用户名: 密码: 验证码:
高炉冶炼钒钛磁铁矿钒还原机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒是一种重要的金属,在钢铁、化工、能源等领域有广泛的应用。自然界中钒钛磁铁矿是最重要的钒的寄生矿床之一,我国攀西地区有丰富的钒钛磁铁矿。目前攀钢从钒钛磁铁矿中提钒主要为火法提钒,即通过高炉冶炼使钒氧化物得到还原,进入铁水,再通过转炉氧化吹炼得到富钒渣。
     攀钢高炉冶炼钒钛磁铁精矿的特点是难选、难烧、难炼,入炉料中钛、铝含量高,在冶炼过程中严重影响高炉炉况的顺行。近年来,随着炉料结构的优化,高炉入炉料中钒钛矿比例逐渐降低,增加了普通矿的比例,炉料中TiO2量逐渐降低,高炉冶炼钒钛磁铁矿技术经济指标得到了改善。随着入炉料中钒钛矿配比的降低,炉料中钒的含量有所降低,但钒的回收率却有所提高;如何在提高入炉料中钒含量的同时,改善高炉内钒氧化物还原的热力学条件,促进钒氧化物的还原,进而提高钒的回收率,是一个亟待解决的问题,需要进一步开展研究。
     本文通过模拟固态炉料中钒氧化物在高炉块状带、软熔滴落带中的还原反应,实验研究了温度、炉料中钒钛矿配比、粒度及装料制度对钒氧化物还原的影响规律;通过热力学分析了铁水中钒的活度及影响因素,并进行了计算;模拟高炉炉缸渣铁间钒的还原反应,计算了渣系组分及反应温度对钒平衡分配比及铁水中钒含量的影响规律并进行了实验研究;主要得到以下结果:
     ①固态炉料中钒主要以钒铁尖晶石的形式存在,热力学计算表明固态炉料中铁氧化物的充分还原及高温将极大改善钒氧化物还原的热力学条件;
     ②实验研究表明在块状带区,温度高于850℃、粒度保持在5—10mm及钒钛矿配比为70—75%时,炉料还原性较好,有利于钒氧化物的还原;炉料还原度为85—90%时,铁中开始出现钒;铁中钒含量随还原度的增加而增加,当还原度达到90%后,铁中钒含量增加加快;
     ③在软熔滴落区,随炉料预还原度的增加,铁中钒含量逐渐升高;矿焦混装率为50%时,铁中钒含量达最大0.36%;混装率达到75%后,铁中钒含量降低明显,要使钒还原得到加强,矿焦混装率应维持在50%左右;随钒钛矿配比的增加,铁中钒含量呈下降趋势,钒钛矿配比为60%时,铁中钒含量可达到0.29%,钒钛矿配比增加到77%时,铁中钒含量仅为0.16%;
     ④热力学计算表明铁水中Si、V均能提高fv,P、S、C能够降低fv;铁中钒的活度系数随温度升高而降低;
     ⑤标准状态下钒氧化物将先于硅、钛氧化物与碳发生还原反应;热力学计算及实验表明升温有利于钒的还原;炉渣碱度的增加有利于钒氧化物的还原;随渣中V2O3含量的增加,铁中钒含量增加;随渣中TiO2含量的增加,钒分配比降低,铁中钒含量降低;铁水中硅含量的增加有利于钒的还原,且变化较为明显。
Vanadium is a very important metal, which are widely used in iron and steel, chemical industry and the energy fields. In nature the V-Ti-magetite is the important parasitic deposits of vanadium, in the west of Pangangzhihua there are abundant V-Ti-magetite. In present, extracting the vanadium from the V-Ti-magetite in Pangzhihua Ltd is pyrogenic process, which is extracting vanadium from V-Ti-magetite into hot metal in BF and oxidizing vanadium to vanadium oxide into slag in converter.
     The characteristic of V-Ti-magetite is hard agglomeration, hard smelting and hard ore dressing, there are a mass of aluminum and titanium in burden and that will deteriorate the furnace condition. In recent years, with the optimization of burden structure, the ratio of V-Ti-magetite in burden have been cut down and the ratio of common ore have been raised at the same time, so the content of Titanium dioxide lessened and the technical economical index have been improved markedly in the process of smelting V-Ti-magetite in BF. With the decreasing of ratio of V-Ti-magetite, the content of vanadium in burden decreased, but the recovery of vanadium improved. How increase the content of vanadium in burden simultaneously improve the thermodynamics conditions of reduction of vanadium oxides and the recovery ratio of vanadium is a burning question and it need further research.
