing predicting function by feature selecting hierarchically, and provides a reference for choosing better SAR matching areas. (2) Based on the fact that it is difficult to extract precise control points (CP) in SAR images under complex terrain, an automatic SAR reference image preparation method based on DEM and SAR layover is developed. The method improves the geometric accuracy by an improved CP detection method and a two-stage CP matching method. The influence of motion errors and DEM errors is also analyzed, which is important for application.
     4. The technology of SAR scene matching is studied. A coarse-to-fine image matching method, which combines the gray and scale invariant feature transform (SIFT) point feature, is proposed according to the characters of SAR scene matching, such as the sizes of real-time image and reference image are both large, the imaging angles and the imaging platforms of them are different. In order to decrease the computation time and the sensitivity to rotation and scaling change of the cross-correlation matching method, a matching method based on wavelet transform and multi-scale circular template fusion is introduced to satisfy the requirements of the real-time and robust. In order to overcome the problems when SIFT is used in SAR image, a preprocessing and an outlier filtering method is presented to improve the accuracy of SIFT features, based on which the sub-pixel matching accuracy is reveived.
     A large amount of experiments based on simulative and real datas are accomplished to show the significance of the study.
引文
[1]夏思宇.精确制导技术及现状与发展,航空科学技术,2003,(1):11-13.
    [2]高社生,李华星. INS/SAR组合导航定位技术与应用,西安:西北工业大学出版社,2004.
    [3]黄世奇,禹春来,刘代志等.成像精确制导技术分析与研究,导弹与航天运载技术,2005,(5):20-25.
    [4]黄世奇,刘代志.侦测目标的SAR图像处理与应用,北京:国防工业出版社,2009.
    [5] S X Tsai. Introduction to the scene matching missile guidance technologies, Proceedings of Conference for 30th Anniversary of CSAA Establishment, China, 13 Aug, 1996:227-237.
    [6]黄世奇,郑健,刘代志等. SAR/红外双模成像复合制导系统研究与设计,飞航导弹,2004,(6):38-43.
    [7]高峰.合成孔径雷达导引头技术,制导与引信,2004,25(1):1-4.
    [8]高晓颖.从伊拉克战争看制导技术发展历程,航天控制,2005,23(5):92-95.
    [9]丑金玲,王永平.试论弹道导弹制导技术的发展途径,现代防御技术,2003,31(6):41-45.
    [10] M Poliets. Recent events in guidance, navigation and control. AIAA Guidance, Navigation, and Control Conference & Exhibit, Montreal, Canada, Aug, 2001:6-9.
    [11]朵英贤,宋遒志.战斧巡航导弹的作战模式与技术发展,中北大学学报,2005,26(6):403-407.
    [12]尹德成.弹载合成孔径雷达制导技术发展综述,现代雷达,2009,31(11):20-24.
    [13] Anonym. Joint warfighting science and technology plan. http://www.hawaii.edu/resrel/workshops/dod/2001/jwstp.pdf.
    [14] C Neumann, H Senkowski. MMW-SAR seeker against ground targets in a drone application. EUSAR, Cologne, Germany, 2002.
    [15] T Malenke. W-band-radar system in a dual-mode seeker for autonomous target detection, EUSAR, Cologne, Germany, 2002.
    [16] Saab seekers UK involvement in enhanced RBS15 seeker [J]. Janes International Defense, 1997(9):22.
    [17] J F Lorga, Meta A, De W J, et al. Airborne FM-CW SAR and integrated navigation system data fusion, San Francisco, CA, USA, 2005:2172-2183.
    [18]秦玉亮.弹载SAR制导技术研究,国防科学技术大学博士学位论文,2008.
    [19]安成锦.基于特征的环扫SAR末制导景象匹配关键技术研究,国防科学技术大学博士学位论文,2010.
    [20]冷雪飞.基于图像特征的景象匹配辅助导航系统中的关键技术研究,南京航空航天大学博士学位论文,2007.
    [21]熊智.合成孔径雷达/激光捷联惯性组合图像导航技术研究,南京航空航天大学博士学位论文,2004.
