用户名: 密码: 验证码:
锂离子电池界面反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池的界面反应包括锂离子的嵌脱,电解液的分解,和固体电解质界面膜(Solid electrolyte interphase,SEI)的形成等过程。这些界面反应对电池的循环性能、寿命、化学和物理稳定性、以及不可逆容量有重要的影响,是锂离子电池的研究热点之一。目前,随着各种新型电极材料的开发以及对原有电极材料的改性、修饰和惨杂,使得研究这些新型电极材料的界面反应变得十分必要。此外,关于研究锂离子电池的界面反应也有助于发展和建立相关的非水电解质理论和模型。本论文主要集中在对锂离子电池界面的研究,通过显微傅里叶变换红外光谱,(Microscope FTIRS reflection spectroscopy,MFTIRS),电化学石英晶体微天平(Electrochemical quartz crystal microbalance,EQCM),x射线光电子能谱(X-ray photoelectron spectroscopy,XPS),和飞行时间二次离子质谱(Time-of-flight secondary ion mass spectrometry,ToF-SIMS)系统、深入地研究了Sn负极,Sn-Co合金负极(原子比约为2:1),石墨负极,Cr_2O_3负极,Cr_2S_3负极和V_2O_5正极材料的界面反应和过程。通过FTIRS和XPS这两种灵敏的表面分析技术,可以非原位地检测电化学循环后电极材料的变化和指认SEI的化学组份。原位FTIRS主要用于电极极化时电解液的分解、SEI膜形的成和Li离子的嵌脱等过程。EQCM通过记录单位电荷转移引起电极上纳克级的质量变化,原位地跟踪充放时电极材料发生的不同的电化学过程。ToF-SISM通过记录不同剥离时间的碎片离子强度,对嵌脱锂后电极材料进行深度组份分布分析,从而研究Li离子在固相材料的嵌脱、扩散过程。
     本论文重点探讨了在充放电过程中,SEI膜的化学组份和变化,以及Li离子在不同电极材料上嵌脱过程和机制。首次实现了运用原位红外光谱通过溶剂化/去溶剂化效应表征Li离子的嵌脱过程,并将研究从红外光反射率较高金属电极扩展到反射率较低的粉末材料电极。主要研究结论如下:
     1.通过电镀的方法制备Sn,Sn-Co合金负极。对Sn负极的循环伏安研究表明,当电位正向、负向扫描时,在1.40-1.10V电位区间都能观察到电解液还原的不可逆电流峰,归因于当电位正向扫描时,Li离子与Sn负极去合金化过程所引起的Sn薄膜体积变化,导致SEI破碎脱离,新鲜的Sn暴露在电解液中,从而使得电解液在此电位区间继续还原。在经过第一周循环后,在Sn-Co电极上锂离子的合金化/去合金化的电流峰位与Sn电极上相似,表明在经过电化学循环后Sn、Co原子排列发生了改变,导致部分Sn聚集发生。Sn-Co合金负极上更好的电化学性能证实加入Co惰性组份有利益缓冲在合金化/去合金化过程中体积变化,进而改善其电化学性能。
     2.运用MFTIRS和EQCM原位技术,研究了锡薄膜负极在1M LiPF_6/EC+DMC电解液中的界面反应。EQCM研究表明,在电解液分解的电位区间,mpe(1摩尔电子转移所引起的电极上物种质量的改变)小于其理论数值。这是因为部分固体还原产物溶解在电解液而不参与SEI的形成,和在电解液还原前一些溶剂分子吸附在Sn电极,并作为电解液还原的前置步骤。然而在Li离子与Sn负极合金/去合金的电位区间,mpe数值大于理论值(6.9g·mol~(-1)),对应于Li离子的合金化使得Sn薄膜的体积膨胀,导致在高电位形成的SEI膜破裂,使得SEI膜在低电位继续生成。
     在电位阴极极化过程中,Li离子与Sn负极合金化,原位显微红外光谱给出正向和负向的红外吸收峰。在阳极极化过程时,去合金化过程发生,原位红外光谱在相同的波数给出与阴极极化谱峰方向相反的红外吸收峰,表明电解液薄层中物种在合金化/去合金化过程中发生可逆的变化。Li离子在电解液中是以溶剂化的形式存在(Li(sol)_n~+),合金化时,Li离子首先是从Li(sol)_n~+去溶剂化,然后与Sn电极反应,这会导致薄层溶液中自由的溶剂分子(sol:EC,DMC)的增加,而Li(sol)_n~+减少。同时由于Li(sol)_n~+中Li~+…C=O间的相互作用,使得Li(sol)_n~+中C=O键相对于sol中的C=O被减弱,C=O的非对称伸缩振动频率相对于自由溶剂分子发生红移动。然而Li(sol)_n~+中的C-O,C-H键被加强。因此在Li离子与Sn合金化/去合金化过程中,相应物种浓度以及红外吸收峰位置的变化,是原位红外光谱给出正向、负向谱峰的原因,同时也为原位红光谱检测Li离子嵌脱过程(Sn电极上为合金化/去合金过程)提供了基础。