     In this work, the tests, which simulated an actual blast furnace under certain conditions, have been carried out to look for the effect of temperature, the ratio of V-Ti-magetite in burden, granularity and the charging method on the reduction of vanadium oxides; the activity of vanadium in hot metal and influencing factor have been analyzed by the thermodynamic calculations; the effect of temperature, the content of vanadium in hot metal and component of slag on the distribution ratio of vanadium between slag and hot metal in hearth have been calculated and made experimental research.
     The research results indicate that:
     ①The mode of occurrence of V in burden is vanadium-iron spinel, thermodynamic calculations have shown that the high temperature and the sufficient reduction of iron oxides can improve the thermodynamic condition of the reduction of vanadium oxide.
     ②In lumpy zone, when the temperature is higher than 850℃, the particle size of ore lies between 5mm and 10mm and the ratio of V-Ti-magnetite lies between 70% and 75%, the ore has a good reduction, under these conditions vanadium oxide can be reduced, too. When the reduced degree of iron oxides is between 85% and 90%, the reduction of vanadium would happen, and when the reduction degree exceeded 90%, the content of vanadium in iron would increase gradually.
     ③In soft dripping with molten, the content of vanadium in iron increased with the increasing of reduction degree and the ratio of coke in ore, decrease with the increasing of the ratio of V-Ti-magetite. When the ratio of coke in ore reached 50%, the content of vanadium in iron can reached 0.36%, but when the ratio of coke exceeded 75%, the content of vanadium began to decrease. When the ratio of V-Ti-magetite is 60%, the content of vanadium is 0.29%, but when the ratio of V-Ti-magetite is 77%, the content of vanadium is only 0.16%;
     ④The thermodynamic calculations have shown that the content of Si, V in hot metal can increase the activity of V, but the content of P, S, C in hot metal can decrease the activity of V; and the activity of V decreased with the increasing of temperature;
     ⑤Under the standard condition the reduction of vanadium oxides will priority react to the reduction of silicon oxides and titanium oxides; the thermodynamic calculations and the results of experiment have showen that the high temperature, high basicity, high silicon content in hot metla can be benefited to the reduction of vanadium, increase the content of vanadium sesquioxide and titanium dioxide can shorten the distribution of vanadium, but with the increasing of content of vanadium sesquioxide, the content of vanadium in iron increased and with the increasing of content of titanium dioxide, the content of vanadium in iron decreased.
引文
[1]R.R. Moskalyk, A.M. Alfantazi. Processing of vanadium:a review[J]. Minerals Engineering 16 (2003):793-805.
    [2]米文权.超凡脱俗来话钒[Jl.金属世界,1999,5:20-23.
    [3]I. N. Monakhov, S. V. Khromov, P. I. Chernousov, and Yu. S. Yusfin. the Flow of Vanadium-bearing Marerials In Industry[J], Metallurgist,2004,48:7-8.
    [4]宁心龙,未来新金属材料[J].金属世界,2000,2:2-3.
    [5]余克章,钒(V)——金属在现代军事上的应用[J].金属世界,1994,5:22-23.
    [6]World:Mining-vanadium mining, Commodity properties and uses, An Mbendi Profile,2002: 4.
    [7]Engineer and Mining Journal,1999a. Vanadium Australia Ltd,2000(7):13-14.
    [8]Engineering and Mining Journary,2000, The Windimurra vanadium project,201(8):23.
    [9]Vanadium, Metalilic Mineral Resources, www.chinamining.org.
    [10]文友.钒的资源、应用、开发与展望[J].稀有金属与硬质合金,1996,3(124):52-54.
    [11]中国南方图书公司北京编辑部组编.叶渚沛选集[M],1988,8.
    [12]Roskill Information Services Ltd.London. The Economics of Vanadium. England,2000:190.
    [13]杜鹤桂.高炉冶炼钒钛磁铁矿原理[M].科学出版社,1996.
    [14]汪镜亮.国外钒钛磁铁矿的开发利用[J].钒钛,1993,5.
    [15]E.Hukkanen and H.Walden. The production of vanadium and steel from titanomagnetietes[J]. International Journal of Mineral Processing,1985,1-2(15):89-102.
    [16]Ke-Long Huang, Xiao-gang Li, Su-qin Liu, Ning Tan, Li-quan Chen. Research progress of vanadium redox flow battery for energy storage in China[J]. Renewable Energy,2008,33: 186-192.
