用户名: 密码: 验证码:
区域水资源分配网络优化集成技术与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口的增长和社会经济的发展,社会对水资源的需求不断增加,导致水资源日趋匮乏,同时工业生产排放的大量废水使水环境受到严重污染,这些问题越来越严重地制约着经济、社会的可持续发展,成为发展的瓶颈。因此,工业企业乃至区域范围内的节水减排成为不可回避的问题之一。按照循环经济理念,发展水循环经济,促进水资源利用的良性循环,是贯彻和落实科学发展观、构建和谐社会的本质要求,对实现经济、社会、环境的可持续发展,具有十分重要的现实意义。本论文基于水循环经济的思想,利用数学规划法,开展了水资源分配网络优化集成技术与方法研究。
     论文首先从我国水资源利用现状出发,通过调查我国水资源供需关系及水资源利用中存在的问题,识别了我国工业水资源高效利用的技术瓶颈,阐述了工业领域节水减排的意义和必要性。在全面查阅了水资源优化配置、高效利用及水污染控制等相关技术的基础上,重点综述了水资源分配网络优化集成技术和应用进展,在此基础上,论文从工业过程内部、工业过程之间及区域范围三个层次,通过研究水资源分配网络优化集成模型及其应用研究,建立相应的水资源高效利用、废水最小化技术方法。其主要研究内容包括:
     1.工业过程内部水资源分配网络优化集成模型的建立与应用。
     论文针对我国工业生产过程水资源缺乏梯级利用、废水排放量大、水资源重复利用效率低等问题,采用数学规划方法,研究建立了废水直接回用、再生循环、再生回用三种不同水资源分配网络超结构。以此为基础,论文以企业年度总费用(主要包括新鲜水费用、废水处理/再生费用、管道建造及运行费用、水泵运行费用等)最小为目标函数,引入了管网改造的投资回报率为拓扑约束,研究建立了工业过程内部水资源分配网络优化集成的混合整数非线性(MINLP)数学模型,实现了企业层面上水资源的优化配置,有效地解决了新鲜水需求量和废水排放量大、水资源重复利用率低等问题。通过实例验证,表明在允许废水自身回用并不限制回用连接数的条件下,模型能取得与夹点法一致的结果;在相同管道连接数约束下,结果优于文献的结果。在此基础上,利用建立的直接回用模型对某造纸厂废纸造纸车间水资源分配网络进行优化,结果表明,优化集成后的水资源分配网络新鲜水消耗量和废水排放量分别减少25%和27%,节水减排效果明显。
     2.工业过程之间水资源分配网络优化集成模型的建立与应用。
     论文针对我国工业企业之间水资源交换利用模式少、运行费用高、稳定性差等问题,以进一步节水减排为目标,研究建立了工业过程间水资源分配网络直接(一个水网络中用水单元的出水,通过网络间管道连接,直接作为另一个水网络中用水单元的进水)和间接(一个水网络中用水单元的出水,首先排放到中间水池或再生装置,然后再从中间水池或再生装置作为另一个水网络中用水单元的进水)优化集成的超结构。在此基础上,以参与优化集成的全部工厂的年度总费用为目标函数,分别研究建立了工业过程间水资源分配网络直接和间接优化集成的MINLP模型,实现了企业间废水的交换利用和水资源的联合配置。通过实例验证,表明当允许自身回用,且管道连接数约束一样时,模型能取得与文献一致的结果。在此基础上,利用直接优化集成模型对某工业集团的氧化铝厂和热电厂之间水资源分配网络进行优化,结果表明,与两个工厂只在内部优化集成相比,新鲜水消耗进一步减少13.2%,而且废水不外排。
     3.区域产业间水资源分配网络多目标优化集成模型的建立与应用。
     对于区域来说,必须发展循环经济,实现可持续发展。区域内水资源分配网络在优化改造及运行过程中,管道生产运输、管网改造、管网运行能耗等会产生一定的环境影响,这种影响在区域范围内是不容忽视的。因此,区域层面各产业间水资源分配网络优化集成问题,除了以年度总费用最小为优化目标外,还应该考虑环境影响因素。
     针对区域范围内的多种新鲜水源(包括地下水、河水、湖水、水库蓄水、外调水等)、污水处理厂达标出水在各产业间缺乏合理配置的问题,采用数学规划方法,研究建立了区域各产业间水资源分配网络优化集成超结构;根据超结构,采用多目标优化方法,建立了区域产业间水资源分配网络优化集成模型。模型的目标函数一是环境影响最小,二是年度总费用最小,通过模型多目标优化,对两个目标函数进行权衡。引入生命周期评价方法,对区域内水资源分配网络建造、运行、废弃的整个生命周期进行全过程的环境影响评价,并推导了管网建造阶段和废弃阶段环境影响量化线性加回归方程的回归系数。通过实例验证,表明模型能够对两个目标函数进行权衡,优化后的水资源分配网络能够保证年度总费用和环境影响同时最小,优化出经济、环保,符合可持续发展理念的水资源分配网络。在此基础上,利用建立的模型对某开发区所在区域水资源分配网络进行优化,结果表明,区域范围内水资源分配网络新鲜水消耗和废水排放比优化前分别减少22%和75.8%。
     4.区域水资源分配网络优化集成应用研究。
     针对目前学术界侧重水资源分配网络优化集成理论研究,应用研究相对偏少的问题,本论文利用研究建立的工业过程内部、工业过程之间和区域产业之间水资源分配网络优化集成模型,尝试在一个包括6个主要工厂的工业集团所在区域进行水资源分配网络优化技术应用研究。利用本论文研究建立的工业过程内部直接回用模型,首先对6个工厂进行各工厂内部水资源分配网络优化集成,结果表明,优化后6个工厂总的新鲜水消耗减少5.94%,总的废水排放减少18.64%。其次利用本论文研究建立的工业过程之间间接集成模型在6个工厂间进行水资源分配网络优化集成,构造企业间水资源耦合交换网络。与企业内部集成结果相比,新鲜水消耗减少9%,废水排放减少70%。最后,利用本论文研究建立的区域范围内各产业间水资源优化集成多目标优化模型,在该集团所在区域进行区域范围内水资源分配网络优化集成研究,充分考虑区域内多种水源,并且考虑污水处理厂出水进行回用。结果表明,污水处理厂出水回用到市政用水,从而进一步减少新鲜水消耗和废水排放量,新鲜水消耗和废水排放量分别减少2.5%和41.3%。
Water is one of the most important natural resources. Population growth coupled with economic development has put increased pressure on water resource around the world. Industries consume plenty of fresh water and discharge large amount of wastewater. These urgent problems become more and more serious restricting social development as well as economic construction. According to the theory of circular economy, it is crucial for industries to develop circular economy and promote sound cycle of water resource utility. The strategy, which is essential requirement for carrying out scientific outlook on development and constructing harmonious socialist society, has very important practical significance to promote sustainable development of society, economy and environment. Base on the theory of water circular economy, the thesis carry out research on the techniques and methods to minimize fresh water consumption and wastewater generation.