基于对Sn电极上原位红外光谱的分析,我们首次提出运用红外光谱对锂离子嵌入脱出过程进行表征。而此前原位外原位光谱常常仅用于电解液的分解和SEI薄膜的形成过程研究。为了证实上述分析,我们采用透射红外光谱研究含有不同LiPF_6浓度的电解液(xMLiPF_6/EC+DMC)来模拟Li离子嵌脱过程时的溶剂化效应,得到了与原位红外相似的光谱特征和变化。同时在不能和Li离子合金化的Cu惰性电极上,没有观察到相关的红外谱峰的变化。原位红外光谱研究还发现:循环伏安曲线上在1.1-1.4V出现的电流峰是由于电解液的还原引起。在这个电位区间,阳极极化和阴极极化的红外吸收峰在相同的波数给出相同方向的谱峰,这表明电解液还原反应的不可逆。原位MFTIRS研究证实是溶剂化的分子,而不是自由的溶剂分子在电极表面还原,其还原产物为ROCO_2Li。
     3.基于Sn电极上原位红外光谱,我们采用MFTIRS对较为复杂的Sn-Co合金以及石墨膜负极在1 M LiPF_6/EC+DMC界面性能进行研究。在Sn-Co负极上Li离子的合金化/合金化过程中,原位MFTIRS给出了与Sn电极上相似的结果。即:在合金化/去合金化过程中,Li离子可逆的去溶剂/溶剂化导致溶剂和Li(sol)_n~+在薄层中浓度的变化,以及相关的红外吸收峰发生位移。我们用旋转套膜的方法制备了具有较高红外反射率的石墨薄膜电极,以获得具有较好信噪比的原位MFTIRS光谱。由于在石墨电极上,电解液的还原和Li离子的嵌入过程的电位区间有所重叠,因此原位红外光谱给出的红外吸收峰通常被归属于电解液还原和SEI膜形成过程。然而,我们的结果表明,红外光谱的变化主要是由于Li离子的嵌脱过程引起,在石墨电极上电解液的还原过程很难被观测到。与Sn电极上相比较不同的是,其原位红外谱峰的强度变小,且PF_6~(-1)吸收峰的变化规律不明显,这与石墨负极表面较大的粗糙度和和较低的反射率有关。
     电化学阻抗谱的研究结果表明,在循环过的Sn-Co合金和石墨负极上都形了一层SEI膜。在密闭条件下,非原位MFTIRS检测SEI膜的主要化学组成是ROCO_2Li。同时也能观察到残留在电极表面电解液的红外吸收峰(主要是EC分子)。
     4.由于与Li离子的发生还原时还原电位较低,Cr_2O_3被认为一种很有前途的锂离子电池的负极材料。我们通过热处理方法在Cr金属上生长一层Cr_2O_3薄膜,并研究其在1 MLiClO_4/PC中的电化学性能和界面反应。将Cr_2O_3薄膜厚度控制在纳米尺度范围,是为了减少Li离子嵌脱时的体积效应,以提高其电化学性能,也为了方便对Li离子嵌脱过程的机理进行研究。
     循环伏安研究表明,在首次电位负向扫描时,电解液在1.1 V开始分解,在0.59V给出阴极电流峰。Li离子与Cr_2O_3薄膜负极的嵌脱电流峰出现在0.02 V(负向扫描)和1.27 V(正向扫描)。充放电实验表明初始放电容量大于其理论容量,初始不可逆容量是首次放电容量的70%,主要归因于电解液的分解导致。由于Cr_2O_3薄膜的厚度为纳米级厚度,电解液还原是初始不不可逆容量的主要因素。从第二周到第十周,其充放电容量稳定在460 mAh·g~(-1)左右。
     XPS和PM-IRRAS研究表明经过电化学循环的Cr_2O_3电极形成了一层较厚的SEI膜。SEI膜的化学组份为Li_2CO_3,且比较稳定,但其厚度或者密度在充放电过程中会变化。嵌Li过程时,Cr_2O_3的体积膨胀,导致SEI薄膜裂缝,使电解液继续分解,增加Li_2CO_3的量。脱Li时Cr_2O_3薄膜体积收缩,产生的应力使得SEI上部分Li_2CO_3脱落,从而减小其厚度。
     由于电化学循环后Cr_2O_3薄膜被一层较厚的SEI膜覆盖,通过IR和XPS不能给出关于Li离子与Cr_2O_3反应过程的信息,因此我们采用ToF-SIMS对其进行深度组份分析。ToF-SIMS结果证实了由Li离子的嵌脱过程所导致Cr_2O_3薄膜的体积变化,和Li离子在Cr_2O_3薄膜电极上的嵌脱过程受到限制(即使是纳米级厚度)。研究表明,在嵌Li后的Cr_2O_3薄膜电极上,Cr_2O_3外层(与电解液接触)和内层(与Cr金属基底接触)的化学组份不同,外层主要是由Li_2O和微量的Cr组成,说明外层Cr_2O_3能够与Li完全反应,内层由Cr_2O_3,Cr的低价氧化物和Li_2O组成,这说明内层Cr_2O_3不能和Li完全反应。在内外层之间,有一层由Cr金属(Li与Cr_2O_3反应生成)形成的致密的阻隔层,阻止了Li离子向内层扩散。
