用户名: 密码: 验证码:
地形演变模型与湿地健康评价方法及其在黄河口的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据河口地区水沙的特点,建立了一个新的二维耦合数学模型,用来预测河口地区的水沙输移及地形演变过程。数学模型包含水动力模块、泥沙输移模块、床面演变模块和床沙级配变化模块,4个模块相互传递数据,耦合求解。水动力模块基于浅水方程组,综合考虑了柯氏力、床面切应力以表面风应力的影响,引入干湿判断法处理动边界,应用交替方向隐格式(ADI)离散方程进行数值求解。泥沙输移模块首先将泥沙按照粒径分组,在计算前根据粒径确定泥沙的性质,利用悬浮指标判断泥沙的输移状态,综合考虑粘性沙与非粘性沙输移、悬移质运动和推移质运动,对于不同性质的泥沙应用相应的控制方程求解。模型考虑了泥沙浓度对泥沙粒子的沉降速度的影响以及粘性沙絮凝和床面固结效应,控制方程的对流项应用三阶QUICKEST方法离散求解。床面演变模块基于质量守恒方程,对每组泥沙分别求解,并将总的地形变化实时地传递给水动力模块,更新底部边界。床沙级配变化模块应用多层床沙方法,对于淤积和冲刷按照不同的公式处理。
     采用了一个潮流驱动下模型方格子内冲刷的模型实验对数学模型进行了验证,模拟结果不仅和实测数据作了对比,还跟不分组模型的结果做了对比,对比结果显示了本模型对不均匀泥沙输移和地形演变模拟的适用性和优越性。
     模型被应用在黄河口,模型上游选在利津站,下游选在渤海湾内,结合实测的水文、地形和潮位观测资料,对1992年到1995年黄河口的地形演变做了数值模拟。计算得到了模拟区域的流速、水位变化过程及泥沙输移规律,揭示了黄河口地形演变的规律,模拟结果与实测结果符合良好。结果显示,计算区域内黄河口属于淤积状态,河道内抬升1.0 m左右,三角洲推进约8.1 km,新造陆30.2 km2。
     为了全面的了解河口湿地的健康状况,本文针对黄河口建立了一个全新的湿地健康评价体系,通过实地考察和多方面收集数据,结合数学模型的计算结果,对黄河口湿地1992年至2008年的健康状况作了评价,结合黄河实施的重大工程对黄河口湿地健康变化情况做了分析。同时创建了一个经济评价模型,对同一时期内东营市经济状况进行了评价,结果表明近几年经济发展和湿地健康变化并不协调。应用主成分分析法确定了影响湿地健康的5个主要指标,针对这5个主要指标对黄河口湿地保护提出了措施和建议。
Details are given in present paper of development of a sediment transport and morphological model to predict the bed evolution processes in tidal flows. There are four modules in the present coupled model which are hydrodynamic module, sediment transport module, bed evolution module and multi-layer bed module. The hydrodynamic module is based on shallow water equations and takes Coriolis force, wind induced stress and bed shear stress into consideration, wetting and drying processes are introduced to deal with moving boundary and Alternating Direction Implicit (ADI) technique is used to solve the hydrodynamic equations numerically. The sediment transport module has the capability of simulating the transport of graded sediments under non-equilibrium conditions. Cohesive sediment and non-cohesive sediment, suspended load and bed load are taken into consideration in present model. The fall velocity of suspended sediment is modified in present model due to the high sediment concentration. QUICKEST method is introduced to deal with the advective item. A 3-layer approach is adopted to simulate the variations of sediment gradations of bed materials.
     The model is tested against laboratory data obtained from a model harbour experiment, in which tide induced currents have caused gradual bed evolution around the harbour entrance. Details are given of the numerical model predicted water level,velocity distributions,bed level changes and their comparisons with the laboratory measurements. A comparison is also made between predictions made by the graded sediments model and those by a single size model.
     The model is used to simulate the bed evolution in the Yellow River Delta from 1992 to 1995. Field data are used to calibrate the parameters. The model is used to predict water and sediment transport in river channel and the mouth. The results show how the morphology developed in the Yellow River Estuary and agree well with the field data.