     The thesis introduces the present status of the water resource utilization in China. Through supply and demand investigation of water resources in China, the thesis analyzes the problems existing in water utilization, points out the value of the research on techniques and methods to minimize freshwater consume and wastewater discharge. After summarizing the roadmap for development of water resource allocation network, the development of research in water targeting and network design techniques using pinch analysis and mathematical programming are chiefly reviewed. Using mathematical programming method, the thesis carries out the research on techniques for optimization and synthesis of in-plant, inter-plant and region-wide water resource allocation networks. The main contents of this thesis are as follows:
     1. Study on the mathematical model for the synthesis of in-plant water allocation network.
     Minimization of freshwater consumption and wastewater discharge should first be achieved within individual plants. In order to solve the problems of water resource utilization in Chinese plants such as low reuse rate, lack of cascade use, serious water wasting, the thesis proposes superstructures that incorporate all feasible design alternatives for wastewater reuse, regeneration reuse and regeneration recycle. The superstructures are formulated into mixed inter non-linear programming models. The objective of the model is to minimize the total annual cost, which is crucial to the plant. The total annual cost of a water system consists of fresh water cost, effluent treatment cost, network construction and operating cost, energy cost, etc. The return on investment of networks construction is integrated into the model as topological constraints, making the model more in line with actual production. The models have the ability to optimize in-plant water resource allocation networks, solving the problems mentioned before. Case study 3-1 is used to proof the capacity of the models. The results are identical to the solutions of literatures. The case study 3-2 illustrates the application of the model to design the water resource allocation network in a Chinese pulp and paper mill. The results show that fresh water consumption is reduced by 25% and wastewater discharge is reduced by 27%.
     2. Study on inter-plant water resource allocation network optimization.
     Once the maximum potential for water resource conservation within independent company has bee reached, further improvements are only possible through symbiotic programs among companies. In order to optimize the inter-plant water allocation network, the thesis proposes direct and indirect superstructures for inter-plant water resource allocation networks optimization. In the direct integration scheme, water from different networks is integrated directly via cross-plant pipeline(s). In the indirect integration scheme, water from different networks is integrated indirectly via centralized water mains or regeneration units, which serve to collect and redistribute water to the individual plants. For the two inter-plant integration schemes, the superstructures are formulated into mixed integer nonlinear program (MINLP), which objective is to minimize the total annual cost. The results of case study 4-1 are identical to the solutions of literatures on the same limitation of interconnections. The case study 4-2 illustrates the application of the model to design inter-plant water resource allocation network between an alumina plant and a steam power plant, which belong to an alumina production company. Compared to the base case that the two plants are designed separately without exploiting inter-plant integration opportunities, the result for inter-plant water system integration corresponds to a 13.2% reduction in freshwater consumption and there is no wastewater discharge.
     3. Study on the multi-objective optimization of region-wide water resource allocation network.
     For a region, it is important to take into account the environmental performance of water resource allocation network construction and operation in order to be in line with circular economy and sustainable development. Traditional process design and optimization often pay much attention to the economic profits, such as fixed capital investment, operation cost, and pay back period. The environmental impacts of process design have been given a lower priority. However, in all life cycle stages of water allocation network, environmental impacts, which incurred during construction, operating stages, can't be ignored. Therefore, it is essential to take into account tradeoffs among the environmental impacts and annual costs, i.e., environmental and economic perspectives should be incorporated into the process design and optimization of regional water allocation network simultaneously.
