用户名: 密码: 验证码:
锂离子电池LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2正极材料及安全性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕锂离子电池爆炸机理及安全性改进这一主题展开了热稳定性好的正极材料Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_2的合成与改性、防过充剂和阻燃剂的研究。首次对Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_2的电极反应动力学进行了系统的研究;首次通过阴阳离子Cl~-、Br~-、Zn~(2+)、Zr~(4+)、Ge~(4+)掺杂和Mg_2(PO_4)_3包覆对Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_2的动力性和热稳定性进行改性研究;首次把TCEP阻燃剂和环己苯防过充添加剂协同用在自主设计的F型锂离子动力电池中。本工作主要围绕以下几方面工作进行:
     在对锂离子电池内部产热根源分析的基础上,探讨了锂离子电池在高温、过充以及短路状态下的爆炸机理。发现嵌锂碳与溶剂、电解液热分解和正极热分解反应是诱发电池高温加热时爆炸的主要原因;过充时,过量的锂离子沉积在负极表面,嵌锂碳与溶剂的反应促使电池的爆炸;电池短路瞬间电流产生的热量可能达到正极热分解的温度,正极热分解导致电池的热失控。锂离子电池的安全性可以通过下面的研究得到改进。
     共沉淀法合成了热稳性较好的Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_2三元复合正极材料并测试了其安全性。结果表明:共沉淀形成过程中控制pH在11±0.2,Li/ (Mn + Co +Ni)=1.05~1.10,900℃烧结12~20h合成的材料具有较好的结构稳定性和电化学性能;Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_2起始分解温度在211℃,269℃达到最大放热峰,放热量为252J/g,安全性优于LiCoO_2。首次系统的分析了Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_2电极过程反应动力学,结果表明电池的结构,电极的嵌锂状态,测试温度对该电极的反应过程都有很大的影响,锂离子扩散步骤是Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_2电极反应动力学的控制步骤。
     通过离子掺杂和表面修饰对Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料改性,以期提高其动力性与安全性。首次合成了Cl~-、Br~-离子掺杂的Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_(1.95)M_(0.1)材料,测试结果表明5%的卤素阴离子(Cl~-、Br~-)替代O~(2-)可以提高材料的放电比容量、大倍率循环稳定性和热稳定性,其中Cl~-的作用效果更好。探讨了过渡金属离子(Zn~(2+)、Fe~(3+)、Ti~(4+)、Zr~(4+))掺杂对材料结构性能的影响,掺杂后材料的放电容量的顺序为:Ti~(4+)-doped >no doped >Zr~(4+)-doped =Fe~(3+) -doped >Zn~(2+)-doped;倍率放电能力依次为:Ti~(4+)-doped> Zr~(4+)-doped >Zn~(2+)-doped no doped >Fe~(3+)-doped;脱锂材料的热稳定性顺序依次为:Ti~(4+)-doped>Zr~(4+)-doped>Zn~(2+)-doped>Fe~(3+)-doped= no doped。主族金属离子掺杂表明5%的Ge~(4+)、Sn~(4+)掺杂可以提高材料的倍率循环稳定性和热稳定性,Ge~(4+)掺杂作用效果优于Sn~(4+)掺杂。Mg_2(PO_4)_3包覆可以提高Li_(1.05)Ni_(1/3)Mn_(1/3)Co_(1/3)O_2的大电流放电能力以及热稳定性。
     系统的研究了联苯和环己苯对锂离子电池的过充保护作用机理。随环己苯浓度的增大,对电池的过充保护能力增强,对电池的综合电性能影响加大,5~7%是比较合适的添加比例。联苯或环己苯配合防爆安全阀能很好的防止电池的过充。5%联苯或7%环己苯与2%含氮化合物三乙胺复合使用可以提高电池过充能力,防止电池膨胀,但导致电池容量的衰减,内阻的增大。5%联苯与1%的成膜添加剂VC复合使用可提高电池的过充能力,防止电池的膨胀。
     自主设计了高安全高动力性的F型LiMn_2O_4/C锂离子动力电池。双极耳四极片并联的F型电池容量为5Ah,4C倍率充放电循环50次后的容量保持率在92.73%以上。首次提出了防过充剂与阻燃剂的协同保护作用机制,防过充剂(环己苯6%)和阻燃剂(TCEP6%)联用不但可以提高锂离子电池的防过充能力,而且可以提高电池高温环境下的热稳定性,且对电池综合电性能影响较小。6%TCEP和6%CHB与铜箔防爆安全阀联合使用可以大大提高电池的安全性,电池在1C-10V过充、150℃的恒温箱中加热30min均未爆炸。
The explosion mechanism and the safety improvement of lithium ion batteries were studied in this paper. Based on this subject, Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode materials with better thermal stability were synthesized and amended by cation and anion replacing or surface coating, the overcharge protection addictives and the flame-retardant addictives were also investigated. The reaction kinetics of Li_xNi_(1/3)Mn_(1/3)Co_(1/3)O_2 cathode was firstly discussed in detail. The M-doped(M=Cl, Br, Zn, Zr, Ge) and Mg_2(PO_4)_3-coated Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode materials were firstly synthesized and studied. The flame-retardant addictives TCEP cooperating with overcharge protection addictives cycleohexyl benzene was firstly adding to the F-type LiMn_2O_4/C dynamic lithium-ion battery.
     The main heat sources of lithium batteries were tested and the explosion mechanism was analyzed under oven test, overcharge test and short-circuit. The results showed that the explosion of lithium ion battery in oven test was induced by the heat and the air in turn coming from the LixC6/Solvet reacton, electrolyte decomposition and cathode decomposition. The heat and the air coming from the excessiveLixC6/Solvet reacton casued the batteries thermal runawy under the batteries being overcharged .The heat coming from the current may let the batteries reach high temperature in a moment.
