用户名: 密码: 验证码:
新型稀土—镁基贮氢合金的相结构与电化学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文制备并研究了Ml_(0.90)Mg_(0.10)(NiCoMnAl)_(5x) (x = 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90)、Ml_(1-x)Mg_x(NiCoMnAl)_(3.5) (x = 0.10, 0.20, 0.25, 0.30)和La_(0.60)R_(0.20)Mg_(0.20)(NiCoMn- Al)_(3.5)(R = La, Ce, Pr, Nd)等系列新型稀土–镁基贮氢合金以及AB5–x mass%LaMg_3(x = 0, 2, 3, 5, 6, 8)复合合金的结构和电化学性能,并对复合合金进行了真空蒸发镀覆处理。采用ICP、XRD、SEM-EDX、恒电流充放电、电化学动力学性能测试等方法研究了贮氢合金的微观结构以及电极的充放电特性和动力学性能。通过采用ICP、SEM、XPS等方法研究了循环前后电解液成分、合金电极表面结构和元素化学状态的变化,探索了稀土–镁基贮氢合金性能衰减的机理。同时,研究了稀土–镁基贮氢合金的规模制备技术,以获得的新型稀土–镁基贮氢合金作为负极材料制造了AA型高容量MH/Ni电池,并对电池的主要性能指标进行了测试分析。
     Ml_(0.90)Mg_(0.10)(NiCoMnAl)_(5x)合金的主相均由LaNi_5相和LaNi_3相组成。随着x值的增大,合金电极的最大放电容量从204 mAh/g(x = 0.60)先增加到375 mAh/g(x = 0.70),后减少为343 mAh/g(x = 0.90)。高倍率放电性能受到电极表面电化学反应和合金内部氢扩散的联合控制也表现出先增后减的变化规律。合金电极的低温放电性能和循环稳定性随着化学计量比的提高而增加,当x = 0.90时,合金200周的容量保持率(S200)达到80.7%。在Ml_(1-x)Mg_x(NiCoMnAl)_(3.5)合金中,Rietveld分析结果显示,随着镁含量增大,合金中LaNi_3相的相对含量增加,合金电极的最大放电容量、高倍率放电性能、低温放电性能和荷电保持率则先提高后降低。当x = 0.20时,合金电极具有较高的放电容量(369 mAh/g)和良好的倍率与低温放电性能。然而,随着镁含量的增加,合金的循环稳定性降低。Ce部分取代La后,合金电极的动力学性能、高倍率放电性能和低温放电性能都有显著的提高;Nd取代对合金电极的循环稳定性提高较多,100周的放电容量保持率约提高了13.4%。
     对AB5–x mass%LaMg_3复合合金的研究表明,在烧结温度为1123 K下制备的AB_5–5 mass%LaMg_3合金电极具有较大的放电容量、良好的高倍率和低温放电性能。对该合金进行真空蒸发镀Cu、Al、Ni处理进一步提高了合金电极的高倍率放电性能、低温放电性能和循环稳定性。
     适当降低Mg含量和使用混合稀土代替纯镧可以获得具有较好的综合电化学性能的稀土–镁基贮氢合金,经过配方优化与工艺改进制备的低镁混合稀土型合金Ml_(0.88)Mg_(0.12)(NiMnCoAl)_(3.5)主要是由CaCu_5结构的LaNi_5相和Ce_2Ni_7结构的La_2Ni_7相组成。与商品AB_5型合金相比,该合金具有易活化、容量高(比商品AB_5型合金高出约16%)、高倍率放电性能好、自放电少等优点;然而该合金的循环稳定性尚需要进一步改进。对稀土–镁基贮氢合金衰减机理的初步探讨认为,氢原子反复进出晶格对合金结构的破坏和合金中的La、Mg、Al等元素的严重腐蚀是造成合金性能衰减的主要因素,特别是腐蚀产物在合金表面形成了钝化层,降低了合金电极反应的动力学性能,导致合金的电化学性能降低。
     通过采用Mg–RE(Ni)中间合金代替纯Mg、二次加料、控制熔炼功率与时间等方法减少了Mg的挥发,较好地解决了不同批次合金成分不稳定的问题,制备了符合设计组成的合金,并制定了合理的熔炼、退火工艺和清炉制度。利用获得的新型稀土–镁基贮氢合金,成功制备出AA型2400 mAh的高容量电池。测试表明,电池的放电平台较好,加速寿命与IEC循环寿命均可达到标准要求,电池充电内压不超过3.0 MPa,明显低于商品AB_5合金粉作为负极活性物质的MH/Ni电池,安全性能得到进一步提高。
The alloys Ml_(0.90)Mg_(0.10)(NiCoMnAl)_(5x) (x = 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90), Ml_(1-x)Mg_x(NiCoMnAl)_(3.5) (x = 0.10, 0.20, 0.25, 0.30), La_(0.60)R_(0.20)Mg_(0.20)(NiCoMnAl)_(3.5) (R = La, Ce, Pr, Nd) and AB_(5–x) mass%LaMg_3 (x = 0, 2, 3, 5, 6, 8) composite alloys were prepared and investigated and then the composite alloys were plated by a vacuum evaporation plating method in this paper. ICP, XRD, SEM-EDX, current static charge/discharge and test for kinetics were employed to determine the microstructure, charge/discharge characteristics and electrochemical kinetics properties. The ICP, SEM and XPS methods were used to test the difference in electrolyte composition, structure and elemental chemical state before and after cycling in order to find out the degradation mechanism of Ml–Mg-based alloys. Meanwhile, the techniques for formalization preparation of Ml–Mg-based alloys have been investigated. The properties of the AA-type high-capacity MH/Ni batteries assembled using the Ml–Mg-based alloys as negative electrode materials were tested and analyzed.