    [22]李悦丽.弹载合成孔径雷达成像技术研究,国防科学技术大学博士学位论文,2008.
    [23]李军显,岳应娟,刘岩.空空导弹雷达导引头成像研究,弹箭与制导学报,2006,26(2):1-3.
    [24]孙兵,周荫清,陈杰等.基于俯冲模型的SAR成像处理和几何校正,北京航空航天大学学报,2006,32(4):435-439.
    [25]邢孟道,保铮.基于运动参数估计的SAR成像,电子学报, 2001 ,29(12):1824-1828.
    [26]俞根苗,邓海涛,尚勇等.弹载侧视合成孔径雷达信号分析及成像研究,电子学报,2005,33(5):778-782.
    [27] G W Davison, I G Cumming and M R Ito. A chirp scaling approach for processing squint mode SAR data, IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1):121-133.
    [28] X B Sun. Time-varying step-transform algorithm for high squint SAR imaging, IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(6):2668-2677.
    [29]秦玉亮,黄宗辉,邓彬,等. INS/双天线弹载SAR组合弹体定位技术,电子学报,2009,37(6):1216-1221.
    [30]李亚超,吕孝雷,王虹现,等.高精度景象匹配下的高速SAR平台定位和测速,系统工程与电子技术,2007,29(11):1851-1855.
    [31] E James, Bevington and Charles A. Marttila. Precision aided inertial navigation using SAR and digital map data, IEEE PLANS, 1990:490-496.
    [32] A E Bryson. Rapid in flight estimation of IMU platform misalignments using external position and velocity data, AFALTR, 1973:19-24.
    [33] Yamamoto and Brown. Design, simulation and evaluation of the Kalman filter used to align the SARM missile, AIAA:948-971.
    [34] S S Zhang, T Zeng, T Long. Simulation of space-borne SAR raw data from airborne SAR real data, 6th European Conference on Synthetic Aperture Radar, Dresden, Germany, 16-18 May, 2006.
    [35]王伯岭,孙进平,吴双力等.扩展场景的SAR回波信号快速仿真算法,遥测遥控, 2005, 26(6): 33-38.
    [36]张志勇,曹治国,张天序.一种SAR原始回波数据模拟方法,信号处理, 1999, Vol.15: 77-80.
    [37]于明成,许稼,彭应宁,等. SAR原始信号的快速仿真,系统仿真学报, 2006, 18(2): 122-125.
    [38] F G ranceschetti, M Migliaccio, D Riccio. SAR raw signal simulation of actual ground sites described in terms of sparse input data, IEEE Trans.on Geoscience and Remote Sensing, 1994, 32(6): 1160-1169.
    [39] C. Gierull, M Ruppel. An end-to-end synthetic aperture radar simulator. EUSAR’96, Konigswinter, Germany, 1996: 569-572.
    [40]陈杰,周荫清,李春升.星载SAR自然地面场景仿真方法研究,电子学报, 2001,29(9): 1202-1205.
    [41] C Camporeale, G Galati. Digital computer simulation of synthetic aperture systems and images. European Transactions on Telecommunication and Related Technologies, 1991, 2(3): 343-352.
    [42]孙造宇,梁甸农,董臻.星载分布式InSAR系统仿真研究,系统仿真学报,2006,18(6): 1538-1541.
    [43]刘永坦.雷达成像技术,哈尔滨:哈尔滨工业大学出版社,1999.
    [44] G Franceschetti, G Schirinzi. A SAR processor based on two-dimensional FFT codes, IEEE Transactions on Aerospace and Electornic Systems, 1990, 26(2): 356-365.
    [45]岳海霞,杨汝良.复杂场景的SAR原始数据模拟研究,遥感技术与应用,2006,21(5): 450-455.
    [46] G Franceschetti, M Migliaccio, D Riccio, et al. SARAS: a synthetic aperture radar (SAR) raw signal simulator. IEEE Trans.on Geoscience and Remote Sensing, 1992, 30(1): 110-123.