     A new index system is established in present paper to assess the health of Yellow River Delta wetland with the method of Fuzzy Comprehensive Assessment. The results show that the variation tendency during 1992 to 2008. Besides, economy assessments of Dongying were conducted each year in the same period, indicating that economic and health of wetland didn’t develop coordinately. Five main influence factors were found by principal components analysis method, based on the five main influence factors, measures and suggestions of protecting the Yellow River Delta wetland are proposed for wetland managers.
引文
Ackers P, White W R. 1973. Sediment transport: new approach and analysis. Journal of the Hydraulics Division, 99(11): 2041-2060
    Akiyama J, Fukushima Y. 1986. Entrainment of non-cohesive sediment into suspension. Proceedings of 3rd International Symposium on River Sedimentation, University of Mississippi, 804-813.
    Andree B, Steve C, Jules E et al. 2005. Wetland ecological and compliance assessments in the San Francisco Bay Region, California, USA. Journal of Environmental Management, 217-237.
    Balzano A. 1998. Evaluation of methods for numerical simulation of wetting and drying in shallow water flow models. Coastal Engineering, 34: 83-107.
    Celik I, Rodi W. 1984. A deposition-entrainment model for suspended sediment transport. Technical Report SFB 210/T/6, Sonderferschungsbereich 210, University of Karlsruhe.
    Dong L X, Wolanski E, Li Y. 1997. Field and modeling studies of fine sediment dynamics in the extremely turbid Jiaojiang river estuary, China. Journal of Coastal Research, 13(4): 995-1003.
    Dronkers J J. 1964. Tidal Computations Rivers and coastal waters. Amsterdam: North Holland Publishing Co.
    Einstein H A. 1942. Formula for the transportation of bed load. Trans., Amer. Soc. Civil Engrs, 107: 561-597.
    Einstein H A. 1950. The bed-load function for sediment transport in open channel flows. Department of Agriculture, Washington, D.C. Technical Bulletin 1026.
    Elder J W. 1959. The dispersion of marked fluid in turbulent flow. Journal of Fluid Mechanics, 5(4): 544-560.
    Engelund F, Fredsoe J. 1976. A sediment transport model for straight alluvial channels. Nordic Hydrology, 7: 283-306
    Engelund F, Hansen E. 1967. A monograph on sediment transport in alluvial streams. Monogr, Denmark Tech Univ, Hydraul Lab.
    Falconer R A. 1993. An introduction to nearly horizontal flows. In: Coastal Estuarial and Harbour Engineers, Reference Book. M.B. Abbott and W.A. Price (eds). London: E and F.N. Spon Ltd. chapter 2: 27-36.
    Falconer R A, Chen Y. 1991. An improved representation of flooding and drying and wind stress effects in a two-dimensional tidal numerical model. Proc. Instn Civ Engrs, part 2, 91: 659-678.
    Falconer R A, Lin B 1999. DIVAST reference manual. School of Engineering, University of Wales, Cardiff, UK.
    Falconer R A. Lin B, Kashefipour S M. 2005. Modelling water quality processes in estuaries. In Computational Fluid Dynamics: Applications in Environmental Hydraulics, John Wiley &Sons Ltd.
    Falconer R A, Owens P H. 1987. Numerical simulation of flooding and drying in a depth averaged tidal flow model. Proceedings of the Institution of Civil Engineers, 83, part 2: 161-180.
    Fisher H B. 1973. Longitudinal dispersion and turbulent mixing in open channel flow. Annual Review of Fluid Mechanics, 5: 59-78.
    Fischer H B, List J, Imberger J, Brooks N. 1979. Mixing in Inland and Coastal Waters. Academic Press, San Diego.
    Fletcher CAJ. 1991. Computational techniques for fluid dynamics volume 1: fundamental and general techniques, Second Edition, Springer-Verlag, Berlin.