     The Ml_(0.90)Mg_(0.10)(NiCoMnAl)_(5x) alloys consist mainly of LaNi_5 phase and LaNi_3 phase. As the stoichiometry increases, the maximum discharge capacity of the alloy electrodes increases from 204 mAh/g (x = 0.60) to 375 mAh/g (x = 0.70) and then decreases to 343 mAh/g (x = 0.90). The high rate dischargeability under the mixed control of surface reaction and bulk diffusion increases and then decreases with increasing x. The low temperature dischargeability and the cycling stability increase as x increses. When x is 0.90, the capacity retention at the 200th cycle (S200) reaches 80.7%. In the Ml1-xMgx- (NiCoMnAl)_(3.5) alloys, Rietveld refinement shows that Mg increases the relative content of LaNi_3 phase, and therefore the maximum discharge capacity, high rate dischargeability, low temperature dischargeability and charge retention increase first and then decrease. When Ml/Mg is 0.80/0.20, the alloy exhibits higher capacity (369 mAh/g) and better kinetics, high rate and low temperature dischargeability. However, the cycling stability is deteriorated with increasing Mg content. The partial substitution of La with Ce improves the kinetics, high rate and low temperature dischargeability; Nd substitution improves the cycling stability, capacity retention rate at the 100th cycle increasing by 13.4%.
     Study on the AB_5–x mass%LaMg_3 composite hydrogen storage alloys shows that the AB5–5 mass%LaMg_3 alloy prepared by sintering at 1123 K has larger discharge capacity and better high rate and low temperature dischargeability. The vacuum evaporation plating of Cu, Al and Ni was performed on the AB5–5 mass%LaMg_3 alloy, and the high rate dischargeability, low temperature dischargeability and cycling stability have been further improved.
     The alloy Ml_(0.88)Mg_(0.12)(NiMnCoAl)_(3.5) with good overall electrochemical properties has been prepared by adopting a properly low Mg content and substituting pure La with La-rich mishmetal. The alloy consists mainly of CaCu5-type LaNi5 phase and Ce2Ni7-type La2Ni7 phase. In comparison with commercial AB5-type alloy, the alloy has some advantages, such as easier to activate, higher discharge capacity (about 16% higher than that of commercial AB5-type alloy), better high rate dischargeability, lower self-discharge rate and so on. However, its cycling stability needs to improve futher. Research on the degradation mechanism of Ml–Mg-based alloys shows that deformation of alloy structure caused by repeated in and out of hydrogen atoms and serious corrosion of La, Mg and Al are the two main reasons to the degradation. Especially, the corrosion substance forms a passivation layer at the surface of alloy particles, deteriorating the kinetics, lowering the electrochemical properties.
     The evaporation of Mg is reduced by adopting the methods of replacing Mg with Mg–RE(Ni) intermetallic alloy, employing special material-adding method and con- trolling melting power and time. The difference in alloy composition between batches has been eliminated. And finally the alloy with required composition has been prepared successfully. And also we have worked out rational parameters for melting and annealing and rational principle for cleaning the furnace. The Ml–Mg-based hydrogen storage alloys we prepared have been used to assemble AA-type 2400 mAh MH/Ni batteries. The measurement shows that batteries have good discharge plateau. The 0.5C charge/ discharge cycle life and IEC cycle life can both meet the requirement. The inner pressure during charge process is no more than 3.0 MPa, lower than that of batteries unsing commercial alloys, and it enhances the safety of the MH/Ni batteries.