     In order to optimize the regional water resource allocation network, multi-objective optimization method has been studied to minimize a total annualized cost and environmental impacts. The concept of life cycle assessment (LCA) is integrated into the objective function of the model to evaluate the environmental effect scores of potential environmental impacts incurred during the life cycle. A generalized superstructure model is used to develop the mathematical optimization model for an environmentally friendly water allocation network. The mathematical model treats environmental impacts as one objective together with annualized cost as another objective. The trade-off between the two objectives can make water allocation network minimize freshwater consumption and wastewater discharge while achieving simultaneous minimization of environmental impacts incurred during the network life cycle and annualized cost. Case study 5-1 demonstrates the effect of the multi-objective model on the configuration and environmental performance of the water allocation network and validates the mathematical optimization model. Case study 5-2 illustrates the application of the model to design inter-plant water resource allocation network in a development zone. The result corresponds to freshwater consumption and wastewater discharge reduction by 22% and 75.8%, respectively.
     4. Study on application of water allocation network optimization techniques and methods in an industrial park area.
     Compared to the studies on the theory of water allocation network optimization which are current research focuses, few case studies for inter-plant water system integration using mathematical programming have been reported. In the thesis, a case study for water allocation network optimization of an industrial park area, which consists of six plants, is undertaken with an aim to reduce freshwater flowrates and consequently the wastewater flowrate. A detailed survey of current water and wastewater streams and other options for water minimization such as contaminants, temperature was carried out. The problem is identified as a multi-contaminant, reuse and recycle problem. Firstly, the water allocation networks of the six plants are optimized using the model developed in Chapter 3 one by one without taking account of inter-plant water integration opportunities. The results show that the reductions of combined freshwater consumption and wastewater discharge are of the tune of 5.94% and 18.64%, respectively. Secondly, inter-plant water allocation network integration among the six plants is carried out for further water conservation. Two central mains for cooling water and condensed water storage are placed among the six plants when inter-plant integration is considered. Compared with the in-plant water network optimization design, the result for inter-plant integration corresponds to a further 9% reduction in overall fresh water requirement and 70% in combined wastewater discharge. Lastly, region-wide water resources allocation network is integrated and optimized using the multi-objective optimization model proposed in the thesis. Water resources, water demand systems (including drinking use, industrial use, agricultural use, etc.) and wastewater treatment plant are integrated into a system, taking into account recycling of treated wastewater, to improve the sustainability of regional water system. The results show that optimization of the water allocation network of the region where the company located has the further potential to decrease freshwater consumption and wastewater discharge, reducing the total volume of freshwater used by 2.5% and wastewater discharged by 41.3%.
引文
[1]张凯.水资源循环经济理论与技术[M].北京:科学出版社,2007.
    [2]林洪孝.水资源管理理论与实践[M].北京:中国水利水电出版社,2003.
    [3]姜文来,唐曲,雷波.水资源管理学导论[M].北京:化学工业出版社,2005.
    [4]李圭白.水危机及其对策——水的良性社会循环[R].哈尔滨:2011.
    [5]中华人民共和国环境保护部.2010中国环境状况公报.2010:北京.
    [6]陈琨,姚中杰,姚光.我国实施水资源循环经济模式的途径[J].中国人口.资源与环境,2003,(05).
    [7]马忠玉,蒋洪强.水循环经济与水资源合理开发利用研究[J].生态环境,2006,(02):416-423.
    [8]马忠玉,蒋洪强.我国水循环经济若干理论问题及其发展对策[J].中国地质大学学报(社会科学版),2006,(03):21-27.
    [9]El-Halwagi M.M. Process integration [M]. Academic Press,2006.
    [10]都健,李英,孟小琼,etc.水分配网络综合研究[J].水科学进展,2003,(03):285-289.
    [11]刘永健.化工过程水分配网络合成的研究[D].天津:天津大学,2006.
    [12]冯霄,刘永忠,沈人杰,王黎.水系统集成优化——节水减排的系统综合方法[M].北京:化学工业出版社,2008.
    [13]Relvas Susana, Matos Henrique A., Fernandes M. Cristina, etc. Aquomin:A software tool for mass-exchange networks targeting and design [J]. Computers & Chemical Engineering,2008,32(6):1085-1105.
    [14]Manan ZA, Tan YL, Foo DCY. Targeting the minimum water flow rate using water cascade analysis technique [J]. AIChE Journal,2004,50(12): 3169-3183.
    [15]Mann J.G., Liu Y.A. Industrial water reuse and wastewater minimization [M]. McGraw-Hill Professional,1999.
    [16]Foo Dominic Chwan Yee. State-of-the-art review of pinch analysis techniques for water network synthesis [J]. Industrial & Engineering Chemistry Research, 2009,48(11):5125-5159.
    [17]Bagajewicz Miguel. A review of recent design procedures for water networks in refineries and process plants [J]. Computers & Chemical Engineering,2000, 24(9-10):2093-2113.
    [18]McLaughlin L. Develop an effective wastewater treatment strategy [J]. Chemical Engineering Progress,1992,88(9):35-42.
    [19]李英.废水最小化的过程集成方法研究[D].大连:大连理工大学,2003.
    [20]Wang YP, Smith R. Wastewater minimisation [J]. Chemical Engineering Science,1994,49(7):981-1006.
    [21]Wang YP, Smith R. Wastewater minimization with flowrate constraints [J]. Chemical Engineering Research and Design,1995,73(a):885-900.
    [22]Kuo W. C. J., Smith R. Design of water-using systems involving regeneration [J]. Process Safety and Environmental Protection,1998,76(2):94-114.
    [23]Sorin M., Bedard S. The global pinch point in water reuse networks [J]. Process Safety and Environmental Protection,1999,77(5):305-308.
    [24]Hallale N. A new graphical targeting method for water minimisation [J]. Advances in Environmental Research,2002,6(3):377-390.