    Gao G H. 2008. Numerical modelling of hydrodynamic and sediment-bacteria interaction processes in estuarine and coastal waters [PhD dissertation], Cardiff University, UK.
    Garcia M, Parker G. 1991. Entrainment of bed sediment into suspension. Journal of Hydraulic Engineering, ASCE, 117(4): 414-435.
    Guan W B, Wolanski E, Dong L X. 1998. Cohesive sediment transport in the Jiaojiang River Estuary, China. Estuarine Coastal and Shelf Science, 46: 861-871
    Henderson F M. 1966. Open channel flow. Macmillan Co. Ltd.
    Heniche M, Secretan Y, Boudeau P, Leclerc M. 2000. A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries. Advances in Water Research, 23: 359-372.
    Itakura T, Kishi T. 1980. Open channel flow with suspended sediments. Journal of the Hydraulics Division, Proceedings of ASCE, 106(8): 1325-1343.
    Ip JTC, Lynch D R, Friedrichs C T. 1998. Simulation of estuarine flooding and dewatering with application to Great Bay, New Hampshire. Estuarine, Coastal and Shelf Science, 47: 119-141.
    Kalinske A A. 1947. Movement of sediment as bed load in rivers. Tans. American Geophysical, 28(4): 615-620.
    Krone R B. 1962. Flume studies of the transport of sediment in estuarial processes. Final Report, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California Berkeley.
    Kennedy A B, Chen Q, Kirby J T, Dalrymple R A. 2000. Boussinesq modelling of wave transformation, breaking and runup. I: One dimension. Journal of Waterway, Port, Coastal and Ocean Engineering, 126: 39-47.
    Kocyigit O, Lin B, Falconer R A. 2005. Modelling sediment transport using a lightweight bed material. Maritime Engineering, 158: 3-14.
    Kong Q R, Jiang C B, Qin J J, et al. 2009. Sediment transportation and bed morphology reshaping in Yellow River Delta. Science in China Series E: Technological Sciences, 52(11)3382-3390.
    Leendertse J J. 1970. A water-quality simulation model for well-mixed estuaries and coastal seas. Vol. 1, Principles of Computation. Rand. Sata Monica, February, RM-6230-RC.
    Leonard B P, Niknafs, H S. 1990, Cost-Effective accurate coarse-grid method for highly convective multidimensional unsteady flows. Proceedings of the CFD Symposium on Aeropropulsion, NASA Lewis Research Center, Clevand, OH., U.S.A.
    Liang D, Falconer R A, Lin, B. 2006. Comparison between TVD-MacCormack and ADI-type solvers of the shallow water equations. Advances in Water Resources, 29(12): 1833-1845.
    Lin B, Falconer R A. 1995. Modelling sediment fluxes in estuarine waters using a curvilinear co-ordinate grid system, Estuarine, Coastal and Shelf Science, 41: 413-428.
    Lin B, Falconer R A. 1997. Three-dimensional layer-integrated modelling of estuarine flows with flooding and drying. Journal of Estuarine, Coastal and Shelf Science, 44: 737-751.
    Lou J, Ridd P V. 1997. Modeling of suspended sediment transport in coastal areas under waves and currents Estuarine coastal and shelf science, 45:1-16.
    Mead C T. 1999. An investigation of the suitability of two-dimensional mathematical models for predicting sand deposition in dredged trenches across estuaries. Journal of Hydraulic Research, 37(4): 444-464.
    Mehta A J, Partheniades E. 1975. An investigation of the depositional properties of flocculated fine sediments. Journal of Hydraulic Research, 13(4), 1037-1057.
    Mehta A J et al. 1989. Cohesive sediment transport. I: Process description. Journal of Hydraulic Engineering, 115(8): 1076-1093.
    Mekonnen M A, Dargahi B. 2007. Three dimensional numerical modelling of flow and sediment transport in rivers. International Journal of Sediment Research, 22(3): 188-198.
    Nguyen K D, Guillou S, Chauchat J, Barbry N. 2009. A two-phase numerical model for suspended-sediment transport in estuaries. Advances in Water Resources, 32: 1187-1196.