引文
1 R. F. Nelson. Power Requirements for Batteries in Hybrid Electric Vehicles. Journal of Power Sources, 2000, 91:2-26
    2 A. Taniguchi, N. Fujioka, M. Ikoma, et al. Development of Nickel/Metal-Hydride Batteries for EVs and HEVs. Journal of Power Sources, 2001, 100:117-124
    3 M. L. Soria, J. Chacón, J. C. Hernández. Metal Hydride Electrodes and Ni/MH Batteries for Automotive High Power Applications. Journal of Power Sources, 2001, 102:97-104
    4 W. K. Hu. Improvement in Capacity of Cobalt-Free Mm-Based Hydrogen Storage Alloys with Good Cycling Stability. Journal of Alloys and Compounds, 2000, 297:206-210
    5 H. G. Pan, J. X. Ma, C. S. Wang, et al. Studies on the Electrochemical Properties of MlNi4.32-x- CoxAl0.7 Hydride Alloy Electrodes. Journal of Alloys and Compounds, 1999, 293-295:648-652
    6 K. Kadir, T. Sakai, I. Uehara. Synthesis and Structure Determination of a New Series of Hydrogen Storage Alloys: RMg2Ni9 (R = La, Ce, Pr, Nd, Sm and Gd) Built from MgNi2 Laves-Type Layers Alternating with AB5 Layers. Journal of Alloys and Compounds, 1997, 257:115-121
    7 K. Kadir, T. Sakai, I. Uehara. Structural Investigation and Hydrogen Capacity of LaMg2Ni9 and (Y0.65Ca0.35)(Mg1.32Ca0.68)Ni9 of the AB2C9 Type Structure. Journal of Alloys and Compounds, 2000, 302:112-117
    8 J. Chen, H. T. Takeshita, H. Tanaka, et al. Hydriding Properties of LaNi3 and CaNi3 and their Substitutes with PuNi3-Structure. Journal of Alloys and Compounds, 2000, 302:304-313
    9 T. Kohno, H. Yoshida, F. Kawashima, et al. Hydrogen Storage Properties of New Ternary System Alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14. Journal of Alloys and Compounds, 2000, 311:L5-L7
    10 T. Mouri, H. Iba. Hydrogen-Absorbing Alloys with a Large Capacity for a New Energy Carrier. Materials Science and Engineering, 2002, A329-331:346-356
    11胡子龙.贮氢材料.北京:化学工业出版社. 2002, 61-62
    12张允什.负极贮氢合金材料.电源技术, 1996, 20(1):36-40
    13廖彬. La–Mg–Ni系AB3型贮氢电极合金的相结构与电化学性能. [浙江大学工学博士论文], 2004:4
    14韩树民. MH/Ni电池AB2型合金及其复合合金负极材料的研究. [燕山大学工学博士论文], 2003:7
    15 M. Kandavel, S. Ramaprabhu. Hydriding Properties of Ti-Substituted Non-Stoichiometric AB2 Alloys. Journal of Alloys and Compounds, 2004, 381:140-150
    16 S. Niyomsoan, P. Termsuksawad, D. L. Olson, et al. The Relationship between the Thermoelectric Power and Phase Structure in AB2 Hydrogen Storage Materials. Materials Science and Engineering A, 2005, 391:264-271
    17 N. Mani, S. Ramaprabhu. Effect of Substitutional Elements on Hydrogen Absorption Properties inZrMnFe0.5Ni0.5 and ZrMnFe0.5Co0.5. International Journal of Hydrogen Energy, 2005, 30:53-67
    18 S. M. Han, Z. Zhang, M. S. Zhao, et al. Electrochemical Characteristics and Mmicrostructure of Zr0.9Ti0.1Ni1.1Mn0.6V0.3–LaNi5 Composite Hydrogen Storage Alloys, International Journal of Hydrogen Energy, 2006, 31:563-567
    19 J. J. Reilly, R. H. Wiswall. The Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4. Journal of Less-Common Metal, 1968, 7:2254-2256
    20朱敏. Mg基储氢合金及其在Ni-MH电池中应用的研究进展.中国科学基金, 2001, 2:83-87
    21 C. Rongeat, L. Roué. On the Cycle Life Improvement of Amorphous MgNi-based Alloy for Ni–MH Batteries. Journal of Alloys and Compounds, 2005, 404-406:679-681
    22 R. Vijay, R. Sundaresan, M. P. Maiya, et al. Characterization of Mg–x wt.% FeTi (x = 5–30) and Mg–40 wt.% FeTiMn Hydrogen Absorbing Materials Prepared by Mechanical Alloying. Journal of Alloys and Compounds, 2004, 384:283-295
    23 A. Gasiorowski, W. Iwasieczko, D. Skoryna, et al. Hydriding Properties of Nanocrystalline Mg2-xMxNi Alloys Synthesized by Mechanical Alloying (M = Mn, Al). Journal of Alloys and Compounds, 2004, 364:283-288
    24 M. Tsukahara, K. Takahashi, T. Mishima, et al. Phase Structure of V-based Solid Solutions Containing Ti and Ni and their Hydrogen Absorption-Desorption Properties. Journal of Alloys and Compounds, 1995, 224:162-167