    [25]Foo Dominic Chwan Yee, Kazantzi Vasiliki, E1-Halwagi Mahmoud M., etc. Surplus diagram and cascade analysis technique for targeting property-based material reuse network [J]. Chemical Engineering Science,2006,61(8): 2626-2642.
    [26]Deng Chun, Feng Xiao, Bai Jie. Graphically based analysis of water system with zero liquid discharge [J]. Chemical Engineering Research and Design, 2008,86(2):165-171.
    [27]Takama N., Kuriyama T. Optimal planning of water allocation in industry [J]. Journal of Chemical Engineer of Japan,1980,13:478-483.
    [28]Alva-Argaez A., Kokossis A. C, Smith R. Wastewater minimisation of industrial systems using an integrated approach [J]. Computers & Chemical Engineering,1998,22(Supplement 1):S741-S744.
    [29]Huang Ching-Huei, Chang Chuei-Tin, Ling Han-Chern, etc. A mathematical programming model for water usage and treatment network design [J]. Industrial & Engineering Chemistry Research,1999,38(7):2666-2679.
    [30]Bagajewicz Miguel, Savelski Mariano. On the use of linear models for the design of water utilization systems in process plants with a single contaminant [J]. Chemical Engineering Research and Design,2001,79(5):600-610.
    [31]Savelski Mariano, Bagajewicz Miguel. Design of water utilization systems in process plants with a single contaminant [J]. Waste Management,2000,20(8): 659-664.
    [32]J. Savelski Mariano, J. Bagajewicz Miguel. Algorithmic procedure to design water utilization systems featuring a single contaminant in process plants [J]. Chemical Engineering Science,2001,56(5):1897-1911.
    [33]Tsai Ming-Jeng, Chang Chuei-Tin. Water usage and treatment network design using genetic algorithms [J]. Industrial & Engineering Chemistry Research, 2001,40(22):4874-4888.
    [34]Xu D. M., Hu Y. D., Hua B., etc. Minimization of the flowrate of fresh water and corresponding regenerated water in water-using system with regeneration reuse [J]. Chinese Journal of Chemical Engineering,2003,11(3):257-263.
    [35]Tan Y., Manan Z., Foo D. Retrofit of water network with regeneration using water pinch analysis [J]. Process Safety and Environmental Protection,2007, 85(4):305-317.
    [36]Iancu P., Plesu V., Lavric V. Regeneration of internal streams as an effective tool for wastewater network optimisation [J]. Computers & Chemical Engineering,2009,33(3):731-742.
    [37]Linnhoff B., Hindmarsh E. The pinch design method for heat exchanger networks [J]. Chemical Engineering Science,1983,38(5):745-763.
    [38]El-Halwagi MM, Hamad AA, Garrison GW. Synthesis of waste interception and allocation networks [J]. AIChE Journal,1996,42(11):3087-3101.
    [39]Dhole VR, Ramchandani N., Tainsh RA, etc. Make your process water pay for itself [J]. Chemical Engineering,1996,103(1):100-103.
    [40]Polley G. T., Polley H. L. Design better water networks [J]. Chemical Engineering Progress,2000,96(2):47-52.
    [41]Prakash Ravi, Shenoy Uday V. Targeting and design of water networks for fixed flowrate and fixed contaminant load operations [J]. Chemical Engineering Science,2005,60(1):255-268.
    [42]Agrawal Vibhor, Shenoy Uday V. Unified conceptual approach to targeting and design of water and hydrogen networks [J]. AIChE Journal,2006,52(3): 1071-1082.
    [43]Bandyopadhyay Santanu. Source composite curve for waste reduction [J]. CHEMICAL ENGINEERING JOURNAL,2006,125(2):99-110.
    [44]Pillai Harish K., Bandyopadhyay Santanu. A rigorous targeting algorithm for resource allocation networks [J]. Chemical Engineering Science,2007,62(22): 6212-6221.
    [45]El-Halwagi MM, Gabriel F, Harell D. Rigorous graphical targeting for resource conservation via material recycle/reuse networks [J]. Ind. Eng. Chem. Res,2003,42:4319-4328.
    [46]Almutlaq Abdulaziz, Kazantzi Vasiliki, El-Halwagi Mahmoud. An algebraic approach to targeting waste discharge and impure fresh usage via material recycle/reuse networks [J]. Clean Technologies and Environmental Policy, 2005,7(4):294-305.
    [47]Bandyopadhyay Santanu, Ghanekar Mandar D., Pillai Harish K. Process water management [J]. Industrial & Engineering Chemistry Research,2006,45(15): 5287-5297.
    [48]Foo DCY, Manan ZA, Tan YL. Use cascade analysis to optimize water networks [J]. Chemical Engineering Progress,2006,102(7):45-52.
    [49]Foo D. C. Y. Water cascade analysis for single and multiple impure fresh water feed [J]. Chemical Engineering Research and Design,2007,85(8):1169-1177.
    [50]Feng Xiao, Bai Jie, Zheng Xuesong. On the use of graphical method to determine the targets of single-contaminant regeneration recycling water systems [J]. Chemical Engineering Science,2007,62(8):2127-2138.
    [51]Bai J., Feng X., Deng C. Graphically based optimization of single-contaminant regeneration reuse water systems [J]. Chemical Engineering Research and Design,2007,85(8):1178-1187.
    [52]Ng D., Foo D., Tan R., etc. Ultimate flowrate targeting with regeneration placement [J]. Chemical Engineering Research and Design,2007,85(9): 1253-1267.