    [17]Ren X. Application status and market prospects of rare metal vanadium. Chin J Rare Met 2003, 27(6):8-13.
    [18]何富本.攀枝花钒钛磁铁矿科研史话[M].攀枝花市科学技术委员会,1999,12.
    [19]中国科学技术情报研究所重庆分所.国外钒钛第8辑[M].科学技术文献出版社,重庆分社,1977.
    [20]刘刚.氧气转炉含钒炉渣相图及一些氧化物对CaO-FeO-SiO2渣系性能的影响[J].北京钢铁学报,1983,1:22-41.
    [21]王金超,陈厚生.攀钢转炉钒渣生产V2O5工艺研究[J].钢铁钒钛,1998,19(4):41-46.
    [22]王喜庆.钒钛磁铁矿高炉冶炼[M].冶金工业出版社,北京,1994,918.
    [23]施月循,许力贤,王文忠.高炉内钒还原行为的研究[J].钢铁钒钛,1988,2:7-13.
    [24]杜刚,杜鹤桂.钒钛磁铁矿的还原、软化和滴落特性的研究[J].钢铁钒钛,1984,2:74-78.
    [25]V.P.Tarasov, L.V.Bykov and P.V.Tarasov. Influence of the batch's coke-ore ratio and distribution on the porosity of the melting Zone[J]. Steel in Translation,2008,9(38):739-742.
    [26]I.GTocarovskii, V.I.Bol'shakov, D.N.Togobitskaya and F.Khamkhot'ko. Influence of the softening and melting zone on blast-furnace smelting[J]. Steel in Translation,2009,1(39): 34-44.
    [27]Teruhisa SHIMODA, Koichi KURITA and Yuji Iwanaga. Softening property if iron ore and its Influence on gas flow in blast furnace[J]. Tetsu-to-Hagane,70(1984):665.
    [28]O.Tsuchiya, T.Sugiyama. M.Onoda and I. Fujita. Tetsu-to-Hagane,1980 (66):1830.
    [29]Y.Yamaoka, H.Hotta and T.Kajikawa. Tetsu-to-Hagane,1980 (66):1850.
    [30]K.Inoue, T.Ikeda and T.Uenaka. Tetsu-to-Hagane,1982(62):2431.
    [31]甘勤.不同富矿配比对钒钛烧结矿软熔滴落性能的影响[J].炼铁,1997,5(16):35-36.
    [32]王文忠.矿焦混装提高钒回收率的研究[J].钢铁钒钛,1987,3:30-33.
    [33]杜鹤桂,宫峰,郭光祖,周汝箐.高炉矿焦混装块状带气体力学数学模型[J].钢铁钒钛,1992,1:13-18.
    [34]刁日升.攀钢高炉冶炼高钛型钒钛磁铁矿的技术进步[J].炼铁,2000,7(19):8-13.
    [35]周明顺,刘万山,刘志武,窦力威,尚策,杜鹤桂.鞍钢高炉合理配矿试验研究[Jl.炼铁,2004,3(23):7-9.
    [36]杨兆祥,杨佳龙,吕彦,王慧起.矿焦混装对软熔带特性及还原过程的影响[J].炼铁,1990,5:10-14.
    [37]沐继尧,周国凡,刘坤庭,郑武生,缪世刚.矿焦混装对软熔带透气性影响的研究[J].武汉钢铁学院学报,1990,2(13):117-123.
    [38]姚廷利,马锡民.承钢1260m3高炉钒钛矿强化冶炼实践[J].炼铁,2008,2(27):37-40.
    [39]Burgess, J.M, Jenkins, D.R. and Hockings, K,L. Analysis of blast furnace pressure tapping using a cohesive-zone gas-distribution model. Ironmaking Steelmaking,1984,11(5):11-16.
    [40]刘颜席.承钢高炉钒钛磁铁矿冶炼的技术进步[J].炼铁,1995,3:58-59.
    [41]刘彦席,郑航,杜维玲.承钢高炉炼铁钒回收率现状及其提高的途径[J].承钢技术,2004,1:7-9.
    [42]王筱留.高炉生产知识问答[M].冶金工业出版社,北京,2008.
    [43]王明海.炼铁原理与工艺[M].冶金工业出版社,北京,2006.1.
    [44]梁英教,车荫昌.无机物热力学手册[M].沈阳,东北工业大学出版社,1993.