    Oey L Y. 2005. A wetting and drying scheme for POM. Ocean Modelling, 9(2): 133-150.
    Rapport D J, Gaudet C, Karr J R, et al. 1998. Evaluating landscape health: integrating social goals and biophysical process. Journal of Environmental Management, 53: 1 - 15.
    Rodi W. 2000. Turbulence models and their application in hydraulics. second edition. International Association for Hydraulics Research. Delft, the Netherlands.
    Rouse H. 1937. Modern conception of the mechanics of fluid turbulence. Trans. ASCE.
    Smith J D, McLean S R. 1977. Spatially averaged flow over a wavy surface. Journal of Geophysical Research, 82: 1735-1746.
    Scardi M, Cataudella S, Dato P D, et al. 2008. An expert system based on fish assemblages for evaluating the ecological quality of streams and rivers. Ecological Informatics, 3(1): 55- 63.
    Schramkowski G P, Schuttelaars H M, de Swart H E. 2002. The effect of geometry and bottom friction on local bed forms in a tidal embayment. Continental Shelf Research, 22: 1821–1833.
    Spencer C, Robertson A I, Curtis A, et al. 1998. Development and testing of a rapid appraisal wetland condition index in south-eastern Australia. Journal of Environmental Management, 54 (2): 143 - 159.
    Syvitski JPM. 2003. Supplyand flux of sediment along hydrological pathways: research for the 21st century. Global and Planetary Change, (39): 1-11.
    Tao J, Li Q, Falconer R A, Lin B L. 2001. Modelling and assessment of water quality indicators in a semi-enclosed shallow bay. Journal of Hydraulic Research, IAHR , 39: 611-618.
    Teisson C. 1991. Cohesive suspended sediment transport: ability and limitations of numerical modeling. Journal of Hydraulic Research, 29: 755-769.
    van Rijn L C. 1984a. Sediment transport, part I: Bed load transport. Journal of Hydraulic Engineering, ASCE, 110(10): 1431-1457.
    van Rijn L C. 1984b. Sediment transport, part II: Suspended load transport. Journal of Hydraulic Engineering, ASCE, 110(11): 1613-1641.
    van Rijn L C. 1993. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. AquaPublications, Netherlands.
    van Rijn L C, Walstra DJR, Tonnon P K. 2006. Morphological modelling of artificial sand ridge near Hoek van Holland. Coastal Dynamics, The Netherlands.
    Vassallo P, Fabiano M, Vezzulli L, et al. 2006. Assessing the health of coastal marine ecosystems: A holistic approach based on sediment micro and meio-benthic measures. Ecological Indicators, 6 (3): 525– 542.
    Wang Z L, Tao J H. 1998. Numerical study of pollutant transport in the Sea-Bay with mild slope beach. Acta Oceanologica Sinica, 17(3): 399-408.
    Winterwerp J C, van Kesteren WGM. 2004. Introduction to the physics of cohesive sediment in the marine environment. ELSEVIER B.V.
    Wolannski E, King B, Galloway S. 1995. Dynamics of the turbidity Maximum in the Fly river Estuary, Papua New Guinea. Estuarine Coastal and Shelf Science, 40: 321-337.
    Wu J. 1969. Wind stress and surface roughness at air-sea interface. Journal of Geophysical Research, 74: 444-455.
    Wu Y, Falconer R A. 1998. Modelling of water flows and cohesive sediment fluxes in the number estuary, UK. Marine Pollution Bulletin, 37: 182-189.
    Wu Y, Falconer R A. 2000. A mass conservative 3-D numerical model for predicting solute fluxes in estuarine waters. Advances in Water Resources, 23: 531-543.
    Yalin M S. 1972. Mechanics of Sediment Transport. Pergamm Press, N.Y.
    Yang C T, Molinas A. 1982. Sediment transport and unit stream power function. Journal of Hydraulic Division, ASCE, 108(6): 774-793.
    Yeom D H, Adams S M. 2007. Assessing effect s of stress across levels of biological organization using an aquatic ecosystem health index. Ecotoxicology and Environmental Safety, 67 (2): 286 - 295.