    [53]Wang YP, Smith R. Design of distributed effluent treatment systems [J]. Chemical Engineering Science,1994,49(18):3127-3145.
    [54]Ng Denny Kok Sum, Foo Dominic Chwan Yee, Tan Raymond R. Targeting for total water network.1. Waste stream identification [J]. Industrial & Engineering Chemistry Research,2007,46(26):9107-9113.
    [55]Ng Denny Kok Sum, Foo Dominic Chwan Yee, Tan Raymond R. Targeting for total water network.2. Waste treatment targeting and interactions with water system elements [J]. Industrial & Engineering Chemistry Research,2007, 46(26):9114-9125.
    [56]Takama N., Kuriyama T., Shiroko K., etc. Optimal water allocation in a petroleum refinery [J]. Computers & Chemical Engineering,1980,4(4): 251-258.
    [57]Doyle S. J., Smith R. Targeting water reuse with multiple contaminants [J]. Process Safety and Environmental Protection,1997,75(3):181-189.
    [58]Jezowski J. Review of water network design methods with literature annotations [J]. Industrial & Engineering Chemistry Research,2010,49(10): 4475-4516.
    [59]Savelski Mariano, Bagajewicz Miguel. On the necessary conditions of optimality of water utilization systems in process plants with multiple contaminants [J]. Chemical Engineering Science,2003,58(23-24):5349-5362.
    [60]Hul Seingheng, Tan R. R., Auresenia J., etc. Synthesis of near-optimal topologically constrained property-based water network using swarm intelligence [J]. Clean Technologies and Environmental Policy,2007:27-36.
    [61]Hul S, Tan RR, Auresenia J, etc. Water network synthesis using mutation-enhanced pso [J]. Trans. Inst. Chem. Eng., Part B,2007,85: 507"514.
    [62]Tan R. R., Cruz D. E. Synthesis of robust water reuse networks for single-component retrofit problems using symmetric fuzzy linear programming [J]. Computers & Chemical Engineering,2004,28(12): 2547-2551.
    [63]Tan R. R., Foo D. C. Y., Manan Z. A. Assessing the sensitivity of water networks to noisy mass loads using monte carlo simulation [J]. Computers & Chemical Engineering,2007,31(10):1355-1363.
    [64]Chakraborty A. A globally convergent mathematical model for synthesizing topologically constrained water recycle networks [J]. Computers & Chemical Engineering,2009,33(7):1279-1288.
    [65]Bagajewicz Miguel J., Rivas Margiori, Savelski Mariano J. A robust method to obtain optimal and sub-optimal design and retrofit solutions of water utilization systems with multiple contaminants in process plants [J]. Computers & Chemical Engineering,2000,24(2-7):1461-1466.
    [66]徐冬梅,胡仰栋,华贲,etc.逐步非线性规划法求解多组分废水最小化问题[J].计算机与应用化学,2003,(06):789-792.
    [67]李保红,费维扬,姚平经.单杂质废水处理网络设计[J].化工学报,2003,(12):1733-1739.
    [68]Feng X., Chu K. H. Cost optimization of industrial wastewater reuse systems [J]. Process Safety and Environmental Protection,2004,82(3):249-255.
    [69]李英,姚平经.炼油厂废水的最小化(英文)[J].石油学报(石油加工),2003,(04):57-63.
    [70]刘永健,罗祎青,袁希钢.过程工业水分配网络系统集成的nlp模型[J].计算机与应用化学,2006,(07):615-618.
    [71]郑雪松,冯霄,沈人杰.具有最简结构水回用网络的优化[J].高校化学工程学报,2006,(04):622-627.
    [72]刘永健,袁希钢,罗祎青.基于模糊规划的质量负荷不确定水网络的综合[J].化工学报,2006,(04):867-873.
    [73]Erol Pinar, Thoming Jorg. Eco-design of reuse and recycling networks by multi-objective optimization [J]. Journal of Cleaner Production,2005,13(15): 1492-1503.
    [74]Lim Seong-Rin, Park Jong Moon. Environmental and economic analysis of a water network system using lea and Ice [J]. AIChE Journal,2007,53(12): 3253-3262.
    [75]Lim Seong-Rin, Park Jong Moon. Synthesis of an environmentally friendly water network system [J]. Industrial & Engineering Chemistry Research,2008, 47(6):1988-1994.
    [76]Lim Seong-Rin, Park Jong Moon. Environmental impact minimization of a total wastewater treatment network system from a life cycle perspective [J]. Journal of Environmental Management,2009,90(3):1454-1462.
    [77]高会亮,王东明,高会艳,etc.生命周期评价在过程工业用水网络设计中的应用[J].环境保护科学,2006,(04):66-69.
    [78]FRIEDRICH E. Life-cycle assessment as an environmental management tool in the production of potable water [M]. London, ROYAUME-UNI:IWA,2002, VII,349 p.
    [79]Carpentieri Matteo, Corti Andrea, Lombardi Lidia. Life cycle assessment (lca) of an integrated biomass gasification combined cycle (ibgcc) with co2 removal [J]. Energy Conversion and Management,2005,46(11-12):1790-1808.
    [80]Marsmann Manfred. The iso 14040 family [J]. The International Journal of Life Cycle Assessment,2000,5(6):317-318.
    [81]杨建新.产品生命周期评价方法及应用[M].北京:气象出版社,2002.