     Li_xNi_(1/3)Mn_(1/3)Co_(1/3)O_2 cathode materials were synthesized via co-precipitation method and the safety was tested.As a result, the material had the better layer structure and good electrochemical performance synthesized under the flowing condition, controlling the pH=11±0.2 at co-precipitation process, sintering 12-20h at 900℃, Li/M ratio in 1.05-1.10. DSC showed that Li_xNi_(1/3)Mn_(1/3)Co_(1/3)O_2 began decomposing at 211℃and reached maximum temperature at 269℃. The safety of of Li1.05Co1/3Ni1/3Mn1/3O2/C 18650 batteries was better than LiCoO_2 /C 18650 batteries under oven test, overcharged test and short circuit. The reaction kinetics of Li_xNi_(1/3)Mn_(1/3)Co_(1/3)O_2 cathode was firstly studied by Eis and the results illuminated that the lithium ion diffused step was the control step of the whole electrochemical reaction kinetics of Li_xNi_(1/3)Mn_(1/3)Co_(1/3)O_2 cathode.
     The cation and anion doped and surface modified of Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_2 were studied and the M-doped(M=Cl, Br, Zn, Zr, Ge) and Mg_2(PO_4)_3-coated Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode materials were firstly synthesized and discussed. The results showed that 5%Cl~- or Br~- replacing O~(2-) of Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_2 materials especially for Cl~--doped can improve the discharge capacity, high current discharge ability and thermal stability. The discharge capacity order after transition metal Zn~(2+)、Fe~(3+)、Ti~(4+)、Zr~(4+)) doped was Ti~(4+)-doped >no doped >Zr~(4+)-doped =Fe~(3+) -doped >Zn~(2+)-doped , the rate discharge ability order was Ti~(4+)-doped> Zr~(4+)-doped >Zn~(2+)-doped no doped >Fe~(3+)-doped and the thermal stability order was Ti~(4+)-doped>Zr~(4+)-doped>Zn~(2+)-doped>Fe~(3+)-doped= no doped. Ge~(4+)or Sn~(4+)-doped especially Ge~(4+)-doped enhanced the dynamic performance and thermal stability. Mg3(PO4)2-coating improved high rate discharge capacity and thermal stability.
     The overcharge protection ability of polymeric additives cyclohexyl benzene (CHB) and biphenyl was studied.The more content cyclohexyl benzene of lithium ion battery made the better overcharge protection ability and the worse cycling performance of batteries, so the best ratio of CHB was 5-7%. 5-7% CHB or biphenyl can resist the batteries with safe-walve explosion ,while can not resist the batteries thermal runaway without safe-valve. Cyclohexyl benzene( 7%) or biphenyl( 5%) using jointly with triethyl amine(2% )can improve the battery overcharge protection ability and prevent the batteries from expanding. But the triethyl amine adding reduced the discharge capacity and increasing the internal resistance.5% biphenyl and 1%VC using jointly not only amended the batteries overcharge protection ability, but also had slightly effect on the electrochemical performance of lithium ion batteries.
     With batteries structure and manufacturing process mending, the F-type LiMn_2O_4/C dynamic lithium-ion batteries with high safety and high power were firstly manufactured. The results showed that the capacity of the battery with two cathode and two anode paralleling alternately was 5Ah and the capacity holding rate was 92.73% after 50 cycles at 4C rate charge-discharge current density . CHB and TCEP using jointly can improve the battery safety under oven test and overcharge test ,which was firstly brought forword.The electrolyte containing 6%TCEP and 6%CHB and cooper safety-lab on the batteries covers using together could greatly improved the batteries safety and the batteries can not explode or ignite when overcharged at 1C-10V or heated at 150℃oven test.
引文
[1] Sawai K, Iwakoshi Y, Ohzuku T. Carbon materials for lithium-ion (shuttlecock) cells. Solid State Ionics, 1994,69(3-4):273-283
    [2] Koksbang R,Olsen I I,Shackle D. Review of hybrid polymer electrolytes and rechargeable lithium batteries. 1994, 69(3-4): 320-335
    [3] Armand M B, Chabagno J M, Duclot M. Fast Ion Transport in Solids. Elsevier, New York,1979,131-135
    [4] Scrosati B. Lithium rocking chair batteries: an old concept. J. Electrochem., Soc., 1992,139(10):2776-2781
    [5] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2 (0    [6] 任学佑.锂离子电池及其发展前景.电池,1996,26(1):38-40
    [7] 郭炳裩,徐徽,王先友等.锂离子电池.长沙:中南大学出版社,2002,1-36
    [8] Feng X M, Ai X P, Yang H X.A-positive-temperature-coefficient electrode with thermal cut off mechanism for use in rechargeable lithium batteries. Electrochemistry Communication, 2004, 6(10): 1021 -1024
    [9] Biensan P, Simon B, Peres J P, et al. On safety of lithium-ion cells . J. Power Sources, 1999, 81-82:906-912