    25 H. J. Okamoto. Phase Equilibria, 1991, 12:5
    26 B. D. Dunlap, P. J. Viccaro, O. K. Shanoy. Structural Relationships in Rare Earth-Transition Metal Hydrides. Journal of Less-Common Metal, 1980, 74:75
    27兴长策.稀土系PuNi3型La1-xMgxNi3-yMy贮氢合金制备工艺及微观组织结构和电化学性能的研究. [兰州理工大学工学硕士论文], 2004:16-17
    28 M. Latroche, A. Percheron-Guégan. Structural and Thermodynamic Studies of some Hydride Forming RM3-Type Compounds (R = Lanthanide, M = Transition Metal). Journal of Alloys and Compounds, 2003, 356-357:461-468
    29 V. N. Verbetsky, S. N. Klyamkin, A. Y. Kovriga, et al. Hydrogen Interaction with PuNi3 Type Intermetallic Compounds at High Gaseous Pressure. International Journal of Hydrogen Energy, 1996, 21:997-1000
    30 S. A. Lushnikov, S. N. Klyamkin, V. N. Verbetsky. Interaction of RT3 (R = Ce, T = Co, Ni, Fe) Intermetallic Compounds with Hydrogen under High Pressure. Journal of Alloys and Compounds, 2002, 330-332:574-578
    31 J. Kadono, K. Hirano, S. Nishiuchi, et al. Hydrogen Absorbing Characteristics of R–M (R = La, Ce; M= Co, Rh, Ir, Ni, Pd, Pt) Binary Systems. Journal of Alloys and Compounds, 2006, 408-412:327-330
    32 R. Baddour-Hadjean, L. Meyer, J. P. Pereira-Ramos, et al. An Electrochemical Study of New La1-xCexY2Ni9 (0≤x≤1) Hydrogen Storage Alloys. Electrochimica Acta, 2001, 46:2385-2393
    33 K. Kadir, T. Sakai, I. Uehara. Structural Investigation and Hydrogen Capacity of YMg2Ni9 and (Y0.5Ca0.5)(MgCa)Ni9: New Phases in the AB2C9 System Isostructural with LaMg2Ni9. Journal of Alloys and Compounds, 1999, 287:264-270
    34 K. Kadir, N. Kuriyama, T. Sakai, et al. Structural Investigation and Hydrogen Capacity of CaMg2Ni9: a New Phase in the AB2C9 System Isostructural with LaMg2Ni9. Journal of Alloys and Compounds, 1999, 284:145-154
    35 G. Liang, R. Schulz. Phase Structures and Hydrogen Storage Properties of Ca–Mg–Ni Alloys Prepared by Mechanical Alloying. Journal of Alloys and Compounds, 2003, 356-357:612-616
    36 H. G. Pan, Y. F. Liu, M. X. Gao, et al. An Investigation on the Structural and Electrochemical Properties of La0.7Mg0.3(Ni0.85Co0.15)x (x = 3.15–3.80) Hydrogen Storage Electrode Alloys. Journal of Alloys and Compounds, 2003, 351:228-234
    37 H. G. Pan, Y. F. Liu, M. X. Gao, et al. The Structural and Electrochemical Properties of La0.7- Mg0.3(Ni0.85Co0.15)x (x = 3.0–5.0) Hydrogen Storage Alloys, International Journal of Hydrogen Energy, 2003, 28:1219-1228
    38刘永峰,潘洪革,高明霞,等.稀土镁贮氢电极合金的结构与电化学性能的研究.金属学报, 2003, 39(6):666-672
    39 X. D. Wei, Y. N. Liu, G. Yu, et al. Microstructure and Electrochemical Properties of La1?xCaxNi3.2- Co0.3Al0.3 Hydrogen Storage Electrode Alloys. Journal of Alloys and Compounds, 2006, 414: 253-258
    40 H. G. Pan, Y. J. Yue, M. X. Gao, et al. The Effect of Substitution of Zr for La on the Electro- chemical Properties of La0.7?xZrxMg0.3Ni2.45Mn0.1Co0.75Al0.2 Hydrogen Storage Electrode Alloys. Journal of Alloys and Compounds, 2005, 397:269-275
    41罗永春,陈江平,张法亮,等. La3-xYxMgNi14 (x = 0~2)贮氢合金的相结构和电化学性能研究.兰州理工大学学报, 2006, 32(4):20-24
    42 H. G. Pan, Q. W. Jin, M. X. Gao, et al. Effect of the Cerium Content on the Structural and Electro- chemical Properties of the La0.7-xCexMg0.3Ni2.875Mn0.1Co0.525 (x = 0–0.5) Hydrogen Storage Alloys. Journal of Alloys and Compounds, 2004, 373:237-245
    43 X. B. Zhang, D. Z. Sun, W. Y. Yin, et al. Effect of La/Ce Ratio on the Structure and Electro- chemical Characteristics of La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1–0.5) Hydrogen Storage Alloys. Electrochimica Acta, 2005, 50(9):1957-1964
    44 B. Liao, Y. Q. Lei, G. L. Lu, et al, The Electrochemical Properties of LaxMg3-xNi9 (x = 1.0–2.0) Hydrogen Storage Alloys. Journal of Alloys and Compounds, 2003, 356-357:746-749