    [82]乔琦,刘景洋,孙启宏.生命周期评价在我中的应用[J].产业与环境(中文版),2003,(S1):90-93.
    [83]樊庆锌,敖红光,孟超.牛命周期评价[J].环境科学与管理,2007,(06):177-180.
    [84]段宁,程胜高.生命周期评价方法体系及其对比分析[J].安徽农业科学,2008,(32):13923-13925+14049.
    [85]Pennington David W., Margni Manuele, Ammann Christoph, etc. Multimedia fate and human intake modeling:Spatial versus nonspatial insights for chemical emissions in western europe [J]. Environmental Science & Technology,2005,39(4):1119-1128.
    [86]Steen B. A systematic approach to environmental priority strategies in product development (eps):Version 2000-models and data of the default method [M]. Sweden:Chalmers University of Technology,1999.
    [87]Olesen S. G., Polley G. T. Dealing with plant geography and piping constraints in water network design [J]. Process Safety and Environmental Protection, 1996,74(4):273-276.
    [88]Lovelady Eva M., El-Halwagi Mahmoud, Krishnagopalan Gopal A. An integrated approach to the optimisation of water usage and discharge in pulp and paper plants [J]. International Journal of Environment and Pollution,2007, 29(1-3):274-307.
    [89]Lovelady Eva M., El-Halwagi Mahmoud M. Design and integration of eco-industrial parks for managing water resources [J]. Environmental Progress & Sustainable Energy,2009,28(2):265-272.
    [90]Liao Z. W., Wu J. T., Jiang B. B., etc. Design methodology for flexible multiple plant water networks [J]. Industrial & Engineering Chemistry Research,2007,46(14):4954-4963.
    [91]Foo Dominic Chwan Yee. Flowrate targeting for threshold problems and plant-wide integration for water network synthesis [J]. Journal of Environmental Management,2008,88(2):253-274.
    [92]Chew I. M. L., Tan R., Ng D. K. S., etc. Synthesis of direct and indirect interplant water network [J]. Industrial & Engineering Chemistry Research, 2008,47(23):9485-9496.
    [93]Chew I. M. L., Foo D. C. Y. Automated targeting for inter-plant water integration [J]. CHEMICAL ENGINEERING JOURNAL,2009,153(1-3): 23-36.
    [94]Chew I. M. L., Tan R. R., Foo D. C. Y., etc. Game theory approach to the analysis of inter-plant water integration in an eco-industrial park [J]. Journal of Cleaner Production,2009,17(18):1611-1619.
    [95]Chew I. M. L., Foo D. C. Y., Ng D. K. S., etc. Flowrate targeting algorithm for interplant resource conservation network. Part 1:Unassisted integration scheme [J]. Industrial & Engineering Chemistry Research,2010,49(14): 6439-6455.
    [96]Chew I. M. L., Foo D. C. Y, Tan R. R. Flowrate targeting algorithm for interplant resource conservation network. Part 2:Assisted integration scheme [J]. Industrial & Engineering Chemistry Research,2010,49(14):6456-6468.
    [97]Chen Cheng-Liang, Hung Szu-Wen, Lee Jui-Yuan. Design of inter-plant water network with central and decentralized water mains [J]. Computers & Chemical Engineering,2010,34(9):1522-1531.
    [98]Garcia J.S.D., Avila S.L., Carpes W.P. Introduction to optimization methods:A brief survey of methods [J]. IEEE Multidisciplinary Engineering Education Magazine,2006,1(2):2-7.
    [99]Poplewski G., Jezowski J. M. Stochastic optimization based approach for designing cost optimal water networks. in Computer aided chemical engineering, Luis Puigjaner,Antonio Espuna, Editors.2005, Elsevier. p. 727-732.
    [100]Jezowski J., Poplewski G., Jezowska A. Optimization of water usage in chemical industry [J]. Environment Protection Engineering,2003, (1):97-117.
    [101]Lavric Vasile, Iancu Petrica, Plesu Valentin. Genetic algorithm optimisation of water consumption and wastewater network topology [J]. Journal of Cleaner Production,2005,13(15):1405-1415.
    [102]Prakotpol Detchasit, Srinophakun Thongchai. Gapinch:Genetic algorithm toolbox for water pinch technology [J]. Chemical Engineering and Processing, 2004,43(2):203-217.
    [103]Shafiei S., Domenech S., Koteles R., etc. System closure in pulp and paper mills:Network analysis by genetic algorithm [J]. Journal of Cleaner Production,2004,12(2):131-135.
    [104]Wu C. C., Chang N. B. Global strategy for optimizing textile dyeing manufacturing process via ga-based grey nonlinear integer programming [J]. Computers & Chemical Engineering,2003,27(6):833-854.
    [105]Tan R. R., Col-long K. J., Foo D. C. Y., etc. A methodology for the design of efficient resource conservation networks using adaptive swarm intelligence [J]. Journal of Cleaner Production,2008,16(7):822-832.
    [106]刘永健,罗祎青,袁希钢.基于粒子群优化算法的分散式废水处理网络的综合[J].天津大学学报,2006,(01):16-20.
    [107]Luo Yiqing, Yuan Xigang, Liu Yongjian. An improved pso algorithm for solving non-convex NLP/MINLP problems with equality constraints [J]. Computers & Chemical Engineering,2007,31(3):153-162.
    [108]Luo Yiqing, Yuan Xigang. Global optimization for the synthesis of integrated water systems with particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering,2008,16(1):11-15.