     5、Cr_2S_3的密度比Cr_2O_3小,这可能减小Li离子嵌脱过程中引起的体积变化效应。我们通过在H_2S气氛中热处理Cr金属,制备了Cr_2S_3薄膜材料,并首次用于锂离子电池负极材料的研究。在研究其在1 M LiClO_4/PC电解液中的电化学性能和界面反应中发现,首次电位负向扫描过程中,当电位低于0.85 V时候,给出阴极电流,在随后的电位负向扫描中,这个电位提高至1.12 V并在大约0.6 V给出一个电流峰。阴极电流峰主要对应于Li离子嵌入。在电位正向扫描的过程中,一个较宽的电流峰出现在2.0 V左右,对应于Li从Li_2S中脱出。阴极和阳极电流峰的强度随扫描圈数增加而减少,指认为在循环过程中一些活性物质从电极上脱离引起。在Cr_2S_3薄膜电极上,没有观察到电解液的不可逆还原峰,这有助于降低Cr_2S_3电极上的不可逆容量。
     XPS研究发现,电化学循环后的Cr_2S_3被SEI膜覆盖,其主要组份是Li_2CO_3,但厚度比电化学循环后的Cr_2O_3上的SEI膜薄,因为在循环后的Cr_2S_3薄膜能检测到Cr的XPS信号,而在循环后的Cr_2O_3却不能检测到Cr的信号。电化学循环后的Cr_2S_3电极上,S的XPS信号衰减,主要由以下两个原因导致:1.部分Cr_2S_3颗粒在电化学循环过程中脱落;2.表面被SEI膜覆盖。XPS研究同时指出,Cr_2O_3经过电化学循环后部分Cr~(3+)转换为Cr~(2+),说明Li不能完全脱出。
     6、制备了纳米结构V_2O_5正极薄膜材料,并研究了其在1 M LiClO_4/PC电解液中的电化学性能和界面反应。当在2.8 V到3.8 V的电位区间扫描时,循环伏安曲线在3.39,3.42,3.18,3.22 V给出两对稳定的阴极/阳极峰,说明Li离子此电位区间的嵌脱是一个可逆的过程。在电化学循环后V_2O_5电极上,XPS只能观察到两种价态的V氧化物(V~(5+)和V~(4+))。随着扫描周数的增加,V~(4+)的比例提高,对应部分V~(5+)还原到V~(4+)。对于没经过电化学循环V_2O_5材料,V~(5+)所占的比例为94%,经过1个循环后,V~(5+)下降到90.1%。15周循环后,这一比例下降到83.3%。XPS和红外研究结果表明SEI膜的主要Li_2CO_3组成。V_2O_5材料上SEI膜的厚度远小于Cr_2O_3上SEI膜的厚度。而且其形成也较为困难,因为在循环1周后,XPS和EIS都很难检测到SEI膜的存在。
     本论文的研究工作,对深入认识锂离子电池的界面反应,发展相关的非水电解质理论具有重要的基础理论意义和应用价值。本论文首次提出并实现了原位红外光谱研究表征锂离子的嵌脱过程,并将这种方法由红外光反射率较高金属电极扩展到反射率较低的粉末材料电极。本论文还运用XPS和ToF-SISM对Cr_2O_3电极上SEI膜的形成变化及Li离子的嵌脱过程进行了研究,这对深化认识当前被广泛研究的氧化物负极的界面过程和进一步提高其性能具有指导意义。
The interfacial reactions are the key issues that relate to cycling ability, lifetime,chemical and physical stability, and irreversible capacity of a lithium ion battery (LIB). Inaddition, studies of interfaces of LIB are of significance in revealing the structure ofnonaqueous interfaces and developing relevant models and theories. The main scope of thisdissertation is developing an approach to use FTIRS (in situ, ex situ), EQCM, XPS, andToF-SIMS to investigate the interfacial reactions of LIB. We have tried to investigate theinterfaces of Sn, Sn-Co alloy, graphite, Cr_2O_3 and Cr_2S_3 anodes as well as V_2O_5 cathode. Themain experiments and results are given follow:
     1.Sn and Sn-Co alloy anodes were prepared by electroplating. The betterelectrochemical performance on Sn-Co alloy than Sri anode confirms that inactive Cocomponent can buffer against volume change of Sn component during the alloying/dealloyingprocess.