    [47] P Perna, L Dominguez, F Grings, et al. Simulation of airborne SAR raw data using real-time domain approach and predictive coding algorithms, 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008.
    [48] J Meyer-Hilberg. PIRDIS: A new versatile tool for SAR/MTI systems simulation, 6th European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006.
    [49]汤志伟.合成孔径雷达原始数据模拟以及其应用研究,电子科技大学博士学位论文,2000.
    [50] G Franceschetti, A Iodice, S Perna, et al. A novel airborne SAR simulator, 6th European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006.
    [51] A S Khwaja, L Ferro, E Pottier. SAR raw data simulation in case of motion errors, IEEE Radar Conference, RADAR’08, 2008:1967-1971.
    [52] G M Huang, J K Guo, J G Lv, et al. Algorithms and experiments on SAR image orthorectification based on polynomial rectification and height displacement correction. Proceedings of the 20th ISPRS Congress, Istanbul, 2004:139-143.
    [53] G Konecny, W Schuhr. Reliability of radar image data, 16th ISPRS Congress,Tokyo, 1988.
    [54] F Leberl. Radargrammetric image processing, Artech House, Norwood, Massachusetts, 1990.
    [55] J C Curlander. Location of spaceborne SAR imagery, IEEE Transactions on Geoscience and Remote Sensing, 1982, 20(3):359-364.
    [56] W F Sun, A Chen, C Y Zhang. Range-Doppler approach for calibration and location of air-borne SAR image. CIE’06, Shanghai, China, 2006: 1-4.
    [57]尤红建,丁赤彪,向茂生.机载高分辨率SAR图像直接对地定位原理及精度分析.武汉大学学报,2005,30(8):712-715.
    [58] B Guindon, J W Harris, P M Teillet, et al. Integration of MSS and SAR data for forested regions in mountainous terrain, Proceedings of the Fourteenth International Symposium on Remote Sensing of Enviroment, Costa Rica, 1980:1673-1690.
    [59] Y W Sheng, D E Alsdorf. Automated georeferencing and orthorectification of Amazon Basin-wide SAR mosaics Using SRTM DEM data. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8):1929-1940.
    [60] H X Liu, Z Y Zhao, K C Jezek. Correction of positional errors and geometric distortions in topographic maps and DEMs using a rigious SAR simulation technique. Photogrammetric Engineering&Remote Sensing, 2004, 70(9): 1031-1042.
    [61] C Werner, T Strozzi, U Wegmuller, et al. SAR geocoding and multi-sensor image registration. International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002:902-904.
    [62] J Inglada, F Adragna. Automatic multi-sensor image registration by edge matching using genetic algorithms [C]. IGARSS. Sydney, Australia, 2001, vol(5):2313-2315
    [63]王凌.智能优化算法及其应用,北京:清华出版社,2001.
    [64]戴玉超,何明一,张静,等.基于径向神经网络的立体匹配方法,计算机应用研究,2008,25(11):3477-3479.
    [65] B S Reddy, B N Chatterji. An FFT-based technique for translation, rotation and scale-invariant image registration. IEEE Transactions on Image Processing, 1996, 5(8):1266-1271.
    [66] J You, P A Bhattacharya. Wavelet-based Coarse-to-fine Image Matching Scheme in a Parallel Virtual Machine Environment. IEEE Transactions on Image Processing, 2000, 9(9):1547-1559.
    [67] D I Barnea and H F Silverman. A class of algorithms for fast digital image registration. IEEE Transactions on Computing, 1972, 21(2):179-186.
    [68]冷雪飞,刘建业,熊智.基于分支特征点的导航用实时图像匹配方法[J],自动化学报, 2007, 33(7): 678-682.
    [69] S Kaneko, Y Satoh and S Igarashi. Using selective correlation coefficient for robustimage registration. Pattern Recognition, 2003, 36(5):1165-1173.
    [70] P Thevenaz, M Unser. Optimization of mutual information for multiresolution image registration. IEEE Transactions on Image Processing, 2000, 9(12): 2083-2098.
    [71] J Flusser, T Suk. Degraded image analysis: An invariant approach. IEEE Transactions on Pattern analysis and machine Intelligence, 1998, 20:590-603.