    [109]Karuppiah Ramkumar, Grossmann Ignacio E. Global optimization for the synthesis of integrated water systems in chemical processes [J]. Computers & Chemical Engineering,2006,30(4):650-673.
    [110]Karuppiah Ramkumar, Grossmann Ignacio E. Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty, in Computer aided chemical engineering, Marquardt W.,Pantelides C., Editors.2006, Elsevier. p. 1747-1752.
    [111]肖入峰,张建强,刘景洋.工业用水网络分析与设计方法研究进展[J].国家科技重大专项“水体污染控制与治理”河流主题“流域行业点源水污染控制技术”研讨会论文集,2009,(上册):8-13.
    [112]Brook A., Kendrick D., Meeraus A. Gams, a user's guide [J]. ACM SIGNUM Newsletter,1988,23(3-4):10-11.
    [113]Schrage L. Lingo user's guide [J]. LINDO Systems Inc.:Chicago,1L,2006.
    [114]Jacob J, Kaipe H, Couderc F, etc. Water network analysis in pulp and paper processes by pinch and linear programming techniques [J]. Chemical Engineering Communications,2002,189(2):184-206.
    [115]Ng Denny Kok Sum, Foo Dominic Chwan Yee, Tan Raymond R. Automated targeting technique for single-impurity resource conservation networks. Part 1: Direct reuse/recycle [J]. Industrial & Engineering Chemistry Research,2009, 48(16):7637-7646.
    [116]Ng Denny Kok Sum, Foo Dominic Chwan Yee, Tan Raymond R. Automated targeting technique for single-impurity resource conservation networks. Part 2: Single-pass and partitioning waste-interception systems [J]. Industrial & Engineering Chemistry Research,2009,48(16):7647-7661.
    [117]Ng Denny Kok Sum, Foo Dominic Chwan Yee, Tan Raymond R., etc: Automated targeting technique for concentration- and property-based total resource conservation network [J]. Computers & Chemical Engineering,2010, 34(5):825-845.
    [118]李英,姚平经.水夹点分析与数学规划法相结合的用水网络优化设计[J].化工学报,2004,(02):220-225.
    [119]李英,周集体,姚平经.水夹点分析与数学规划法相结合的废水处理网络优化设计[J].大连理工大学学报,2010,(01):38-41.
    [120]Feng Xiao, Seider Warren D. New structure and design methodology for water networks [J]. Industrial & Engineering Chemistry Research,2001,40(26): 6140-6146.
    [121]白洁,冯霄.水系统集成方法分析[J].化工进展,2006,(12):1471-1476+1488.
    [122]Zheng Xuesong, Feng Xiao, Shen Renjie, etc. Design of optimal water-using networks with internal water mains [J]. Industrial & Engineering Chemistry Research,2005,45(25):8413-8420.
    [123]Wang Bin, Feng Xiao, Zhang Zaoxiao. A design methodology for multiple-contaminant water networks with single internal water main [J]. Computers & Chemical Engineering,2003,27(7):903-911.
    [124]Ma H., Feng X., Cao K. A rule-based design methodology for water networks with internal water mains [J]. Chemical Engineering Research and Design, 2007,85(4):431-444.
    [125]Liu Yongzhong, Duan Haitao, Feng Xiao. The design of water-reusing network with a hybrid structure through mathematical programming [J]. Chinese Journal of Chemical Engineering,2008,16(1):1-10.
    [126]Wenzel Henrik, Dunn Russell, Gottrup Lene, etc. Process integration design methods for water conservation and wastewater reduction in industry. Part 3: Experience of industrial application [J]. Clean Technologies and Environmental Policy,2002,4(1):16-25.
    [127]Thevendiraraj S, Klemes J, Paz D, etc. Water and wastewater minimisation study of a citrus plant [J]. Resources, Conservation and Recycling,2003,37(3): 227-250.
    [128]孙华,冯立明,冯拉俊.水夹点技术在镀硬铬清洗工艺中的应用[J].材料保护,2003,(11):60-62.
    [129]Srinophakun T., Suriyapraphadilok U., Tia S. Water-wastewater management of tapioca starch manufacturing using optimization technique [J]. ScienceAsia, 2000,26:57-67.
    [130]赵占勇,王进,毛文兵,etc.啤酒厂酿造车间的水网络优化[J].酿酒科技,2006,(12):75-78.
    [131]Chungsiriporn J., Prasertsan S., Bunyakan C. Minimization of water consumption and process optimization of palm oil mills [J]. Clean Technologies and Environmental Policy,2006,8(3):151-158.
    [132]Feng X., Wang N., Chen E. Water system integration in a catalyst plant [J]. Chemical Engineering Research & Design,2006,84(A8):645-651.
    [133]Majozi Thokozani, Brouckaert C. J., Buckley C. A. A graphical technique for wastewater minimisation in batch processes [J]. Journal of Environmental Management,2006,78(4):317-329.
    [134]Forstmeier M., Goers B., Wozny G. Water network optimisation in the process industry—case study of a liquid detergent plant [J]. Journal of Cleaner Production,2005,13(5):495-498.
    [135]Tian J. R., Zhou P. J., Lv B. A process integration approach to industrial water conservation:A case study for a chinese steel plant [J]. Journal of Environmental Management,2008,86(4):682-687.
    [136]de Faria Debora Campos, Ulson de Souza Antonio Augusto, Guelli Ulson de Souza Selene Maria de Arruda. Optimization of water networks in industrial processes [J]. Journal of Cleaner Production,2009,17(9):857-862.