    [10] Mao H Y, Sacken U V. Aromatic monomer gassing agents for protecting non-aqueous lithium batteries against overcharge. US 5776627, 1998 -07-07
    [11] 刘亚飞,白厚善,动力电池及其材料的发展动向.稀土信息,2003,7:8-12
    [12] 田玉东,朱新坚,曹广益. 电动汽车的动力电池技术.移动电源与车辆, 2003, 3:36-41
    [13] Tobishima S I, Yamaki J I. A consideration of lithium cell safety. J. Power Sources, 1999, 81-82:882-886
    [14] 黄海江,锂离子电池安全性研究及其影响因素分析:[博士学位论文],上海;中国科学院上海微系统与信息技术研究所,2005
    [15] Yoshio N. The development of lithium ion secondary batteries .The Chemical Record. 2001, 1: 173-181
    [16] Baba Y, Okada S, Yamaki J I. Thermal stability of LixCoO2 cathode for lithiumion battery. So1id State Ionics,2002, 148(3-4):3ll-316
    [17] MacNeil D D, Dahn J R. The reaction of charged cathodes with nonaqueous solvents and electrolytes I. Li0.5CoO2 . J. Electrochem Soc, 2001, 148(11): A1205 -A1210
    [18] MacNeil D D, Dahn J R. The reaction of charged cathodes with nonaqueous solvents and electrolytesⅡ.LiMn2O4 charged to 4.2V. J. Electrochem. Soc., 2001, 148(11):A1211-A1215
    [19] Perkins T D, Bahn C S, Parilla P A, et al. LiCoO2 and LiCo1-xAlxO2 thin film cathodes grown by pulsed laser ablation. J. Power Sources, 1999, 81-82: 675-679
    [20] Tabuchi M, Ado K, Kobayashi H, et al. Preparation of LiCoO2 and LiCo1-xFexO2 using Solid-State Lett, 2000, 3(8): 362-365
    [21] Periasamy P, Kim H S, Na S H, et al. Synthesis and characterization of LiNi0.8Co0.2O2 prepared by a combustion solution method for lithium batteries. J. Power Sources,2004,132(1-2): 213-218
    [22] Kim Y J, Kim T J, Shin J W, et al. The effect of Al2O3 coating on the cycle life performance in thin film LiCoO2 cathodes. J. Electrochem. Soc., 2002, 149(10): A1337-A1341
    [23] Fey G T K, Lu C Z, Prem Kumar T, et al.TiO2 coating for long-cycling LiCoO2: A comparison of coating procedures . Surface and Coatings Technology, 2005, 199(1), 22-31
    [24] Wang Z X, Wu C, Liu L, et al. Electrochemical evolution and structural characteri- zation of commercial LiCoO2 surfaces modified with MgO for Lithium ion batteries. J. Electrochem. Soc., 2002, 149(4): A466-A471
    [25] Cho J. Improved thermal stability of LiCoO2 by nanoparticle AlPO4 coating with respect to spinel Li1.05Mn1.95O4. Electrochemistry Communication, 2003, 5(2): 146-148
    [26] 何希兵,其鲁,王银杰等,锂离子二次电池正极材料镍酸锂的量子化学研究.无机化学学报,2003,19(8):807-812
    [27] Rougier A, Saadoune I, Gravereau P, et al. Effect of cobalt substitution on cationic distribution in LiNi1-yCoyO2 electrode materials. Solid State Ionics,1996, 90(1-4): 83-90
    [28] Matsumoto K, Kuzuo R, Takeya K, et al. Effects of CO2 in air on Li deintercalation from LiNi1?x?yCoxAlyO2. J. Power Sources, 1999, 81-82: 558-561
    [29] Ohzuku T, Ueda T, Nagayama M. Electrochemistry and structural chemistry ofLiNiO2 (R3m) for 4-volt secondary lithium cells. J. Electrochem. Soc., 1993,140(7): 1862-1870
    [30] Lee K K, Yoon W S, Kim K B,et al.A Study on the Thermal Behavior of Electrochemically delithiated Li1-xNiO2 . J. Electrochem. Soc., 2001, 148(7): A716 -A722
    [31] Lee K K, Yoon W S, Kim K B,et al. Thermal behavior and the decomposition mechanism of electrochemically delithiated Li1?xNiO2 .J. Power Sources, 2001, 97-98:321-325
    [32] Arai H, Okada S, Sakurai Y, et al. Thermal behavior of LiNiO2 and the decomposition mechanism. Solid State Ionics, 1998, 109(3-4):295-302
    [33] Ayai H, Okada S, Sakurai Y, et al. Electrochemical and thermal behavior of LiNi1-zMzO2 (M=Co, Mn, Ti). J. Electrochem. Soc., 1997, 144(9): 3117-3125
    [34] Amirou T, Sayede A, Khelifa B, et al. Effect of Al-doping on lithium nickel oxides. J. Power Sources, 2004,130: 213-220
    [35] Pouillerie C, Croguennec L, Binsan Ph, et al. Synthesis and characterization of new LiNi1-yMgyO2 positive electrode materials for lithium-ion batteries. J. Electrochem. Soc., 2001, 147(6): 2061-2069
    [36] Fey G T K, Chen J G, Subramanian V, et al. Preparation and electrochemical properties of Zn-doped LiNi0.8Co0.2O2. J. Power Sources,2002, 112 : 384–394
    [37] Fey G T K, Shiu R F, Subramanian V, et al.LiNi0.8Co0.2O2 cathode materials synthesized by the maleic acid assisted sol–gel method for lithium batteries. J. Power Sources , 2002,103(2):265-272
    [38] Fujita Y, Amine K, Maruta J,et al.LiN1 ? xCoxCoxO2 prepared at low temperature using β-Ni1-yCoxOOH and either LiNO3 or LiOH. J. Power Sources, 1997, 68 (1):126-130
    [39] Liu H S, Zhang Z R , Gong Z L, et al. A comparative study of LiNi0.8Co0.2O2 cathode materials modified by lattice-doping and surface-coating. Solid State Ionics,2004, 166(3-4):317-325
    [40] 赵方辉,应皆荣. LiNi0.8Co0.2O2 表面包覆MgO及其性能. 电源技术, 2003, 27(1): 4-16