    Yuan D K. 2007. Development of an integrated hydro-environmental model and its application to a macro-tidal estuary [PhD dissertation], Cardiff University, UK.
    曹景华,王志秀,王学义. 2004.黄河三角洲实施“生态湿地回复工程”.走向世界, 2: 38-40.
    曹文洪,何少等,方春明. 2001.黄河河口海岸二维非恒定水流泥沙数学模型.水利学报, 1: 42-48.
    陈吉余,陈沈良. 2002.中国河口海岸面临的挑战.海洋地质动态, 18(01): 1-5.
    崔保山,杨志峰. 2002a.湿地生态系统健康评价指标体系Ⅰ.理论.生态学报, 22(7):1005-1239.
    崔保山,杨志峰. 2002b.湿地生态系统健康评价指标体系Ⅱ.方法与案例.生态学报, 22(8):1231-1239.
    崔保山,李英华,杨志峰. 2005.基于管理目标的黄河三角洲湿地生态需水量.生态学报, 25(3): 606-614
    崔保山,杨志峰. 2006.湿地学.北京:北京师范大学出版社.
    董礼先,苏纪兰,王康墡. 1989.黄渤海潮流场极其与沉积物搬运的关系.海洋学报, 11(1): 102-114.
    窦国仁. 1960.论泥沙起动流速.水利学报, 4: 44-60.
    窦国仁. 1999.再论泥沙起动流速.泥沙研究, 6: 1-9.
    樊辉. 2005.黄河口泥沙输移及三角洲的近期演变[博士学位论文].北京:中国科学院研究生院.
    关元秀,刘高焕,王劲峰. 2001.基于GIS的黄河三角洲盐碱地改良分区.地理学报, 56(2):198-205.
    郭秀军,张志阔,贾永刚等. 2007.黄河口饱和粉土的电性特征及其工程地质应用.岩土力学, 28(3):593-598
    郭跃,张永新.县域经济基本竞争力比较研究.老区建设,2009, (10):42-44.
    韩美. 2009.黄河三角洲湿地生态研究.济南:山东人民出版社.
    韩其为. 1979.非均匀悬移质不平衡输沙研究.科学通报, 17: 804-808.
    韩其为. 2004.推移质中的几个理论问题研究.中国水利, (18): 48-52.
    韩其为. 2007.非均匀沙不平衡输沙的理论研究.水利水电技术, 38(01): 14-23.
    韩其为,何明民. 1984.泥沙运动统计理论.北京:科学出版社.
    韩其为,何明民. 1987.水库淤积与河床演变的(一维)数学模型.泥沙研究, (3):14-29.
    韩其为,何明民. 1997.细颗粒泥沙成团起动及其流速的研究明,湖泊科学, 9: 307-316.
    何少苓,王连祥. 1986.窄缝法在二维边界变动水域计算中的应用.青岛海洋大学学报:自然科学版, 12: 11-19.
    胡春宏,惠遇甲. 1995.明渠挟沙水流运动的力学和统计规律.北京:科学出版社.
    胡会峰,徐福留,赵臻彦,等. 2003.青海湖生态系统健康评价.城市环境与城市生态, 16(3):71-75.
    胡志新,胡维平,陈永根,等. 2005a.太湖不同湖区生态系统健康评价方法研究.农村生态环境, 21(4):28-32.
    胡志新,胡维平,谷孝鸿,等. 2005b.太湖湖泊生态系统健康评价.湖泊科学, 17(3):256-262.
    黄海军,李凡,庞家珍,等. 2005.黄河三角洲与勃黄海相互作用研究.北京:科学出版社。
    黄建维. 1981.粘性泥沙在静水中沉降特性的试验研究.泥沙研究, 2: 30-41.
    黄涛. 2009.辽宁省县域经济基本竞争力实证分析.辽宁经济, 5:42-43.
    蒋卫国. 2003.基于RS和GIS的湿地生态系统健康评价——以辽河三角洲盘锦市为例[硕士学位论文].江苏南京:南京师范大学.