     2. The interfacial reactions of Sn thin film anode in 1 M LiPF_6/EC+DMC were in situinvestigated by MFTIRS and EQCM. When electrolyte is reduced, the measured massaccumulated per mole of electrons (mpe) values are smaller to the theoretical ones. However,in alloying/dealloying process, the measured mpe values are higher than the theoretical values.The lithiation/delithiation process was characterized by MFTIRS through the desolvation/solvation effect. The solvation/desolvation effect varies the concentration free solvent (sol:EC, DMC) and solvated solvent (Li(sol)_n~+) as well as causes the shifts of IR bands (C=O, C-O,C-H). In situ MFTIRS studies revealed that Li(sol)_n~+ species rather than free solvent wasreduced on Sn anode, and the reductive products of electrolyte are ROCO_2Li.
     3. The interfacial properties of Sn-Co alloy and graphite film anodes in 1 MLiPF_6/EC+DMC were investigated by using in situ and ex situ MFTIRS. In situ MFTIRSresults on Sn-Co alloy anode confirm that FTIRS is efficient to characterize thelithiation/delithiation process through desolvation/solvation effects. Taking the advantage ofgraphite thin film electrode with a high IR reflectivity which is prepared by spin coating, insitu IR spectra with an excellent signal-to-noise ratio are obtained. As the potential regions of electrolyte reduction and lithiation processes overlap partly on graphite anode, the change ofin situ IR spectra is frequently described to reduction of electrolyte and formation of SEI layer,rather than lithiation process. However, our in situ IR results suggest the variations of spectraare caused by the intercalation process. EIS studies confirm that the SEI layer is formed on acycled Sn-Co and graphite anodes, and ex situ MFTIRS determines that the layer consists ofROCO_2Li.
     3. Cr_2O_3 thin films grown by thermal oxidation of Cr metal were investigated as anodematerial for LIB in 1 M LiClO_4/PC. The initial capacity is larger than the theoretical capacitybecause of the decomposition of electrolyte. The stable charge/discharge capacity of460 mAh·g~(-1) was obtained in the 3~(rd)-10~(th) cycles. XPS and PM-IRRAS reveal the maincomposition of SEI layer is Li_2CO_3. This chemical composition is stable but there arevariations of the surface contents during the conversion/deconversion process. The volumeexpansion on the lithiated sample, evidenced by ToF-SIMS, presumably generates cracks inthe SEI layer that are filled by the immediate decomposition of electrolyte, thus increasing thesurface content in Li_2CO_3. The volume shrink of the delithiated oxide, also evidenced byToF-SIMS, is thought to generate the loss of fragments of the SEI layer due to compressivestress. ToF-SINS results demonstrate that the conversion/ deconverson processes of Li withCr_2O_3 are limited, most likely by mass transport, even for ultra-thin films.
     4. Cr_2S_3 film grown by thermal treatment of Cr metal under H_2S atmosphere was testedas an anode material for LIB for the first time. The intensities of both cathodic and anodiccurrent peaks in CV curves are declined with increasing cycling number, which is partly dueto the exfoliation of active species. The strong irreversible cathodic peak, assigned to thereductive electrolyte decomposition, is not observed on Cr_2S_3 film. XPS studies indicate thatthe main composition of the SEI layer is Li_2CO_3 species, and its thickness is thinner than thatof cycled Cr_2O_3 anode. The XPS signal of S2p on the cycled sample is dramatically attenuatedfor the following two reasons: 1 .part of Cr_2S_3 particles are exfoliated from the sulfide film; 2.the surface is covered by SEI layer. The XPS studies suggest that Li is trapped and thevalence of Cr decreases for 3+ to 2+ after the electrochemical cycles.
     5. Interfacial reactions on nanostructured V_2O_5 thin film cathode were ex situinvestigated by utilization of the XPS technique. The CV results evidence that Li intercalation is quasi reversible in this range of potential 2.8-3.8 V. With the increasing of cycle number,the change of the V2p_(3/2) core level peak results from the decrease of the higher bindingenergy peak at 517.9 eV (V~(5+))and the increase of the lower binding energy peak at 516.5 eV(V~(4+)), which is due to the partial reduction of V from 5+ into 4+. This proportion decrease ofV~(5+) and V~(4+) reveals that Li is trapped in the oxide film. XPS and PM-IRRAS of V_2O_5 thinafter 15 charge-discharge cycles in 1 M LiClO_4/PC suggest the SEI layer consist of mainlyLi_2CO_3 species. However the formation of SEI is not as easy as on Cr_2O_3 anode, for both XPSand EIS do not detect the formation of SEI layer after 1 CV cycle.
     The results of this dissertation throw insight into electrode/electrolyte interfacialreactions, and are of significance in developing relevant fundamental theory. The present IRresults provide firstly an approach to probe the lithiation/delithiation process of LIB by in situFTIR reflection spectroscopy, and are also of importance for the analysis of other LIB systems,especially the powder electrode materials. The detail research on Cr_2O_3 anode by XPS andToF-SIMS, is helpful to understand the electrochemical processes and improve theirelectrochemical performance of transition oxide materials, which are intensively studiedrecently.