    [72]于秋则.合成孔径雷达(SAR)雷达匹配导航技术研究,华中科技大学博士学位论文,2004.
    [73] Z Zhang and R S Blum. A hybrid image registration technique for digital camera image fusion application. Information Fusion, 2000, 2:135-149.
    [74] W Li, H Leung. A maximum likelihood approach for image registration using control point and intensity, IEEE Transactions on Image Processing, 2004, 13(8):1115-1127.
    [75]李志林,朱庆.数字高程模型,武汉,武汉大学出版社,2000.
    [76] J E Dudgeon, R Gopalakrishnan. Fractal-based Modeling of 3D Terrain Surfaces, Porceedings of the IEEE Bringqing together Education, Science and technology, 1996: 246-252.
    [77] K J Falconer,曾文曲,刘曲耀译.分形几何-数据基础及其应用,沈阳:东北工学院出版社,1991.
    [78] N Yokoya,et al. Fractal dimensions of landscapes of 3D natural surface shapes and their application to terrain modeling[J], Computer Vision, Graphics&Image Processing, 1989,49: 284-302.
    [79]路兴强.天基分布式InSAR系统建模与仿真研究,国防科学技术大学博士学位论文,2006.
    [80] G W Kropatsch, D Strobl. The generation of SAR layover and shadow maps from digital elevation models, IEEE Trans.on Geoscience and Remote Sensing, 1990, 28(1): 98-107.
    [81] G Cascioli, R Seu. Surface backscattering evaluation by means of the facet model for remote sensing applications, Acta Astronautica, Vol.38, No.11. 1983:357-363.
    [82]任三孩.三维场景SAR回波模拟技术,国防科学技术大学硕士学位论文,2007.
    [83]张朋,黄金,郭陈江,等.合成孔径雷达成像三维地形目标模拟方法,系统仿真学报,2005,17(10): 2403-2405.
    [84]保铮,邢孟道,王彤.雷达成像技术,北京:电子工业出版社,2004.
    [85] G Franceschetti, A Iodice, S Perna, et al. SAR sensor trajectory deviations: fourier domain formulation and extended scene simulation of raw signal, IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2323-2334.
    [86] G Franceschetti, A Iodice, S Perna, et al. 2-D fourier domain SAR raw signalsimulation accounting for sensor trajectory deviations, IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 2005: 4045-4048.
    [87] G Franceschetti, A Iodice, S Perna, et al. Efficient simulation of airborne SAR raw data of extended scenes, IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2851-2860.
    [88]薛国义.机载高分辨超宽带合成孔径雷达运动补偿技术研究,国防科学技术大学,博士学位论文,2007.
    [89] G. Fornaro. Trajectory deviations in airborne SAR: analysis and compensation, IEEE Transactions on aerospace and electronic systems, 1999, 35(3): 997-1009.
    [90] D Blacknell, A Freeman, etc. Geometric accuracy in airborne SAR images. IEEE Transactions on Geoscience and Remote Sensing, 1989, 25(2):241-258.
    [91] M S Norvang. Spectral properties of homogeneous and non-homogeneous radar image. IEEE Transaction on Aerospace Electronic Systems, 1987, 23:583-588.
    [92] H Mostafavi, F W Smith. Image correlation with geometric distortion Part I: acquisition performance. IEEE Transactions on Aerospace and Electronic systems. 1978, 14(3):487-493.
    [93] H Mostafavi, F W Smith. Image correlation with geometric distortion Part II: effect on local accuracy. IEEE Transactions on Aerospace and Electronic systems. 1978, 14(3):494-500.
    [94]王亮.超宽带合成孔径雷达信息处理技术若干问题研究,国防科学技术大学硕士学位论文,2003.
    [95] R Touzi. A review of speckle filtering in the context of estimation theory. IEEE Transactions on Geosciences and Remote Sensing, 2002, 40(10):2196-2211.
    [96] J S Lee. Refined filtering of image noise using local statistics. Computer Graphics and Image Processing, 1981, 15:380-389.