    45 B. Liao, Y. Q. Lei, L. X. Chen, et al. Effect of the La/Mg Ratio on the Structure and Electro- chemical Properties of LaxMg3-xNi9 (x = 1.6–2.2) Hydrogen Storage Electrode Alloys for Nickel- Metal Hydride Batteries. Journal of Power Sources, 2004, 129:358-367
    46张法亮,罗永春,张永超,等. La–Mg–Ni系A2B7型贮氢合金的结构与电化学性能.中国稀土学报, 2006, 24(5):592-598
    47 M. Li, S. M. Han, Y. Li, et al. Study on the Phase Structure and Electrochemical Properties of RE0.93Mg0.07Ni2.96Co0.60Mn0.37Al0.17 Hydrogen Storage Alloy. Electrochimica Acta, 2006, 51:5926- 5931
    48 Y. Li, S. M. Han, J. H. Li, et al. Study on Phase Structure and Electrochemical Properties of Ml1?xMgxNi2.80Co0.50Mn0.10Al0.10 (x = 0.08, 0.12, 0.20, 0.24, 0.28) Hydrogen Storage Alloys, Electrochimica Acta, 2007, 52:5945-5949
    49 R. Tang, L. Q. Liu, Y. N. Liu, et al. Study on the Microstructure and the Electrochemical Properties of Ml0.7Mg0.2Ni2.8Co0.6 Hydrogen Storage Alloy. International of Hydrogen Energy, 2003, 28(8):815-819
    50 R. Tang, Z. H. Zhang, L. Q. Liu, et al. Study on a Low-Cobalt Ml0.8Mg0.2Ni3.2Co0.3Al0.3 Alloy. International of Hydrogen Energy, 2004, 29(8):851-858
    51 R. Tang, Y. N. Liu, C. C. Zhu, et al. Effect of Mg on the Hydrogen Storage Characteristics of Ml1-xMgxNi2.4Co0.6 (x = 0–0.6) Alloys. Materials Chemistry and Physics, 2006, 95:130-134
    52 T. Kohno, H. Yoshida, M. Kanda. Hydrogen Storage Properties of La(Ni0.9M0.1)3 Alloys. Journal of Alloys and Compounds, 2004, 363:249-252
    53 B. Liao, Y. Q. Lei, L. X. Chen, et al. A Study on the Structure and Electrochemical Properties of La2Mg(Ni0.95M0.05)9 (M = Co, Mn, Fe, Al, Cu, Sn) Hydrogen Storage Electrode Alloys. Journal of Alloys and Compounds, 2004, 376:186-195
    54 Y. H. Zhang, G. Q. Wang, X. P. Dong, et al. Investigation on the Microstructure and Electro- chemical Performances of La2Mg(Ni0.85Co0.15)9Bx (x = 0–0.2) Hydrogen Storage Electrode Alloys Prepared by Casting and Rapid Quenching. Journal of Alloys and Compounds, 2004, 379:298-304
    55 X. B. Zhang, D. Z. Sun, W. Y. Yin, et al. Crystallographic and Electrochemical Characteristics of La0.7Mg0.3Ni3.5-x(Al0.5Mo0.5)x (x = 0–0.8) Hydrogen Storage Alloys. Journal of Power Sources, 2006, 154:290-297
    56 Y. H. Zhang, X. P. Dong, G. Q. Wang, et al. Microstructures and Electrochemical Performances of La2Mg(Ni0.85Co0.15)9Crx (x = 0–0.2) Electrode Alloys Prepared by Casting and Rapid Quenching. Journal of Power Sources, 2005, 144:255-261
    57 Y. H. Zhang, B. W. Li., Y. Cai, et al. Microstructure and Electrochemical Performances of La0.7- Mg0.3Ni2.55?xCo0.45Mx (M = Cu, Cr, Al; x = 0–0.4) Hydrogen Storage Alloys Prepared by Casting and Rapid Quenching, Materials Science and Engineering A. 2007, 458:67-72
    58 Y. F. Liu, H. G. Pan, M. X. Gao, et al. Influences of Ni Addition on the Structures and Electro- chemical Properties of La0.7Mg0.3Ni2.65+xCo0.75Mn0.1 (x = 0.0–0.5) Hydrogen Storage Alloys. Journal of Alloys and Compounds, 2005, 389:281-289
    59 Y. Li, Y. Q. Lei, L. X. Chen, et al. The Structure and Electrochemical Properties of La2MgNix (x = 8.7–9.9) Hydrogen Storage Electrode Alloys. Journal of Alloys and Compounds, 2007, 429:329- 334
    60 B. Liao, Y. Q. Lei, L. X. Chen, et al. Effect of Co Substitution for Ni on the Structural andElectrochemical Properties of La2Mg(Ni1-xCox)9 (x = 0.1–0.5) Hydrogen Storage Electrode Alloys. Electrochimica. Acta, 2004, 50(4):1057-1063
    61 Y. F. Liu, H. G. Pan, M. X. Gao, et al. Investigation on the Characteristics of La0.7Mg0.3Ni2.65- Mn0.1Co0.75+x (x = 0.00–0.85) Metal Hydride Electrode Alloys for Ni/MH Batteries: Part I: Phase Structures and Hydrogen Storage. Journal of Alloys and Compounds, 2005, 387:147-153
    62 Y. F. Liu, H. G. Pan, M. X. Gao, et al. Investigation on the Characteristics of La0.7Mg0.3Ni2.65- Mn0.1Co0.75+x (x = 0.00–0.85) Metal Hydride Electrode Alloys for Ni/MH Batteries Part II: Electrochemical Performances. Journal of Alloys and Compounds, 2005, 388:109-117