引文
[1] A J Bard, L R Faulkner, Electrochemical Methods: Fundamentals and Applications [M]. 2nd Edition, New York: John Wiley & Sons, 2000.
    [2] M Winter, R J Brodd, What Are Batteries, Fuel Cells, and Supercapacitors [J]. Chem. Rev., 2004, 104: 4245-4269.
    [3] B Scrosati, Challenge of portable power [J]. Nature, 1995, 373: 557-558.
    [4] M Armand, J M Tarascon, Building better batteries [J]. Nature, 2008,451:652-657.
    [5] W S Harris, Ph. D. Thesis UCRL-8381, University of California [D]. Berkeley: 1958.
    [6] H Ikeda, T Saito, H Tamura, in Proc. Manganese dioxide symp. Vol. 1 [M], ed. by A Kozawa, R H Brodd. Cleveland, CH: IC sample Office, 1975.
    [7] M S Whittingham, Electrochemical energy storage and intercalation chemistry [J]. Science, 1976,192: 1226-1227.
    [8] M S Whittingham, Chalcogenide battery [P]. US Patent 4009052.
    [9] M Armand, in Materials for advanced batteries (Proc. NATO Symp. materials adv. batteries) [M], ed. by D W Murphy,J Broadhead, B C H Steele. New York: Plenum, 1980.
    [10] S Basu, Rechargeable battery [P]. US patent 4304825, 1981.
    [11] K Mizushima, P C Jones, P J Wiseman, J B Goodenough, Li_xCoO_2 (0    [12] T Nagaura, K Tozawa, Lithium ion rechargeable battery [J]. Prog. Batteries Solar Cells, 1990,9,209-217.
    [13] M Winter, J O Besenhard, in Lithium ion batteries-fundamentals and performance [M], ed. by M Wakihara, O Yamamoto, Weinheim: Wiley-VCH, 1998.
    [14] J M Tarascon, M Armand, Issues and challenges facing rechargeable lithium batteries [J]. Nature, 414, 359-367.
    [15] P G Bruce, Solid-state chemistry of lithium power sources [J]. Chem. Commun., 1997, 19: 1817-1824.
    [16] T U Ohzuku, M Nagayama, Y Iwakoshi, H Komori, Comparative study of formation of LiCoO_2, LiNi_(1/2)Co(1/2)O_2, and LiNiO_2, for 4 volt secondary lithium Cells [J]. Electrochim. Acta, 1993, 38: 1159-1167.
    [17] J N Reimers, J R Dahn, Electrochemical and in situ X-ray diffraction studies of lithium intercalation in Li_xCoO_2 [J]. J. Electrochem. Soc, 1992, 139: 2091-2097.
    [18] H Gabrisch, R Yazami, B Fultza, The Character of Dislocations in LiCoO_2 [J]. Electrochem. Solid State Lett., 2002,5-6: A111-A114.
    [19] R J Gummow, D C Liles, M M Thackeray, Lithium extraction from orthorhombic lithium manganese oxide and the phase transformation to spinel [J]. Mater. Res. Bull., 1993, 28: 1249-1256.
    [20] M M Thackeray, W I F David, P G Bruce, J B Goodenough, Lithium insertion into manganese spinels [J]. Mater. Res.Bull., 1983, 18,461-472.
    [21] M Wakihara. Recent developments in lithium ion batteries[J]. Mater. Sci. Eng., 2001, R33: 109-134.
    [22] A K Padhi, K S Nanjundaswamy, C Masquelier, S Okada, J B Goodenough, Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphates [J]. J. Electrochem. Soc, 1997, 144,1609-1613.
    [23] O Garcia-Moreno, M Alvarez-Vega, F Garcia-Alvarado, J Garcia-Jaca, J M Gallardo-Amores, M L Sanjuan, U Amador,Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: A new high-pressure form of LiMPO_4(M = Fe and Ni) [J]. Chem. Mater.,2001,13: 1570-1576.
    [24] C Delacourt, P Poizot, M Morcrette, J M Tarascon, C Masqulier, One-step low-temperature route for the preparation of electrochemically active LiMnPO_4 powders [J]. Chem. Mater., 2004,16: 93-99.
    [25] C Delacourt, P Poizot, J M Tarascon, C Masquelier, The existence of a temperature-driven solid solution in Li_xFePO_4 for 0 ≤ x ≤ 1 [J]. Nat. Mater., 2005, 4: 254-259.
    [26] Y N Xu, S Y Chung, J T Bloking, Y M Chiang, W Y Ching, Electronic structure and electrical conductivity of undoped LiFePO_4 [J]. Electrochem. Slid State Lett., 2004, 7: A131-A134.
    [27] S Y Chung, J T Blocking, Y M Ching, Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nat. Mater. 1: 123-128.
    [28] E M Bauer, C Bellitto, M Pasquali, P P Prosini, G Righini, Versatile synthesis of carbon-rich LiFePO_4 enhancing its electrochemical properties [J]. Electrochem. Slid State Lett., 2004,7: A85-A87.