    [97] A Lopes, R Touzi, E Nezry. Adaptive speckle filters and scene heterogeneity. IEEE Transcation on Geoscience and Remote Sensing, 1990, 28(6):992-1000.
    [98] J S Lee. Refined filtering of image noise using local statistics, Computer Graphics and Image Process. 1981, 15(14):380-389.
    [99] D Donoho and I Johnstone. Adapting to unknown smoothness via wavelet shrinkage, J.Amer.Stat.Assoc. 1995, 90(12):1200-1224.
    [100] H H Arseoault, G April. Properties of speckle integrated with a finite aperture and logarithmically transformed. Journal of the Optical Society of America, 1976, 66(11):1160-1163.
    [101] E Meier, C Graf, D Nuesch. Generation of geocoded spaceborne SAR image products, International Geoscience and Remote Sensing Symposium, IGARSS’89, 1989: 2473-2477.
    [102] D Blacknell, A Freeman, etc. The prediction of geometric distortions in airbornesynthetic aperture radar imagery from autofocus measurements. IEEE Transactions on Geoscience and Remote Sensing, 1987, 25(6):775-782.
    [103]黄源宝,保铮,周峰.一种新的机载条带式SAR沿航向运动补偿方法,电子学报,2005,33(3):459-462.
    [104] Y M Guo, H Chen, W Hong, et al. Resample in the first order motion compensation of real time SAR processor, proceedings of ICSP, 2000:1830-1833.
    [105]李建阳.机载超宽带SAR实时成像处理技术研究,国防科学技术大学博士学位论文,2010.
    [106]张澄波.综合孔径雷达原理-系统分析与应用.北京:科学出版社,1989.
    [107]刘月花,荆麟角.对比度最优自聚焦算法,电子与信息学报,2003,25(1):24-30.
    [108] J W Wood, R G White and C J Oliver. Distortion free SAR imagery and change detection, Proceedings of the IEEE Radar Conference, 1988: 95-99.
    [109]周峰,邢孟道,保铮.一种无人机载SAR运动补偿的方法,电子学报,2006,34(6):1002-1006.
    [110]熊洪允,曾绍标,毛云英.应用数学基础,河北:天津大学出版社,1993.
    [111]陆国胜.测量学.北京:测绘出版社,1991.
    [112] T Bayer, R Winter, G Schreier. Terrain influences in SAR backscatter and attemps to their correction. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(3):451-462.
    [113] H Xie, L E Pierce and F T Ulaby. Statistical properties of logarithmically transformed speckle, IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(3):721-727.
    [114] J A Ratkavic, E H Conrow. Almost everything one needs to konw about image matching systems [R]. AD-A100024, 1980.
    [115] J F Ralph, S W Sims. Scene-referenced object localization [J]. Proceeding SPIE, 2004, 5429 (1): 20.
    [116]沈林成,卜彦龙,徐昕.景象匹配辅助导航中景象区域适配性研究进展,航空学报,2010,31(3): 553-563.
    [117]付文兴,王建民,金善良.一种实用的景象适配区选择方法[J],宇航学报,2003,24(4): 348-353.
    [118]曹菲,缪栋,陆芳.基于粗糙集理论的制导基准图选定准则研究[J],弹箭与制导学报,2005,25(3): 362-365.
    [119]李俊,杨新,杨莉.基于简化Mumford-Shah模型的导航基准图适配区分割方法[J],自动化学报,2004,30(1): 45-36.
    [120]赵倩,许家栋,袁健全,等.基于高程选择的SAR景象适配系统基准图选择准则[J],弹箭与制导学报,2009,29(6): 253-262.
    [121]卜彦龙,李洪俊,张国忠,等.面向SAR适配辅助导航的景象区域适配性[J],光学精密工程,2010,18(3): 692-700.
    [122]张俊.图像匹配与雷达地图匹配制导中匹配技术研究,通信与测控,1998,(3): 43-48.
    [123]张俊,陈学广、柳健.雷达地图匹配制导中的共性特征提取与匹配方法,电子学报,1999,27(10): 58-61.