    63 Y. F. Liu, H. G. Pan, M. X. Gao, et al. Effect of Co Content on the Structural and Electrochemical Properties of the La0.7Mg0.3Ni3.4-xMn0.1Cox Hydride Alloys: II. Electrochemical Properties. Journal of Alloys and Compounds, 2004, 376:304-313
    64 H. G. Pan, Y. F. Liu, M. X. Gao, et al. Function of Cobalt in the New Type Rare-Earth Mg-Based Hydrogen Storage Electrode Alloys. Intermetallics, 2005, 13:770-777
    65 Y. F. Liu, H. G. Pan, M. X. Gao, et al. The Effect of Mn Substitution for Ni on the Structural and Electrochemical Properties of La0.7Mg0.3Ni2.55-xCo0.45Mnx Hydrogen Storage Electrode Alloys. International of Hydrogen Energy, 2004, 29(3):297-305
    66 Y. F. Liu, H. G. Pan, M. X. Gao, et al. Hydrogen Storage and Electrochemical Properties of the La0.7Mg0.3Ni3.825-xCo0.675Mnx Hydrogen Storage Electrode Alloys. Journal of Alloys and Compounds, 2004, 365:246-252
    67 H. G. Pan, Q. W. Jin, M. X. Gao, et al. An Electrochemical Study of La0.4Ce0.3Mg0.3Ni2.975-x- MnxCo0.525 (x = 0.1–0.4) Hydrogen Storage Alloys. Journal of Alloys and Compounds, 2004, 376: 196-204
    68 Y. F. Liu, H. G. Pan, Y. F. Zhu, et al. Influence of Mn Content on the Structural and Electro- chemical Properties of the La0.7Mg0.3Ni4.25-xCo0.75Mnx Hydrogen Storage Alloys. Materials Science and Engineering A, 2004, 372:163-172
    69 R. V. Denys, B. Riabov, V. A. Yartys, et al. Hydrogen Storage Properties and Structure of La1?xMgx(Ni1?yMny)3 Intermetallics and their Hydrides. Journal of Alloys and Compounds, 2007, 446-447:166-172
    70 Y. H. Zhang, H. P. Ren, B. W. Li, et al. Effect of Rapid Quenching on the Microstructures and Electro- chemical Characteristics of La0.7Mg0.3Ni2.55?xCo0.45Alx (x = 0-0.4) Electrode Alloys. Materials Characterization, 2007, 58:637-644
    71 J. Guo, R. Zhang, W. Q. Jiang, et al. The Effect of Substitution Al for Ni on the Electrochemical Properties of La0.7Mg0.3Ni2.75?xAlxCo0.75 Hydrogen Storage Alloys. Journal of Alloys and Compounds, 2007, 429:348-351
    72 Y. F. Liu, H. G. Pan, Y. F. Zhu, et al. Influence of Mn Content on the Structural and Electro- chemical Properties of the La0.7Mg0.3Ni4.25-xCo0.75Mnx Hydrogen Storage Alloys. Materials Science and Engineering A, 2004, 372:163-172
    73 B. Liao, Y. Q. Lei, L. X. Chen, et al. The Effect of Al Substitution for Ni on the Structure and Electrochemical Properties of AB3-type La2Mg(Ni1-xAlx)9 (x = 0–0.05) Alloys. Journal of Alloys and Compounds, 2005, 404-406:665-668
    74 H. G. Pan, Y. F. Liu, M. X. Gao, et al. A Study on the Effect of Annealing Treatment on the Electrochemical Properties of La0.67Mg0.33Ni2.5Co0.5 Alloy Electrodes. International Journal of Hydrogen Energy, 2003, 28(1):113-117
    75刘永锋,金勤伟,高明霞,等.热处理对La0.7Mg0.3Ni2.8Co0.5贮氢合金电化学性能的影响.稀有金属材料与工程, 2003, 32(11):942-945
    76陈江平,罗永春,张法亮,等.退火处理对La1.5Mg0.5Ni7.0贮氢合金相结构和电化学性能的影响.稀有金属材料与工程, 2006, 35(10):1572-1576
    77 Y. H. Zhang, B. W. Li, Y. Cai, et al. Microstructure and Electrochemical Performances of La0.7Mg0.3Ni2.55?xCo0.45Mx (M = Cu, Cr, Al; x = 0–0.4) Hydrogen Storage Alloys Prepared by Casting and Rapid Quenching. Materials Science and Engineering A, 2007, 458:67-72
    78张羊换,任慧平,李保卫,等. La0.7Mg0.3Ni2.55-xCo0.45Alx (x = 0–0.4)贮氢合金的循环稳定性.中国有色金属学报, 2006, 16(8):1320-1325
    79朱春玲,阎汝煦,王大辉,等.表面包覆镍处理La0.67Mg0.33Ni2.5Co0.5贮氢合金电极的电化学性能.稀有金属材料与工程, 2006, 35(4):573-576
    80毛丽荣.表面处理对R–Mg–Ni基贮氢合金电化学性能的影响. [燕山大学工学硕士学位论文], 2006:9
    81韩树民,赵敏寿,吴来磊,等. MH/Ni电池复合贮氢合金负极材料的研究进展.材料导报, 2004, 11(18):22-25
    82 R. Vijay, R. Sundaresan, M. P. Maiya, et al. Application of Mg–x wt.% MmNi5 (x = 10–70) Nano- structured Composites in a Hydrogen Storage Device. International Journal of Hydrogen Energy, 2007, 32:2390-2399
    83刘开宇,张伟,苏耿,等.球磨时间对LaNi5–CNTs复合材料的影响.电池, 2006, 36(3):208- 209