    [137]Kuo W. C. J., Smith R. Designing for the interactions between water-use and effluent treatment [J]. Chemical Engineering Research and Design,1998, 76(3):287-301.
    [138]严煦世,范瑾初.给水工程[M].北京:中国建筑工业出版社,1996.
    [139]梁鲁沂,俞国平,徐衍忠.给水管道单位成本计算公式的推导[J].工业用水与废水,2003,(05):51-53.
    [140]冯霄,王会民.考虑再生循环的水系统集成概述[J].华北电力大学学报,2004,(06):17-19.
    [141]Tan R. R., Ng D. K. S., Foo D. C. Y., etc. A superstructure model for the synthesis of single-contaminant water networks with partitioning regenerators [J]. Process Safety and Environmental Protection,2009,87(3):197-205.
    [142]张自杰.排水工程[M].北京:中国建筑工业出版社,1996.
    [143]崔兆杰,宋薇,张国英.废纸造纸行业的清洁生产措施与实践[J].环境科学与技术,2004,(04):88-90+119.
    [144]万金泉,马邕文,王艳,etc.废纸造纸废水特点及其处理技术[J].造纸科学与技术,2005,(05).
    [145]Gunaratnam M., Alva-Argaez A., Kokossis A., etc. Automated design of total water systems [J]. Industrial & Engineering Chemistry Research,2004,44(3): 588-599.
    [146]Kim J. K., Smith R. Automated design of discontinuous water systems [J]. Process Safety and Environmental Protection,2004,82(3):238-248.
    [147]Dantus Mauricio M., High Karen A. Evaluation of waste minimization alternatives under uncertainty:A multiobjective optimization approach [J]. Computers & Chemical Engineering,1999,23(10):1493-1508.
    [148]Jankowitsch O., Cavin L., Fischer U., etc. Environmental and economic assessment of waste treatment alternatives under uncertainty [J]. Process Safety and Environmental Protection,2001,79(5):304-314.
    [149]田一梅,赵新华,张雅君.城市自来水与中水系统综合规划的优化研究[J].给水排水,2001,(05):23-27+1.
    [150]耿勇,朱庆华.工业园区一体化水资源规划和管理模型[J].大连理工大学学报,2004,(06):920-924.
    [151]曹雨平,杨瑞洪,姜如荣.多水源用水网络优化模型研究[J].化工环保,2008,(04):327-330.
    [152]Li Chunshan, Zhang Xiangping, Zhang Suojiang, etc. Environmentally conscious design of chemical processes and products:Multi-optimization method [J]. Chemical Engineering Research and Design,2009,87(2): 233-243.
    [153]姜涛.对区域水资源优化配置多目标规划的模型[J].黑龙江水利科技,2004,(02):95.
    [154]周丽,黄哲浩,贺惠萍,etc.多目标非线性水资源优化配置模型的混合遗传算法[J].水电能源科学,2005,(05):22-25+4.
    [155]Dewulf Wim, Duflou Joost, Ander Asa. Toward a sectorwide design for environment support system for the rail industry [J]. Environmental Management,2004,34(2):181-190.
    [156]Donnelly Kathleen, Beckett-Furnell Zoe, Traeger Siegfried, etc. Eco-design implemented through a product-based environmental management system [J]. Journal of Cleaner Production,2006,14(15-16):1357-1367.
    [157]Kjaerheim Gudolf. Cleaner production and sustainability [J]. Journal of Cleaner Production,2005,13(4):329-339.
    [158]李家星,赵振兴.水力学[M].南京:河海大学出版社,2001.
    [159]贾俊平,何晓群,金勇进.统计学[M].北京:中国人民大学出版社,2009.
    [160]赵卫亚,彭寿康,朱晋.计量经济学[M].北京:机械工业出版社,2008.
    [161]唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社,2000.
    [162]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.
    [163]王晓鹏.多目标优化设计中的pareto遗传算法[J].系统工程与电子技术,2003,(12):1558-1561.
    [164]张林家.基于pareto遗传算法的多目标优化[J].鞍山师范学院学报,2008,(04):44-46.
    [165]陈芳梅,刘焕生,余承烈.氧化铝循环水系统存在的问题及对策[J].工业用水与废水,1999,(02).
    [166]李永升.电解铝厂生产废水的处理及回收利用[J].贵州工业大学学报(自然科学版),2003,(05):20-23.
    [167]毛吉平.电解铝生产废水回用处理中混凝剂的试验研究[J].青海环境,2007,(03):145-147.
    [168]Zheng Pingyou, Feng Xiao, Qian Feng, etc. Water system integration of a chemical plant [J]. Energy Conversion and Management,2006,47(15-16): 2470-2478.
    [169]冯霄,王斌,刘永忠.水系统瓶颈的确定及解瓶颈[J].华北电力大学学报,2003,(05):13-16.
    [170]Foo Dominic, Manan Zainuddin, El-Halwagi Mahmoud. Correct identification of limiting water data for water network synthesis [J]. Clean Technologies and Environmental Policy,2006,8(2):96-104.
    [171]王天华,冯霄.水系统集成技术在甲醇厂的应用[J].化学工程,2008,(04):71-74.
    [172]Wang Wuyi, Ye Bixiong, Yang Linsheng, etc. Risk assessment on disinfection by-products of drinking water of different water sources and disinfection processes [J]. Environment International,2007,33(2):219-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700