    [29] G X Wang, S Bewlay, J Yao, J H Ahn, S X Dou, H K Liu, Characterization of LiM_xFe_(1-x)PO_4 (M=Mg, Zr, Ti) cathode materials prepared by the sol-gel method [J]. Electrochem. Solid State Lett., 2004, 7: A503-A506.
    [30] F Croce, A D Epifanio, J Hassoun, A Deptula, J Olczac, B Scrosati, A novel concept for the synthesis of an improved LiFePO_4 lithium battery cathode [J]. Electrochem. Solid State Lett., 2002, 5: A47-A50.
    [31] P S Herle, B Ellis, N Coombs, L F Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates[J].Nat. Mater., 2004, 3: 147-152.
    [32] N N Greenwood, A Earshaw. Chemistry of the Elements [M], 2nd Edition. Boston: Butterworth-Heinemann, 1997.
    [33] D W Murphy, P A Christian, F J DiSalvo, J N Carides, Vanadium oxide cathode materials for secondary lithium cells [J].J. Electrochem. Soc, 1979, 126:497-499.
    [34] C Tsang, A Manthiram, Synthesis of nanocrystalline VO_2 and its electrochemical behavior in lithium batteries [J]. J.Electrochem. Soc, 1997,144: 520-524.
    [35] O Bergstrom, H Bjork, T Gustafsson, J O Thomas, Direct XRD observation of oxidation-state changes on Li-ion insertion into transition-metal oxide hosts [J]. J. Power Sources, 1999, 81-82: 685-689.
    [36] P Soudan, J P Pereira-Ramos, J Farcy, G Gregoire, N Baffler, Sol-gel chromium-vanadium mixed oxides as lithium insertion compounds [J]. Solid State Ionics, 2000, 135: 291-295.
    [37] J Jiang, Z X Wang, L Q Chen, Structural and electrochemical studies on Li_xV_2O_5 as cathode material for rechargeable lithium batteries [J]. J. Phys. Chem. C, 2007, 111: 10707-10711.
    [38] A N Day, B P Sullivan, Method of preparing cathodic electrodes [P]. US Patent 3655585, 1972.
    [39] S Koike, T Fujieda, T Sakai, S Higuchi, Characterization of sputtered vanadium oxide films for lithium batteries [J]. J. Power Sources, 1999, 81: 581-584.
    [40] A Tranchant, R Messina, J Perrichon, Mechanism of electrochemical reduction of vanadium oxides [J]. J. Electroanal. Chem. 1980, 113:225-232.
    [41] C Delmas, H Cognac-Auradou, J M Cocciantelli, M Menetrier, J P Doumerc, The Li_xV_2O_5 system: An overview of the structure modifications induced by the lithium intercalation [J]. Solid State Ionics, 1994, 69: 257-264.
    [42] M Eguchi, K Ozawa, Lithium insertion property of Li_(22)V_2O_5·nH_2O [J]. Electrochim. Acta, 2007, 52: 657-2660.
    [43] J M Gallardo-Amores, N Biskup, U Amador, K Persson, G Ceder, E Moran, M E Arroyo y de Dompablo, Computational and Experimental Investigation of the transformation of V_2O_5 under Pressure [J]. Chem. Mater., 2007,19,5262-5271.
    [44] Y Q Lie, Q Wan, Y K Shi, New energy materials [M], Tianjin: Tianjin university press, 2000.
    [45] D Fayteux, R Koksbang, Rechargeable lithium battery anodes-alternatives to metallic lithium [J], J appl. Electrochem,1993,23: 1-10.
    [46] C A Vincent, Modern batteries: An introduction to electrochemical power sources [M], Ed. by C A Vincent, B Scrosati.New York: John Wilet& Sons, 1997.
    [47] N Imanishi, Y Takeda, O. Yamamoto, Lithium-ion batteries: fundamentals and performance [M], ed. by M. Wakihara, O Yamamoto. Weinheim: Wiley-VCH, 1998.
    [48] M Winter, J O Besenhard, Lithium-ion batteries: fundamentals and Performance [M], ed. by M. Wakihara, O Yamamoto.Weinheim: Wiley-VCH, 1998.
    [49] T Takamura, R J Brodd, New carbon based materials for electrochemical energy storage systems [M], ed. by I V Barsukov, C S Joheson, J E Doninger, V Z Barsukov. Netherlands: Springer, 2003.
    [50] S H Liu, Z Ying, Z M Wang, F Li, S Bai, L Wen, H M Chen, Improving the electrochemical properties of natural graphite spheres by coating with a pyrolytic carbon shell [J]. New Carbon Mate., 2008, 23: 30-36.
    [51] J Shim, K A Striebel, Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO_4 [J]. J. Power Sources, 2003, 119-121: 955-958.
    [52] Y P Wu, C Jiang, C Wan, R Holze. Anode materials for lithium ion batteries by oxidative treatment of common natural graphite [J]. Solid State Ionics, 2003, 156: 283-290.