    [41] Zhecheva E, Stoyanova R, TyulievG, et al. Surface interaction of LiNi0.8Co0.2O2 cathodes with MgO . Solid State Sciences, 2003, 5(5):711-720
    [42] 万新华 , 王博 , 连芳等 . 包覆镍酸锂的热稳定性和耐过充性 . 电池,2004,34(1):7-9
    [43] Todorov Y M, Hideshima Y, Noguchi H ,et al. Determination of theoretical capacity of metal ion-doped LiMn2O4 as the positive electrode in Li-ion batteries. J. Power Sources,1999, 77(2):198-201
    [44] Prabaharan S R S, Sapari N B, Michael S S,et al. Soft-chemistry synthesis of electrochemically active spinel LiMn2O4 for Li-ion batteries. Solid State Ionics,1998, 112(1-2) :25-34
    [45] Matsuda Y, Sekiya M. Effect of organic additives in electrolyte solutions on lithium electrode behavior. J. Power Sources,1999, 81-82:759-761
    [46] Song D, Ikuta H, Uchida T,et al. The spinel phases LiAlyMn2?yO4 (y=0, 1/12, 1/9, 1/6, 1/3) and Li(Al, M)1/6Mn11/6O4 (M=Cr, Co) as the cathode for rechargeable lithium batteries . Solid State Ionics,1999, 117(1-2):151-156
    [47] 杨书廷, 张炳峰, 吕庆章等. 微波-高分子网络法制备可充锂离子电池正极材料 LiMxMn2O4 (M=La, Nd, Y). 功能材料, 2001, 32(4): 399-401
    [48] Lee J H, Hong J K, Jang D H, et al. Degradation mechanisms in doped spinels of LiM0.05Mn1.95O4(M=Li, B, Al, Co and Ni) for secondary batteries. J. Power Sources, 2000, 89: 7-14
    [49] Amatucci G G, Blyr A, Tarascon J M. Surface treatments of Li1-xMn2-xO4 spinels for improved elevated temperature performance. Solid State Ionics, 1997, 104(1-2):13-25
    [50] Park S C, Kim Y M, Han S C, et al. Electrochemical properties of LiCoO2- coated LiMn2O4 prepared by solution-based chemical process. J. Electrochem. Soc., 2001,148(7): A680-A686
    [51] Molenda J, Wilk P, Marzec J. Transport properties of the LiNi1?yCoyO2 system. Solid State Ionics, 1999,119(1-4):19-22
    [52] Gover R, Ryoji K, Mitchell B, et al. The effects of sintering time on the structure and electrochemical properties of Li(Ni0.8Co0.2)O2. J. Power Sources, 2000,90: 82-88
    [53] 应皆荣, 万春荣, 姜长印.用溶胶凝胶法在LiNi0.8Co0.2O2表面包覆SiO2.电源技术,2001,25(6):401-404
    [54] Makimura Y, Ohzuku T. Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries. J. Power Sources, 2003, 119-121:156 -160
    [55] Fey G T K, Lu C Z , Kumar T P. Preparation and electrochemical properties of high-voltage cathode materials, LiMyNi0.5?yMn1.5O4 (M=Fe, Cu, Al, Mg; y=0.0- 0.4). J. Power Sources, 2003, 115:332-345
    [56] Kawai H, Nagata M, Kageyama H, et al. 5 V lithium cathode based on spinel solid solutions Li2Col+x Mn3-x O8:-1≤x≤1.Electrochimica Acta,1999, 45(1-2): 315- 327.
    [57] Jouanneau S, Macneil D D , Dahn J R , et al . Morphology and Safety of Li[NixCo1–2xMnx]O2 (0    [58] Jiang J, Dahn J R. ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2 and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochemisty Communication, 2004 , 6(1) : 39-43
    [59] Macneil D D , Lu Z H , Dahn J R. A comparison of the electrode electrolyte reaction at elevated temperatures for various Li-ion battery cathodes . J. Power Sources, 2002 , 108 :8-14
    [60] Macneil D D, Lu Z H, Dahn J R. Structure and Electrochemistry of Li[NixCo1–2xMnx]O2 (0    [61] Roth E P, Doughty D H, Franklin J. DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF- based binders. J. Power Sources, 2004, 134: 222-234
    [62] Kawamura T, Kimura A, Egashira M, et al. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. J. Power Sources, 2002,104: 260-264
    [63] Pasquier A D, Disma F, Bowmer T, et al. Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li-Ion Batteries. J. Electrochem. Soc., 1998, 145(2):472-477
    [64] Richard M N, Dahn J R. Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte .J. Electrochem. Soc., 1999, 146(6):2068-2077
    [65] MacNeil D D, Larcher D, Dahn J R. Comparison of the Reactivity of Various Carbon Electrode Materials with Electrolyte at Elevated Temperature. J. Electrochem. Soc., 1999, 146(10):3596-3602
    [66] Jiang J W, Dahn J R. Effects of solvents and salts on the thermal stability of LiC6.Electrochimica Acta, 2004, 49(26): 4599-4604
    [67] Maleki H, Deng G, Anani A, et al. Thermal Stability Studies of Li-Ion Cells and Components. J. Electrochem .Soc., 1999,146(9):3224-3229
    [68] Maleki H, Deng G, Kerzhner-Haller I, et al. Thermal Stability Studies of Binder Materials in Anodes for Lithium-Ion Batteries. J. Electrochem. Soc., 2000, 147 (12):4470-4475
    [69] Endo M, Nishimura Y, Takahashi T, et al. Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery. J. Phys. Chem. Solids, 1996, 57(5): 725-728
    [70] Mabuchi A, Tokumitsu K, Fujimoto H, et al. Charge-discharge characteristics of the mesocarbon miocrobeads heat-treated at different temperatures. J. Electrochem. Soc., 1995, 142(4): 1041-1046