    [45]杨勇,宋波,姜郡普,蔡开科,杨素波,文永才.CaO-SiO2-Al2O3-MgO-V2O5渣系中钒还原动力学的研究[J].钢铁钒钛,2005,4(26):1-6.
    [46]王心让,张卫东.富氧鼓风的作用及其在高炉上的安全应用[J].四川冶金,1993,1:9-15.
    [47]王国雄.富氧喷吹煤份的效果及其对高炉冶炼的影响[J].武汉钢铁学院学报,1993,2(16).
    [48]王筱留.钢铁冶金学(炼铁部分)[M].北京:冶金工业出版社,2000.
    [49]吴胜利,陈辉,呼晓明.高炉合理富氧操作方式的研究[J].钢铁,2007,6(42):8-12.
    [50]李永镇,袁进恩,钟利.高炉冶炼钒钛磁铁矿理论与实践[M].北京:冶金工业出版社,2000.
    [52]攀钢高炉目前技术经济条件的喷煤量极限研究[D],河北理工学院硕士学位论文,2004.
    [53]张建良,高贤成,赵晓明.高炉适宜富氧量的研究[J].钢铁研究,2003,6(135):5-7.
    [54]张玉柱,耿明山,项利,尹久超,陶文.MgO含量和碱度对高炉渣的黏度的影响[J].材料与冶金学报,2005,4(4):253-255.
    [55]刘德军,王尤清.提高鞍钢高炉炉渣中MgO含量的理论研究[J].鞍钢技术,1999,5:1-5.
    [56]安为洁,胡宾生.马钢2500m3高炉炉渣的冶金性能[J].华东冶金学院学报,1998,1(15):1-5.
    [57]Inoue R and Suito H. Distribution of vanadium between liquid iron and MgO saturated slags of the system CaO-MgO-FeO-SiO2. Transactions ISIJ,1982,22:705-714.
    [58]H.Sutio,R.Inoue and M.Takada. Trans, ISIJ,21(1981):250.
    [59]张丙怀,李长伟,孙锦彪.CaO-SiOz-A1203-MgO-V205渣系熔融还原过程中钒的平衡分配[J].钢铁钒钛,1991,3(12):25-29.
    [60]涂世伟,王大光,宣德茂.钒钛渣系与碳饱和铁水间的熔熔还原研究[J].钢铁钒钛,1989,10(2):44-50.
    [61]锰—冶金流程处理钒钛磁铁矿工艺的重要元素[J]. CTaπb,2003,3:14-18.
    [62]俄罗斯高炉冶炼钒钛矿技术调研.攀钢内部资料.
    [63]曲彦平,杜鹤桂.MnO对高炉型高钛渣起泡行为的影响[J].东北大学学报(自然科学版),2002,8(23):9-12.
    [64]杜鹤桂,皱安华.高炉型含钛炉渣中MnO对Ti02还原的影响[J].金属学报,1991,4(27):1-3.
    [65]曲彦平,杜鹤桂.含MnO钛渣中氧化钒还原能力的研究[J].钢铁钒钛,1997,1(18):9-12.
    [66]赵鹏年,邹元曦.高炉型渣中氧化钒还原的物理化学[J].金属学报,1963,6(1):28.
    [67]何木光,张义贤,郭刚,李玉洪.萤石对攀钢烧结的影响研究[J].四川冶金,2009,2(31)7-10.
    [68]屈经文,毛光荣,张志刚,徐亚飞.添加萤石对攀钢渣—铁界面张力和润湿角的影响[J].云南冶金,1989,2:32-37.
    [69]刘竹林,李永清,高泽平.炼铁原料[M].北京:化学工业出版社,2007.
    [70]王海涛,李光辉,范晓慧,黄柱成,姜涛.几种高炉炉料冶金性能的对比研究[J].钢铁,2006(1),41:23-27.
    [71]张丙怀,邹德余,金克和,刘清才.钒钛磁铁矿熔融还原速度研究[J].金属学报,1992,28(1):1-6.
    [72]Teruhisa SHIMODA, Koichi KURITA, Yuji IWANAGA. Softening property of iron ore and its influence on gas flow in blast furnace [J]. Transactions ISIJ,1987,27:780-788.
    [73]董希琳.高炉型钛渣中二氧化钛的活度[D].中国科学院化工冶金研究所,1986.
    [74]王相力,王再义,刘德军,邢本策,杨大正.高炉冶炼低硅生铁的热力学分析[J].鞍钢技术,2009,355(1):10-13.
    [75]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700