    [53] M Yoshio, H Y Wang, K Fukuda, Y Hara,Y Adachi, Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material [J]. J Electrochem Soc, 2000,147: 1245-1250.
    [54] H Nakamura, H Komatsu, M. Yoshio, Suppression of electrochemical decomposition of propylene carbonate at a graphite anode in lithium-ion cells [J]. J. Power Sources, 1996, 62: 219-222.
    [55] M Yoshio, H Y Wang, K Fukuda, T Umeno, T Abe, Z Ogumi, Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere [J]. J. Mater. Chem., 2004 ,14: 1754-1758.
    [56] K Sato, M Noguchi, A Demachi, N Oki, M Endo A mechanism of lithium storage in disordered carbons [J]. Science,1994,264:556-558.
    [57] J R Dahn, T Zheng, Y Liu, J S Xue, Mechanisms for lithium insertion in carbonaceous materials [J]. Science, 1995, 270:590-593.
    [58] M Winter, J O Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites [J]. Electrochim. Acta, 1999,45:31-50.
    [59] N Tamura, R Ohshita, M Fujimoto, S Fujitani, M Kamino, I Yonezu, Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes [J]. J. Power Sources, 2002, 107: 48-55.
    [60] Y Wang, J Y Lee, T Deivarai, Tin nanoparticle loaded graphite anodes for Li-ion battery applications [J]. J. Electrochem. Soc, 2004, 151: A1804-A1809.
    [61] L Aldon, A Garcia, J Olivier-Fourcade, J Jumas, F J Fernandez-Madrigal, P Lavela, C P Vicente, J L Tirado, Lithium insertion mechanism in Sb-based electrode materials from 121Sb Mossbauer spectrometry [J]. J. Power Sources, 2003,119-121:585-590.
    [62] R AHuggins, Lithium alloy negative electrodes [J]. J. Power Sources, 1999,81-82:13-19.
    [63] Y Kubota, M C S Escano, H Nakanishi, H Kasai, Electronic structure of LiSi [J]. J. Alloys Compd., 2008, 1-2:151-157.
    [64] R Z Hu, L Zhang, X Liu, M Q Zeng, M Zhu, Investigation of immiscible alloy system of Al-Sn thin films as anodes for lithium ion batteries [J]. Electrochem. Commun., 2008, 10: 1109-1112.
    [65] L B Chen, J Y Xie, H C Yu, T H Wang, Si-Al thin film anode material with superior cycle performance and rate capability for lithium ion batteries [J]. Electrochim. Acta, 2008, 53: 8149-8153.
    [66] N H Chou, R E Schaak, A library of single-crystal metal-tin nanorods: Using diffusion as a tool for controlling the morphology of intermetallic nanocrystals [J]. Chem. Mater., 2008, 20: 2081-2085.
    [67] I Grigoriants, L Sominski, H L Li, I Ifargan, D Aurbach, A Gedanken, The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries [J]. Chem. Commun., 2005,7: 921-923.
    [68] J Yang, M Winter, J O Besenhard, Small particle size multiphase Li-alloy anodes for lithium-ion batteries [J]. Solid State Ionics, 1996, 90: 281-287.
    [69] J Yang, Y Takeda, N Imanishi, O. Yamamoto, Ultrafine Sn and SnSb_(0.04) powders for lithium storage matrices in lithium-ion batteries [J]. J. Electrochem. Soc, 1999,146: 4009-4013.
    [70] I Rom, M Wachtler, I Papst, M Schmied, J O Besenhard, F Hofer, M Winter, Electron microscopical characterization of Sn/SnSb composite electrodes for lithium-ion batteries, Solid State Ionics, 2001, 3-4: 329-336.
    [71] H Li, G Y Zhu, X J Huang, L Q Chen. Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature [J]. J . Chem. Mater., 2000,10: 693-696.
    [72] H Li, L Shi, W Lu, X J Huang, L Q Chen, Studies on capacity loss and capacity fading of nanosized SnSb alloy anode for Li-ion batteries [J]. J. Electrochem. Soc, 2001,148: A915-A922.
    [73] H Li, Q Wang, L H Shi, L Q Chen, X J Huang, Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery [J], Chem. Mater., 2002, 14: 103-108.
    [74] W X Chen, J Y Lee, Z L Liu. Electrochemical lithiation and de-lithiation of carbon nanotube-SnSb nanocomposites,Electrochem. Commun., 2002,4: 260-265.
    [75] W X Chen, J Y Lee, Z L Liu, The nanocomposites of carbon nanotube with Sb and SnSb_(0.5) as Li-ion battery anodes [J].Carbon, 2003,41: 959-966.
    [76] H Guo, H J Zhao, X D Jia, X Li, W H Qiu, A novel micro-spherical CoSn_2/Sn alloy composite as high capacity anode materials for Li-ion rechargeable batteries [J]. Electrochim. Acta, 2007, 52,4853-4857.