    [71] Dahn J R, Zheng T, Liu Y H, et al. Mechanisms for lithium insertion in carbonaceous materials. Science, 1995, 270(5236): 590-593
    [72] SatoY, Nakano T, Kobayakawa K, et al .Particle-size effect of carbon powders on the discharge capacity of lithium ion batteries. J. Power Sources, 1998, 75:271-277
    [73] Endo M, Kim C, Karaki T, et al. Anode performance of a Li ion battery based on graphitized and B-doped milled mesophase pitch-based carbon fibers. Caron, 1999, 37(4): 561-568
    [74] Han Y, Lee J. Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition. Electrochimica Acta, 2003, 48(8): 1073-1079
    [75] Veera raghavan B, Durairajan A, Haran B, et al. Study of Sn-coated graphite as anode material for secondary lithium-ion batteries. J. Electrochem. Soc. , 2002,149(6): A675-A681
    [76] Li H, Shi L H, Wang Q, et al. Nano-alloy anode for lithium ion batteries. Solid State Ionics , 2002, 148(3-4): 247-258
    [77] 徐仲榆,郑洪河. 锂离子蓄电池碳负极/电解液相容性研究进展Ⅰ碳电极界面化学与碳. 电源技术, 2000,24(3):171-177
    [78] Yang J, Takeda Y, Imanishi N, et al. Intermetallic SnSbx compounds for lithium insertion hosts. Solid State Ionics, 2000, 133(3-4): 189-194
    [79] Shi L H, Li H, Wang Z X, et al. Nano-Sn-Sb alloy deposited on MCMB as an anode material for lithium ion batteries. J. Mater. Chem., 2001, 11: 1502-1505
    [80] Xia Y Y, Sakai T, Fujieda T, et al. Flake Cu-Sn alloys as negative electrode materials for rechargeable lithium batteries. J. Electrochem. Soc., 2001, 148(5): A471-A481
    [81] Prosini P P, Mancini R, Petrucci L, et al. Li4Ti5O12 as anode in all-solid-state, Plastic , Lithium-ion batteries for low-power applications. Solid State Ionics, 2001, 144(1-2): 185-192
    [82] Thackeray M M, Vaughey J T, Kahaian A J, et al. Intermetallic insertion electrodes derived from NiAs-, Ni2In- and Li2CuSn-type structures for lithium-ion batteries .Electrochemistry Communication, 1999, 1(3-4): 111-115
    [83] 庄全超等. 锂及锂离子蓄电池有机溶剂研究进展. 化学研究与应用, 2003, 15(1): 25-30
    [84] 杨瑞敏,叶劲草,杨姝等. 有机混合电液及对 LiCoO2 材料性能的影响.电源技术, 1999,23(2):128-130
    [85] Hayashi K, Nemoto Y, Tobishima S I,et al. Mixed solvent electrolyte for high voltage lithium metal secondary cells. Electrochimica Acta, 1999, 44(14) :2337-2344
    [86] Morita M, Shibata T, Yoshimoto N, et al. Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochimica Acta, 2002, 47(17): 2787-2793
    [87] Hasegawa K, Arakawa Y. Safety study of electrolyte solutions for lithium batteries by accelerating-rate calorimetry. J. Power Sources, 1993, 43-44: 523 -529
    [88] Gnanaraj J S, Zinigrad E, Asraf L, et al. The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions. J. Power Sources, 2003, 119-121:794-798
    [89] 郭炳裩,徐徽,王先友等.锂离子电池.长沙:中南大学出版社,2002,201-202
    [90] Xu K, Ding M S, Zhang S S, et al. An attempt to formulate non-flammable lithium ion electrolytes with alkyl phosphates and phosphates . J .Electrochem Soc, 2002, 149(5): 622-626
    [91] Xu K, Ding M S, Zhang S S, et al. Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries. J. Electrochem. Soc, 2003, 150(2): 161-169
    [92] 郑洪河等. 锂离子电池电解液添加剂的发展与展望.化学通报, 2004, 67: 1-8.
    [93] Wang X M, Yasukawa E, Kasuya S.Nonflammable trimethyl phosphate solvent-containing electrolyte for lithium-ion batteries. J. Electrochem. Soc., 2001, 148(10):A1058-1071
    [94] Hyung Y E, Vissers D R, Amine K. Flame-retardant additives for lithium-ionbatteries .J. Power Sources, 2003,119-121:383-387
    [95] Ota H, Kominato A, Chun W J, et al. Effect of cyclic phosphate additive in non-flammable electrolyte .J. Power Sources, 2003,119-121:393-398
    [96] Arai J, Katayama H, Akahoshi H. Binary mixed solvent electrolytes containing trifuoropropylene carbonate for lithium secondary batteries. J. Electrochem. Soc.,2002, 149(2):A217-A226
    [97] McMillan R, Slegr H, Shu Z X, et al. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes . J. Power Sources, 1999, 81-82:20-26
    [98] Zhang S S, Xu K, Jow T R. Tris(2,2,2-trifluoroethyl) phosphates a co-solvent for nonflammable electrolytes in Li-ion batteries. J. Power Sources, 2003, 130:166-172
    [99] Oesten R, Heider U, Schmidt M. Advanced electrolytes. Solid State Ionics, 2002, 148(3-4):391-397
    [100] Aurbach D, Gamolsky K, Markovsky B, et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica Acta, 2002,47(9): 1423-1439
    [101] 庄全超,武山.二次锂离子电池过充保护添加剂.电池工业,2003,8(4):177-179
    [102] Abraham K M, Pasyuariello D M. Overcharge protection for secondary non-aqueous batteries . USP: 4857423,1989-08-15
    [103] Cha C S,Al X P, Yang H X .Polypyridine complexes of iron used as redox shuttles for overcharge protection of secondary lithium batteries. J. Power Sources , 1995,54:255-258