    84 C. Iwakura, H. Inou, S. Nohara, et al. Effects of Surface and Bulk Modification on Electro- chemical and Physicochemical Characteristics of MgNi Alloys. Journal of Alloys and Compounds, 2002, 330-332:636-639
    85王大辉,徐广胜,罗永春,等. Ti0.25V0.3Cr0.4Mn0.05–La0.67Mg0.33Ni3.0的复合贮氢材料制备及贮氢性能研究.兰州理工大学学报, 2006, 32(6):20-23
    86 S. M. Lee, H. Lee, J. S. Yu, et al. The Activation Characteristics of a Zr-based Hydrogen Alloy Electrode Surface-Modified by Ball-Milling Process. Journal of Alloys and Compounds, 1999, 292:258-265
    87 W. K. Choi, T. Tanaka, R. Miyauchi, et al. Electrochemical and Structural Characteristics of TiV2.1Ni0.3 Surface-Modified by Ball-Milling with MgNi. Journal of Alloys and Compounds, 2000, 299:141-147
    88韩树民,赵敏寿,吴耀明,等.利用球磨制备AB2–AB5复合贮氢合金及其电极性能和微观结构研究.无机化学学报, 2003, 19(3):262-266
    89 M. Kandavel, S. Ramaprabhu. Correlation between Hydrogen Storage Properties and Amount of Alloy Particles in Mg-based Composites. Journal of Alloys and Compounds, 2007, 438:285-292
    90 H. L. Chu, Y. Zhang, L. X. Sun, et al. Structure, Morphology and Hydrogen Storage Properties of Composites Prepared by Ball Milling Ti0.9Zr0.2Mn1.5Cr0.3V0.3 with La–Mg-based Alloy. International Journal of Hydrogen Energy, 2007, in press
    91赵强,薛建伟,杜志刚,等. LaNi5+TiFe0.9Mn0.1合金的贮氢性能.太原理工大学学报, 2005, 36(5):606-608
    92 J. Balej. Determination of the Oxygen and Hydrogen Over-voltage in Concentrated Alkali Hydroxide Solutions. International Journal of Hydrogen Energy, 1985, 10:365-374
    93 E. Raekelboom, F. Cuevas, B. Knosp, et al. Influence of the Stoichiometry on the H-Desorption Rates Measured in Solid–Gas Phase and Electrochemical Cell for Air-Exposed LaNi5+x-type Alloys. Journal of Alloys and Compounds, 2005, 404-406:347-350
    94 E. Raekelboom, F. Cuevas, B. Knosp, et al. Influence of Cobalt and Manganese Content on the Dehydrogenation Capacity and Kinetics of Air-Exposed LaNi5+x-type Alloys in Solid Gas and Electrochemical Reactions. Journal of Power Sources, 2007, 170:520-526
    95 D. Lupu, A. Radu Biris, A. Sorin Biris, et al. Cobalt-free Over-stoichiometric Laves Phase Alloys for Ni–MH Batteries. Journal of Alloys and Compounds, 2003, 350:319-323
    96 M. Kandavel, S. Ramaprabhu. Hydriding Properties of Ti-substituted Non-stoichiometric AB2 Alloys. Journal of Alloys and Compounds, 2004, 381:140-150
    97 C. Iwakura, T. Oura, H. Inoue, et al. Effects of Substitution with Foreign Metals on the Crystallographic, Thermodynamic and Electrochemical Properties of AB5-Type Hydrogen Storage Alloys. Electrochimica Acta, 1996, 41:117-121
    98赵敏寿,孙长英. MH-Ni电池负极材料. 2002年材料科学与工程进展(上册),北京:冶金工业出版社, 2003, 832-835
    99 N. Kuriyama, T. Sakai, H. Miyamura, et al. Electrochemical Impedance and Deterioration Behavior of Metal Hydride Electrodes. Journal of Alloys and Compounds, 1993, 202:183-197
    100李全安,桑革,李建文,等.非化学计量比贮氢合金Ml(Ni0.71Co0.15Al0.06Mn0.08)x的电化学性能.中国有色金属学报, 2000, 10(5):659-662
    101马建新,潘洪革,田清华,等.热处理对AB5型MlNi0.36Co0.85Mn0.40Al0.15贮氢电极合金的微结构和电化学性能的影响.中国有色金属学报, 2001, 11(4):587-592
    102 E. Akiba, H. Hayakawa, T. Kohno. Crystal Structure of Novel La–Mg–Ni Hydrogen Absorbing Alloys. Journal of Alloys and Compounds, 2006, 408-412:280-283
    103 H. Fukuda, H. Fujii, Y. Matsumoto, et al. Anomalous Behavior of Physical Properties in RMg2Ni9 (R = Ce and Pr) with a Two-Dimensional Rare Earth Arrangement. Physica B, 1999, 259-261: 894-895
    104 I. R. Harris, R. C. Mansey, G. V. Raynor. Rare Earth Intermediate Phases III. The Cubic Laves Phases Formed with Aluminium and Cobalt. Journal of Less-Common Metal, 1965, 9(4):270-280
    105李全安,桑革,陈云贵,等. Ce含量对贮氢合金及其电极特性的影响.稀有金属材料与工程, 2001, 30(1):54-57
    106 H. Ye, B. J. Xia, W. Q. Wu, et al. Effect of Rare Earth Composition on the High-Rate Capability and Low Temperature Capacity of AB5-Type Hydrogen Storage Alloys. Journal of Power Sources, 2002, 111:145-151