    [124] Y Bentoutou, N Taleb, K Kpalma, et al. An automatic image registration for application in remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9):2127-2137.
    [125] M Gelautz, E Mitteregger, F Leberl. Automated acquisition of ground control using SAR layover and shadows. International Geoscience and Remote Sensing Symposium proceedings, singapore,1997:468-470.
    [126] B.Guindon and H. Maruyama. Automated matching of real and simulated SAR imagery as a tool for round control point acquisition. Can.J. Remote Sens, 1986, 12(2):149-158.
    [127] K Hiroshi, L Tetsuji. Automated matching of real and simulated SAR imagery for geometric correction [C], 10th annal international Geoscience and Remote Sensing Symposium, Washington D.C Maryland, May 20-24, 1990:309-312.
    [128]卜彦龙,潘亮,沈林成,等. INS/SAR组合导航参数传递建模及精度分析,航空学报,2009,30(3): 526-533.
    [129]吕金建.基于特征的多源遥感图像配准技术研究,国防科大博士学位论文,2008.
    [130] H Xie, L E Pierce, F T Ulaby. Mutual information based registration of SAR image, Proceedings of IEEE International Symposium on Geoscience and Remote Sensing, 2003: 4028-4031.
    [131]周奎,陈楚.基于DEM量算耕地坡度的误差分析,测绘与空间地理信息,2007,30(3): 60-67.
    [132] M W Johnson. Analytical development and test results of acquisition probability for terrain correlation devices used in navigation systems [C]. AIAA 10th Aerospace Sciences Meeting, San Diego, USA, Jan 17-19, 1972.
    [133]王刚,段晓君,王正明.基于图像区域相关的景象匹配概率和精度研究,宇航学报,2009,30(3): 1237-1242.
    [134] S X Tsai. Introduction to the scene matching missile guidance technologies, Proceedings of Conference for 30th Anniversary of CSAA Establishment, China, 13 Aug, 1996:227-237.
    [135] W G Kropatsch, D Strobl. The generation of SAR layover and shadow maps from digital elevation models [J], IEEE Transactions on geoscience and remote sensing,1990, 28(1):98-107.
    [136] W G Rees, A M Steel. Simplified radar mapping equations for terrain correction of space-borne SAR images [J], internatioanl Journal of Remote Sensing, 2001, 22(18):3643-3649.
    [137] N Otsu. A threshold selection method from gray-level histograms, IEEE Transactions on Systmes, Man, and Cybemetics, 1979, 9(1):62-66.
    [138] M Femand. Topographic distance and watershed lines [J], Signal Processing, 1994, 38:113-125.
    [139]杨志国.基于ROI的UWB SAR叶簇覆盖目标鉴别方法研究,湖南:国防科学技术大学博士学位论文,2007.
    [140] L Van Tran, J Sklansky. Flexible mask subtraction for digital angiography, IEEE Transactions on Medicine Imaging, 1992, 35(2):220-223.
    [141] Y Bentoutou, N Taleb, M Chikr, et al. An invariant approach for image registration in digital subtraction angiography [J], Pattern recognition, 2002, 35(12):2853-2865.
    [142] L Xiao, X G Liu, Y S li, et ,al. A new orbit fitting algorithm of space-borne SAR based on householder transformation. 2nd ASIAN-PACIFIC conference on SAR proceedings, Xi’an, Oct.26-30, 2009:832-835.
    [143] T Bayer, R Winter, G Schreier. Terrain influences in SAR backscatter and attempts to their correction [J], IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(3):451-462.
    [144] J Inglada, F Adragna. Automatic multi-sensor image registration by edge matching using genetic algorithms [C]. International Geoscience and Remote Sensing Symposium, Sydney, 9-13 Oct, 2001, 5:2313-2315.
    [145] H Z Liu, B L Guo and Z Z Feng. Pseudo-Log-Polar Fourier Transform for Image Registration [J]. IEEE Signal Processing Letters, 2006, 13(1):17-20.