    [104] Adachi M, Tanaka K, Sekai K. Aromatic compounds as redox shuttle additives for 4V class secondary lithium batteries. J. Electrochem. Soc., 1999,146 (4): 1256-1261
    [105] Kerr J B, Tia M. Electrochemical storage cell containing a substituted anisole or di-anisole redox shuttle additive for overcharge protection and suitable for use in liquid organic and solid polymer electrolyte. USP:6045952, 2004-04-04
    [106] 戴 晓 兵 , 傅 人 俊 , 宋 言 李 . 一 种 抗 过 充 锂 离 子 电 池 电 解 液 . CN200310112709 .2,2005-06-29
    [107] 周震涛,严燕.锂离子二次电池过充添加剂保护.CN00117177.1, 2000-11-29
    [108] 陈玉红, 唐致远, 卢星河等.锂离子电池爆炸机理研究.化学进展,2006,18(6):823-831
    [109] Ralph O, Stephan K ,Lutz B. Overcharge protection of nonaqueous rechargeable lithium batteries by cyano-substituted thiophenes as electrolyte additives. US 20040053138,2004-03-18
    [110] Abe K, Matsumori Y, Ueki A. Nonaqueous electrolytic solution and Lithium secondary batteries.EP1361622, 2003-11-12
    [111] Roh K, Park C K, Lee J, et al. Electrolyte composition for Lithium secondary battery having low swelling level at high temperature. WO2004006379, 2004- 01-15
    [112] Kim J H, Lee H Y, Choy S H, et al. Nonaqueous electrolytic solution with improved safety and lithium battery employing the same. US 2004029018, 2004-02-12
    [113] Roh K, Choi J, Lee J. Electrolyte composition for Lithium secondary battery having high overcharge safety.WO2004040687,2004-05-13
    [114] Reimers J N, Way B M. Additives for overcharge protection in non-aqueous rechargeable lithium batteries. US 6074777, 2000-06-13
    [115] Noh H G. Polymer electrolyte composition for improving overcharge safety and lithium battery using the same. US20030152837, 2004-08-14
    [116] 唐致远,陈玉红,卢星河等.锂离子电池安全性的研究.电池,2006,36(1):86-88
    [117] 唐致远,陈玉红,汪亮.锂离子电池过充保护添加剂的研究进展.化工进展,2005,24(12):1368-1372
    [118] Ahn S, Kim Y, Kim K J, et al. Development of high capacity high rate lithium ion batteries utilizing metal fiber conductive additives . J. Power Souses ,1999,8l-82:896-901
    [119] 胡广侠,解晶莹.影响锂离子电池安全性的因素.电化学,2002, 8(3): 245-251
    [120] Kim J S, Prakash J, Selman J R. Thermal Characteristics of LixMn2O4 Spinel . Electrochemical and Solid-State Letters.2001,4(9):A141-A144.
    [121] Spotnitz R, Franklin J. Abuse behavior of high-power lithium-ion cells . J. Power Sources, 2003, 113:81-100
    [122] Tobishima S I , Takei K, Sakurai Y, et al. Lithium ion cell safety . J. Power Sources, 2000, 90:188-195
    [123] Nishi Y . Lithium ion secondary batteries; past 10 years and the future . J. Power Sources, 2001, 100 :101-106
    [124]Yabuuchi N, Ohzuku T. Novel lithium insertion material of LiCo1/ 3Ni1/ 3Mn1/ 3 O2 for advanced lithium-ion batteries. J. Power Sources 2003, 119-121: 171 -174
    [125] Shaju K M, Subba Rao G V, Chowdari B V R. Performance of layered Li(Ni1/3Co1/3 Mn1/3 )O2 as cathode for Li-ion batteries. Electrochimica Acta,2002,48(2),145-151
    [126] Hwang B J,Tsai Y W,Carlier D,et al. A Combined Computational/Experimental Study on LiNi1/3Co1/3Mn1/3O2. Chem. Mater. 2003, 15, 3676-3682
    [127] Belharouak I, Sun Y K, Liu J , et al. Li (Ni1/ 3Co1/ 3Mn1/ 3) O2 as a suitable cathode for high power applications. J .Power Sources, 2003, 123 (2): 247- 252
    [128] Masaki Y, Hideyuki N , Okada T M, et al. Preparation and properties of LiCoy MnxNi1-x-yO2 as a cathode for lithium ion batteries. J. Power Sources, 2000, 90:176 -181
    [129] Zhang Y, Cao H, Zhang J. Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization. Solid State Ionics,2006, 177( 37-38): 3303-3307
    [130] Liu Z L , Yu A S , Lee J Y. Synthesis and characterization of LiNi1-x-yCo xMny O2 as the cathode materials of secondary lithium batteries. J. Power Sources, 1999, 81-82: 416 -419
    [131] Kim J H , Park C W, Sun Y K. Synthesis and electrochemical behavior of Li[Li0.1Ni0.35?x/2CoxMn0.55?x/2]O2 cathode materials .Solid State Ionics, 2003, 164(1-2) :43 -49
    [132] Park S H , Yoon C S , Kang G, et al . Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method. Electrochimica Acta , 2004 ,49(4) : 557 -563
    [133] Tong D G, Lai Q Y, Wei N N. Synthesis of LiCo1/3Ni1/3Mn1/3O2 as a cathode material for lithium ion battery by water-in-oil emulsion method. Materials Chemistry and Physics, 2005, 94(2-3), 423-428
    [134] 韦旎妮,赖琼钰,高媛. 层状正极材料Li[Ni1/3Mn1/3Co1/3]O2的合成及电化学性能研究. 无机化学学报, 2005,2l(7):999-1003
    [135] Delmas C, Pérès J P, Demourgues A, et al . On the behavior of the LixNiO2 system: an electrochemical and structural overview. J. Power Sources, l997,68,120-125
    [136] 张正奇,黄杉生,陈贻文等.分析化学,第二版,北京:科学出版社,2006,507-509.