    李柏年. 2007.模糊数学及其应用.合肥:合肥工业大学出版社.
    李春晖,郑小康,崔嵬,等. 2008.衡水湖流域生态系统健康评价.地理研究, 27(3):565-573.
    李东风,李泽刚,张青玉. 1998.清水沟北汊流路入海泥沙对东营港影响的数值分析.黄渤海海洋, 16(1):1-6
    李国英. 2002.黄河调水调沙.人民黄河, 24(11):1-5.
    林秉南,黄菊卿,李新春. 1981.钱塘江河口潮流输沙数学模型.泥沙研究, (2):16-29.
    林茂昌. 2005.基于RS和GIS的闽江河口区湿地生态环境质量评价[博士学位论文].福州:福建师范大学.
    刘斌,方红卫,段杰辉. 2006.干湿边界的斜对角笛卡尔方法在平面二维水沙数学模型中的应用.泥沙研究, 2: 51-55.
    刘高焕,叶庆华,刘庆生,等. 2003.黄河三角洲生态环境动态监测与数字模拟.北京:科学出版社.
    刘淑平. 2007.黄河三角洲冲淤时空变化特征及发展趋势预测[博士学位论文].青岛:中国海洋大学.
    路峰,毕作林,谭学界. 2007.黄河三角洲芦苇湿地恢复评价.山东林业科技, 2:52-53.
    马方凯. 2010.河口三维水沙输移过程数值模拟研究[博士学位论文].北京:清华大学.
    麦少芝,徐颂军,潘颖军. 2005. PSR模型在湿地生态系统健康评价中的应用.热带地理, 25(4):317-321.
    倪晋仁,刘元元. 2006.河流健康诊断与生态修复.理论前沿, 13:4-10.
    祁伟,郭庆超. 2008.广东台山电厂二维潮流泥沙数学模型研究.泥沙研究, 6:24-29.
    钱宁,万兆惠. 1999.泥沙运动力学.北京:科学出版社.
    邱东. 1991.多指标综合评价方法的系统分析.北京:中国统计出版社.
    苏为华. 2000.多指标综合评价理论与方法问题研究[博士学位论文].厦门:厦门大学.
    孙琪,孙效功,李瑞杰. 2001.窄缝法在河口区悬沙输运数值计算中的应用.海洋与湖沼, 32(03): 296-301.
    孙英兰,张越美. 2001.胶州湾三维变动边界潮流数值模拟.海洋与湖沼, 32(4):355-362.
    陶建华. 1984.波浪在岸滩上的爬高和破碎的数学模拟.海洋学报, 6(5): 692-700
    王红莉. 2005.海岸带生境与经济协调发展管理模型研究[硕士学位论文].天津:天津大学.
    王厚杰,杨作升,毕乃双. 2006.黄河口泥沙输运三维数值模拟Ⅰ--黄河口切变锋.泥沙研究, (2): 1-9.
    王光谦,胡春宏. 2006.泥沙研究进展.北京:中国水利水电出版社.
    王开荣,张希芳. 2001.黄河口的现状及其治理.海洋科学, 25(10): 52-54.
    王开荣. 2005.黄河调水调沙对河口及其三角洲的影响和评价.泥沙研究, 6:29-33.
    王丽学,李学森,窦孝鹏,等.2003.湿地保护的意义及我国湿地退化的原因与对策.中国水土保持SWCC, 7:8-9.
    王宪礼,布仁仓,胡远满,等. 1996.辽河三角洲湿地的远景破碎化分析.应用生态学报, 7(3): 299-304.
    王兆印. 1984.高含沙水流运动机理的实验研究[博士学位论文].北京:中国水利水电科学院.
    王治良,王国祥. 2007.洪泽湖湿地生态系统健康评价指标体系探讨.中国生态农业学报, 15(6):153-155.
    韦直林. 1993.黄河一维泥沙模型.武汉水利水电学院报告.
    吴挺峰,罗潋葱,崔广柏,等. 2009.河流型水库垂向二维水沙数学模型.水科学进展, 20(2): 216-221.