    107 L. O. Val?en, A. Zaluska, L. Zaluski, et al. Structure and Related Properties of (La,Ce,Nd,Pr)Ni5 Alloys. Journal of Alloys and Compounds, 2000, 306:235-244
    108 T. B. Atwater, P. J. Cygan, F. C. Leung. Man Portable Power Needs of the 21st Century I. Applications for the Dismounted Soldier. II. Enhanced Capabilities through the Use of Hybrid Power Sources. Journal of Power Sources, 2000, 91:27-36
    109 C. Iwakura. Influence of Temperature on Discharge Process of Misch Metal-Based Storage Alloy Electrode. EIectrochemistry, 2002, 70(1):2-7
    110陶明大,陈云贵,付春艳,等.稀土组元对AB5型无钕贮氢合金低温性能的影响.功能材料, 2004, 35:1915-1918
    111邓志荣.影响MH-Ni电池自放电因素的探讨.江西冶金, 2003, 23(6):137-139
    112李全安,陈云贵,涂铭旌,等.高性能贮氢合金电极的成分设计.电源技术, 2000, 24(4):246- 250
    113 V. A. Yartys, A. B. Riabov, R. V. Denys, et al. Novel Intermetallic Hydrides. Journal of Alloys and Compounds, 2006, 408-412:273-279
    114江建军,雷永泉,孙大林,等. La、Ce、Nd和Pr对RE(NiCoMnTi)5贮氢合金电化学性能的作用机理.中国稀土学报, 1997, (4):318-324
    115马志鸿,雷永泉,陈立新,等.热处理对Ml(NiCoMnAl)4.76合金的电化学性能的影响.稀有金属材料与工程, 2000, 29(4):255-257
    116潘洪革,陈昀,陈长聘,等.用含KBH4碱液处理改善MlNi3.7Co0.6Mn0.4Al0.3贮氢合金电极的动力学性能.金属学报, 1999, 35(3):300-305
    117 C. Iwakura, I. Kim, N. Matsui, et al. Surface Modification of Laves-Phase ZrV0.5Mn0.5Ni Alloy Electrodes with an Alkaline Solution Containing Potassium Borohydride as a Reducing Agent. Electrochimica Acta, 1995, 40:561-566
    118 C. Iwakura, M. Matsuoka, K. Asai, et al. Surface Modification of Metal Hydride Negative Electrodes and their Charge/Discharge Performance. Journal of Power Sources, 1992, 38:335-343
    119文振环,李国勋,黄爱琴,等.微包覆铜贮氢合金电极研究.电源技术, 1995, 19(3):24-27
    120 M. Raju, K. Manimaran, M. V. Ananth, et al. An EIS Study on the Capacity Fades in MmNi3.6- Al0.4Mn0.3Co0.7 Metal-Hydride Electrodes. International Journal of Hydrogen Energy, 2007, 32: 1721-1727
    121 M. Ayari, V. Paul-Boncour, J. Lamloumi, et al. Decomposition of the LaNi3.55Mn0.4Al0.3Fe0.75Compound upon Electrochemical Cycling Studied by Magnetic Properties. Journal of Alloys and Compounds, 2003, 356-357:133-136
    122 Z. Dehouche, R. Djaozandry, J. Goyette, et al. Evaluation Techniques of Cycling Effect on Thermodynamic and Crystal Structure Properties of Mg2Ni Alloy. Journal of Alloys and Compounds, 1999, 288:269-276
    123 C. Rongeat, M.-H. Grosjean, S. Ruggeri, et al. Evaluation of Different Approaches for Improving the Cycle Life of MgNi-based Electrodes for Ni-MH Batteries. Journal of Power Sources, 2006, 158:747-753
    124 J. S. Yu, S. M. Lee, K. Cho, et al. The Cycle Life of Ti0.8Zr0.2V0.5Mn0.5-xCrxNi0.8 (x = 0 to 0.5) Alloys to Metal Hydride Electrodes of Ni-Metal Hydride Rechargeable Battery. Journal of Electrochemistry Society, 2000, 147:2013-2017
    125 F. Maurel, P. Leblanc, B. Knosp, et al. Effect of Yttrium on the Corrosion of AB5-type Alloys for Nickel-Metal Hydride Batteries. Journal of Alloys and Compounds, 2000, 309:88-94
    126 Y. Nakamura, H. Nakamura, S. Fujitani, et al. Homogenizing Behaviour in a Hydrogen- Absorbing LaNi4.55Al0.45 Alloy through Annealing and Rapid Quenching. Journal of Alloys and Compounds, 1994, 210:299-303
    127 F. L. Zhang, Y. C. Luo, J. P. Chen, et al. Effect of Annealing Treatment on Structure and Electro- chemical Properties of La0.67Mg0.33Ni2.5Co0.5 Alloy Electrodes. Journal of Power Sources, 2005, 150:247-254
    128张羊换,董小平,王国清,等.铸态及快淬态La2Mg(Ni0.85Co0.15)9Crx (x = 0~0.2)电极合金的微观结构及电化学性能.稀有金属材料与工程, 2006, 35(6):876-879
    129 B. Z. Liu, Y. M. Wu, L. M. Wang. Kinetic and Electrochemical Properties of Icosahedral Quasi- crystalline Ti45Zr35Ni17Cu3 Powder. International Journal of Hydrogen Energy, 2006, 31:1394- 1400
    130 M. Krishna Kumar, S. Ramaprabhu. Hydrogen Absorption Characteristics in MmxTb1?xCo2 (x = 0, 0.05, 0.1, 0.15, 0.2). International Journal of Hydrogen Energy, 2007, 32:1890-1897

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700