    [137] 李建刚,万春荣,杨冬平等,放电温度对LiNi3/8Co2/8Mn3/8O2电化学性能的影响.物理化学学报,2003,19(11):1030-1034
    [138] Cao H ,Zhang Y, Zhang J. Synthesis and electrochemical characteristics of layered LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. Solid State Ionics, 2005,176(13-14):1207-1211
    [139] Lu Z H, Dahn J R, Understanding the Anomalous Capacity of Li/Li[NixLi(1/3–2x/3) Mn(2/3–x/3)] O2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies. J.Electrochem. Soc., 2002,149(7):A815-A822
    [140] Kim J S, Johnson C S, Thackeray M M, Layered xLiMO2·(1?x)Li2M’O3 electrodes for lithium batteries: a study of 0.95LiMn0.5Ni0.5O2·0.05Li2TiO3. Electrochemistry Communication,2002,4(3):205-209
    [141] 曹楚南,张鉴清.电化学阻抗谱导论, 北京,科学出版社,2002,146-150.
    [142] Dokko K, Mohamedi M, Fujita Y, et al. Kinetic Characterization of Single Particles of LiCoO2 by AC Impedance and Potential Step Methods . J. Electrochem. Soc., 2001 , 148 (5): A422-A426
    [143] 王占良 唐致远. 一种新型聚合物电解质中离子传递及界面性质研究. 高校化学工程学报,2003,17(3):248-253
    [144] 刘烈炜,赵新强, 聂进. 尖晶石型LiMn2O4电极材料交流阻抗的研究.华中科技大学学报(自然科学版),2002,30(5):108-110
    [145] 吕东生,李伟善. 尖晶石锂锰氧化物锂离子嵌脱过程的交流阻抗谱研究.化学学报,2003,61(2):225-229
    [146] Aurbach D, Gamolsky K, Markovsky B, et al . The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into LixMOy Host Materials (M = Ni, Mn). J .Electrochem. Soc., 2000, 147 (4), 1322-1331.
    [147] Corce F, Nobili F, Deptula A. An electrochemical impedance spectroscopic study of the transport properties of LiNi0.75Co0.25O2.Electrochemistry Communications, 1999, 1(12): 605-608
    [148] 查全性.电极过程动力学导论.北京:科学出版社,2002:84
    [149] Liao L, Wang X Y, Luo X F,et al. Synthesis and electrochemical properties of layered Li[Ni0.333Co0.333Mn0.293Al0.04]O2?zFz cathode materials prepared by the sol-gel method. J. Power Sources, 2006,160 : 657-661
    [150] Kang S H, Amine K. Layered Li(Li0.2Ni0.15+0.5zCo0.10Mn0.55-0.5z)O2zFz cathode materials for Li-ion secondary batteries. J. Power Sources, 2005, 146: 654–657
    [151] 李建刚,万春荣,杨东平等.LiNi3/8Co2/8Mn3/8O2正极材料氟掺杂改性研究.无机材料学报,2004,19(6):1298-1306
    [152] 黄友元,周恒辉, 陈继涛等.Ti、Mg 离子复合掺杂对 LiNi0.4Co0.2Mn 0.4O2 性能的影响.物理化学学报,2005,21(7):725-729
    [153] Park S H, Sung W O, Sun Y K .Synthesis and structural characterization of layered Li[Ni1/3+xCo1/3Mn1/3-2xMox]O2 cathode materials by ultrasonic spray pyrolysis. J. Power Sources, 2005, 146 :622–625
    [154] Liu D T, Wang Z H, Chen L Q. Comparison of structure and electrochemistry of Al- and Fe-doped LiNi1/3Co1/3Mn1/3O2. Electrochimica Acta,2006,25(20): 4199- 4203
    [155] Hu S K, Chou T C, Hwang B J,et al .Effect of Co content on performance of LiAl1/3?xCoxNi1/3Mn1/3O2 compounds for lithium-ion batteries. J. Power Sources, 160(2):1287-1293
    [156] Guo J, Jiao L F, Yuan H T, Effect of structural and electrochemical properties of different Cr-doped contents of Li[Ni1/3Mn1/3Co1/3]O2 . Electrochimica Acta, 2006, 51(28): 6275-6280
    [157] Sun Y C, Xia Y G, Noguchi H. The improved physical and electrochemical performance of LiNi0.35Co0.3?xCrxMn0.35O2 cathode materials by the Cr doping for lithium ion batteries . J. Power Sources, 2006,159(2):1377-1382
    [158] Li D C, Kato K, Kobayakawa K, et al. Preparation and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 coated with metal oxides coating . J. Power Sources, 2006,160(2):1342-1348
    [159] Kim Y, Kim H S, Martin S W, Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries .Electrochimica Acta,2006, 52( 3): 1316-1322
    [160] Cho J, Kim T J, Kim J, et al. Synthesis, Thermal and Electrochemical Properties of AlPO4-Coated LiNi0.8Co0.1Mn0.1O2 Cathode Materials for Li-ion Cell. J. Electrochem. Soc., 2004, 151 (11):A1899-A1904
    [161] Kageyama M, Li D C, Kobayakawa K. Structural and electrochemical properties of LiNi1/3Mn1/3Co1/3O2?xFx prepared by solid state reaction. J. Power Sources, 2006, 157(1): 494-500
    [162] 潘道皑,赵成大等.物质结构(第二版).北京:高等教育出版社,1995,622-626
    [163] Subramanian V, Fey G T K. Preparation and characterization of LiNi0.7Co0.2 Ti0.05 M0.05O2(M=Mg, Al and Zn) systems as cathode materials for lithium batteries. Solid State Ionics, 2002, 148(3-4) :351- 358
    [164] Lu Z H, Beaulieu L Y, Donaberger R A, et al. Synthesis, Structure, andElectrochemical Behavior of Li[NixLi1/3–2x/3Mn2/3–x/3]O2. J. Elctrochem. Soc, 2002, 149(6):A778-A791