    [146] J You, P A Bhattacharya. Wavelet-based Coarse-to-fine Image Matching Scheme in a Parallel Virtual Machine Enviroment [J]. IEEE Transactions on Image Processing, 2000, 9(9):1547-1559.
    [147]马松辉.图像匹配在导航制导中的应用,西北工业大学硕士学位论文,2002.
    [148]常玉林.多波段SAR图像配准及融合算法研究,国防科学技术大学硕士学位论文,2004.
    [149] W Li, H Leung. A maximum likelihood approach for image registration using control point and intensity, IEEE Transactions on Image Processing, 2004, 13(8):1115-1127.
    [150] H J Johnson, G E Christensen. Consistent landmark and intensity-based image registration. IEEE Transactions on Medical imaging, 2002, 21(5):250-461.
    [151] P Dare, I Dowman. An improved model for automatic feature-based registrationof SAR and SPOT images. SPRS Journal of Photogrammetry and Remote Sensing, 2001, 56(1):13-28.
    [152]彭文.基于特征的医学图像配准中若干关键技术的研究.浙江大学博士学位论文,2007.
    [153] L Brown. A survey of image registration techniques. ACM Computer Surveys, 1992, 24(4):325-376.
    [154]孙林.快速图像匹配方法研究及分布式图像匹配系统实现,国防科学技术大学硕士学位论文,2006.
    [155] R Berthilsson. Affine correlation. Proceedings of the International Conference on Pattern Recognition ICPR’98, Brisbane, Australia, 1998: 1458-1461.
    [156] Y M Zhu. Volume image registration by cross-entropy optimization. IEEE Transactions on Medical Imaging, 2002, 21(2): 174-180.
    [157]冷雪飞,刘建业,熊智,邢广华.加权Hausdorff距离算法在SAR/INS景象匹配中的应用,控制与决策,2006,21(1): 42-45.
    [158] J Flusser, T Suk. Degraded image analysis: An invariant approach. IEEE Transactions on Pattern analysis and machine Intelligence, 1998, 20:590-603.
    [159] X Dai, S Horram. A feature-based image registration algorithm using improved chain-code representation combined with invariant moments. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2351-2362.
    [160]孙林.快速图像匹配方法研究及分布式图像匹配系统实现,国防科学技术大学硕士学位论文,2006.
    [161]王爱玲,叶明生,邓秋香. MATLAB R2007图像处理技术与应用[M],电子工业出版社,北京,2008.
    [162]查显杰,傅容珊,戴志阳等.小波基函数选择对SAR干涉图去噪的影响[J],理论研究,2008,17-21.
    [163] M Ehlers. Multi-sensor image fusion techniques in remote sensing [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1991, 46(1):19-30.
    [164]简剑峰,尹忠海,周利华,王任享.基于直方图不变矩的遥感影像目标匹配方法,西安电子科技大学学报,2006,33(4):584-587.
    [165]邵巍,朱圣英,陈灵芝.一种快速多尺度特征点匹配方法,中国图象图形学报,2009,14(12):2572-2576.
    [166] D Lowe. Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis, 2004, 60:91-110.
    [167] X Q Pan, Y Lu. Research on the Algorithm of Object Recognition Based on the Feature Fusion and D-S Evidence Theory [A]. 8th International conference on Singnal Processing [C], Beijing, 2006.16-20.
    [168] K Mikolajczyk, C Schmid. A performance evaluation of local descriptors, IEEETrans. Pattern Anal. Mach. Intell., 2005, 27(10):1615-1630.
    [169] M Grabner, H Grabner, and H Bischof. Fast approximated SIFT. Asian Conferonce on Computer Vision, Hyderabad, India, 2006:918-927.
    [170] Y Ke, R Sukthankar. PCA-SIFT: a more distinctive representation for local image descriptors. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA, 2004:506-513.
    [171] Z Yi, Z G Cao and X Yang. Multi-spectral remote image registration based on SIFT, Electronic Letters, 2008, 44(2): 107-108.
    [172] Y Bastanlar, A Temizel and Y Yardimci. Improved SIFT matching for image pairs with scale difference, Electronic Letters, 2010, 46(5): 346-348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700