    向来生. 2005.循环经济的评价体系探讨.山东科技大学学报:自然科学版, 24(2):1-4.
    谢放尖,吴长年,黄戟,等. 2008.人工湿地生态系统健康评价实证研究.环境保护科学,68(5):49-52.
    许卫忆,苏纪兰. 1986.杭州湾二维潮波计算及底质分布的动力成因.海洋与湖沼, 17(6): 493-503.
    许学工. 1996.黄河三角洲生态环境的评级和预警研究.生态学报, 15(5):461-468.
    许学工,陈晓玲,郭洪海,等. 2001.黄河三角洲土地利用与土地覆被的质量变化.地理学报, 6:640-648.
    杨美卿,王桂玲. 1995.粘性细泥沙的临界起动公式.应用基础与工程科学学报, 3: 99-109.
    杨明,秦崇仁,刘振纹,等. 2006.一线模型在黄河口岸线预报中的应用.中国港湾建设, 1: 4-7.
    杨世伦,朱骏,赵庆英. 2003.长江供沙量减少对水下三角洲发育影响的初步研究——近期证据分析和未来趋势估计.海洋学报, 25(05): 83-91.
    杨铁笙,熊样忠,詹秀玲,等. 2003.粘性细颗粒泥沙絮凝研究概述明.水利水运工程学报, (2): 65-77.
    叶锦培,何焯霞,周志德. 1986.珠江河口潮流输沙数学模型.人民珠江, 6:7-15.
    尹连庆,韩忠阁,龙源. 2009.衡水湖湿地生态系统健康评.环境科学与管理,34(11):136-140.
    俞小明,王纯,陈春来,等. 2006.河口滨海湿地评价指标体系研究.国土与自然资源研究, 2:42-44.
    袁军,吕宪国. 2005.湿地功能评价两级模糊模式识别模型的建立及应用.林业科学, 41(4):1-6.
    曾庆华,张世奇,胡春宏,等. 1997.黄河口演变及整治.郑州:黄河水利出版社.
    张长春,王光谦,魏加华. 2005.基于遥感方法的黄河三角洲生态需水量研究.水土保持学报, 19(1):14-152.
    张建华,陈俊卿,何传光,等. 2004.黄河口孤东及新滩海域蚀退分析.人民黄河, 26(11): 22-23.
    张兰丁. 2000.粘性泥沙起动流速的探讨.水动力学研究与进展A辑, 15:82-88.
    张鹏. 2004.基于主成分分析的综合评价研究[硕士学位论文].南京:南京理工大学.
    张瑞瑾,谢鉴衡. 1993.中国泥沙研究北京:中国水电出版社.
    张世奇. 1988.二维动边界潮汐输沙及河床变形计算.泥沙研究, 4: 55-63.
    张世奇. 1990.黄河口输沙及冲淤变形计算研究.水利学报, l: 23-33.
    张世奇. 1997.黄河口及三角洲冲淤演变计算原理及方法.泥沙研究, 2: 23-26.
    张晓龙. 2005.现代黄河三角洲滨海湿地环境演变及退化研究[博士学位论文].青岛:中国海洋大学.
    张祖陆,梁春玲,管延波. 2008.南四湖湖泊湿地生态健康评价.中国人口?资源与环境, 18(1):180-184.
    赵彦伟,杨志峰. 2005.城市河流生态系统健康评价初探.水科学进展, 16(3):349-355
    赵臻彦,徐福留,詹巍,等. 2005.湖泊生态系统健康定量评价方法.生态学报, 25(6):1465-1474.
    周建军,林秉南,张仁. 2002.三峡水库减淤增容调度方式研究—多汛限水位调度方案.水利学报, 3:12-19.
    朱玉荣. 1999.古长江河口湾充填潮流作用机制的初步探讨.海洋学报, 21(3): 73-82.
    朱玉荣. 2001.潮流场对渤海黄海东海陆架底质分布的控制作用.海洋地质与第四纪地质, 21(2): 7-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700