    [165] Lee K K, Yoon W S, Kim K B, et al. Characterization of LiNi0.85Co0.10M0.05 (M=Al, Fe) as a cathode material for lithium secondary batteries. J. Power Sources, 2001, 97-98:308-312
    [166] Ganesan M, Sundararajan S, Dhananjeyan M V T, et al. Synthesis and characterization of tetravalent titanium (Ti4+) substituted LiCoO2 for lithium -ion batteries. Materials Science and Engineering, 2006,131 (1-3): 203-209
    [167] Jeong K H, Ha H W, Yun N J, et al. Zr-doped Li[Ni0.5?xMn0.5?xZr2x]O2 (x = 0, 0.025) as cathode material for lithium ion batteries. Electrochimica Acta, 2005, 50(27): 5349–5353
    [168] Liu L, Su G Y, Xiao Q Z, et al. Structural, electrochemical and thermal properties of LiNi0.8?xCo0.2CexO2 as cathode materials for lithium ion batteries . Materials Chemistry and Physics, 2006,100 (2-3):236-240
    [169] Li J G, He X M, Wan C R. Stannum doping of layered LiNi3/8Co2/8Mn3/8O2 cathode materials with high rate capability for Li-ion batteries. J. Power Sources, 2006,158 :524–528
    [170] Kim J, Noh M, Cho J, et al. Controlled Nanoparticle Metal Phosphates (Metal = Al, Fe, Ce, and Sr) Coatings on LiCoO2 Cathode Materials. J. Electrochem. Soc.,2005, 152(6):A1142-A1148
    [171] Cho T H, Parka S M, Yoshioa M, et al. Effect of Synthesis Condition on the Structural and Electrochemical Properties of Li[Ni1/3Mn1/3Co1/3]O2 Prepared by Carbonate Co-precipitation Method. J. Power Sources, 2005, 142:306–312
    [172] Sebastien P, Marca M D. Direct Synthesis of LiNi1/3Mn1/3Co1/3O2 from Nitrate Precursors . Electrochemistry Communications, 2004, 6(8) :767–772
    [173] Paulsen J M, Thomas C L, Dahn J R. O2 Structure Li2/3[Ni1/3Mn2/3]O2: A New Layered Cathode Material for Rechargeable Lithium Batteries. I. Electrochem ical Properties. J. Electrochem. Soc., 2000, 147(3):86l-868
    [174] Saito Y, Takano K, Negishi A. Thermal behaviors of lithium-ion cells during overcharge . J. Power Sources, 2001,97-98:693-696
    [175] 吴宇平,戴晓兵,马军旗等.锂离子电池-应用与实践.北京:化学工业出版社,2004,342~342
    [176] 崔胜云. 有机溶剂中联苯和联三苯的电化学氧化聚合.电化学,2000,6(4): 428-433
    [177] Xiao L F, Ai X P, Cao Y L,et al . Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries . Electrochimica Acta,2004,49(24):4189-4196
    [178] Zhang S S . A review on electrolyte additives for lithium-ion batteries . J. Power Sources ,2006,162 :1379–1394
    [179] Tobishim S, Ogino Y, WatanabeY. Influence of electrolyte additives on safety and cycle life of rechargeable lithium cells. J. Applied Electrochemistry, 2003, 33: 143–150
    [180] Mao H Y, Wainwright D S. Polymerizable additives for making non-aqueous rechargeable lithium batteries safe after overcharge.US 6074776, 2000-06 -13
    [181] Mao H Y. Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries.US 5879834,1999-03-09
    [182] Xiao L F, Ai X P. A composite polymer membrane with reversible overcharge protection mechanism for lithium ion batteries . Electrochemistry Communication , 2005, 7(6):589-592
    [183] Buqa H, Wursig A, Vetter J, et al. SEI film formation on highly crystalline graphitic materials in lithium-ion batteries. J. Power Sources,2006, 153 : 385- 390
    [184] Chen G Y, Karen E. Characterization of an electroactive polymers for overcharge protection in secondary lithium batteries. Electrochimica Acta, 2005,50(24): 4666 -4673.
    [185] Karen E, Thomas A, John N M. Modeling the behavior of electroactive polymers for overcharge protection of lithium batteries. J. Electrochem. Soc., 2004, 151(4): A509-A521.
    [186] Hu Y S, Kong W H, Li H,et al. Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries. Electrochemistry Communications, 2004, 6(2):126-131.
    [187] Brian G D, Morris R S, Steven D. Non-flammable polyphosphonate electrolytes. J. Power Sources, 2004,138( 1-2): 274-276
    [188] Narang S C, Ventura S C, Dougherty B J, et al. Non-flammable self-extinguish electrolytes for barreries.USP:5830600,1998-11-03.
    [189] Stux A M, Barker T . Additives for inhibiting decomposition of lithium salts and electrolytes containing said addictives. USP: 5707760, 1998-06-13.
    [190] Lee J T, Lin Y W, Jan Y S. Allyl ethyl carbonate as an additive for lithium-ionbattery electrolytes. J. Power Sources, 2004,132: 244–248.
    [191] Yao X L, Xie S, Wang Q S, et al. Comparative study of trimethyl phosphate and trimethyl phosphate as electrolyte additives in lithium ion batteries .J. Power Sources, 2005,144 :170-175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700