    [77] M Valvo, U Lafont, L Simonin, E M Kelder, Sn-Co compound for Li-ion battery made via advanced electrospraying [J] J. Power Sources, 2007,174: 428-434.
    [78] N Tamura, M Fujimoto, M Kamino, S Fujitani, Mechanic stability of Sn-Co alloy anodes for lithium secondary batteries [J]. Electrochim. Acta, 2004,49: 1949-1956.
    [79] N Tamura, Y Kato, A Mikami, M Kamino, S Matsuta, and S Fujitani, Study on Sn-Co alloy anodes for lithium secondary batteries I. amorphous system [J]. J. Electrochem. Soc, 2006,153: A1626-A163.
    [80] J J Zhang, Y Y Xia, Co-Sn alloys as negative electrode materials for rechargeable lithium batteries [J]. J. Electrochem. Soc, 2006,153:A1466-A1471.
    [81] H J Kim, J Cho, Synthesis and morphological, electrochemical characterization of Sn_(92)Co_8 nanoalloys for anode materials in Li Secondary Batteries [J]. J. Electrochem. Soc, 2007, 154: A462-A466.
    [82] J Hassoun, S Panero, P Simon, P L Taberna, B Scrosati, High-Rate, Long-Life Ni-Sn nanostructured electrodes for lithium-ion batteries [J]. Adv. Mater., 2007, 19:1632-1635.
    [83] G M Ehrlich, C Durand, X Chen, T A Hugener, F Spiess, S L Suib, Metallic negative electrode materials for rechargeable nonaqueous batteries [J]. J. Electrochem. Soc, 2000, 147: 886-891.
    [84] Y L Kim, H Y Lee, S W Jang, S J Lee, H K Baik, Y S Yoon, Y S Park, S M Lee. Nanostructured Ni_3Sn_2 thin film as anodes for thin film rechargeable lithium batteries [J]. Solid State Ionics, 2003,160: 235-240.
    [85] H Mukaibo, T Sumi, T Yokoshima, T Momma, T Osaka, Electrodeposited Sn-Ni Alloy film as a high capacity anode material for lithium-ion secondary batteries [J]. Electrochem. Solid State Lett., 2003, 6: A218-A220.
    [86] H Mukaibo, T Momma, T Osaka, Changes of electro-deposited Sn-Ni alloy thin film for lithium ion battery anodes during charge discharge cycling [J]. J. Power Sources, 2005, 146:457-463.
    [87] H Mukaibo, T Momma, M Mohamedi, T Osaka, Structural and morphological modifications of a nanosized 62 atom percent Sn-Ni thin film anode during reaction with lithium [J]. J. Electrochem. Soc, 2005, 152: A560-A565.
    [88] J Hassoun, S Panero, B Scrosati. Electrodeposited Ni-Sn intermetallic electrodes for advanced lithium ion batteries [J]. J. Power Sources, 2006,160:1336-1341.
    [89] F S Ke, L Huang, J S Cai, S G Sun, Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries [J]. Electrochim. Acta, 2007, 52: 6741-6747.
    [90] K D Kepler, J T Vaughey, M M Thackray, Copper-tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system [J], J. Power sources, 1999, 81-82: 383-387.
    [91] M M Thackeray, J Vaughey, A J Kahaian, K D Kepler, R Benedek, Intermetallic insertion electrodes derived From NiAs-, Ni_2ln-, and Li_2CuSn-type structures for lithium-ion batteries [J]. Electrochem. Commun., 1999, 1: 111-115.
    [92] S D Beattie, J R Dahn, Single bath pulsed electrodeposition of copper-tin alloy negative electrodes for lithium-ion batteries [J]. J. Electrochem. Soc, 2003, 150: A894-A898.
    [93] N Tamur, R Ohshita, M Fujimoto, S Fujitani, M Kamino, I Yonezu, Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes [J]. J. Power Sources, 2002,107: 48-55.
    [94] C Arbizzani, M Lazzari, M Mastragostino, Lithiation/delithiation performance of Cu_6Sn_5 with carbon paper as current collector [J]. J. Electrochem. Soc, 2005, 152: A289-A294.
    [95] D Larcher, L Y Bea(?)lieu, D D Macneil, J R Dahn, In situ X-ray study of the electrochemical reaction of Li with η-Cu_6Sn_5 [J]. J. Electrochem. Soc, 2000,147: 1658-1662.
    [96] K D Kepler, J T Vaughey, M M Thackeray, Li_xCu_6Sn_5 (0 < x < 13): An intermetallic insertion electrode for rechargeable lithium batteries [J]. Electrochem. Solid State Lett., 1999, 2: 307-309.
    [97] J T Vaughey, K D Kepler, R Benedek, M M Thackeray, NiAs- versus zinc-blende -type intermetallic insertion electrodes for lithium batteries: lithium extraction from Li_2CuSn [J]. Electrochem. Commun., 1999, 1: 517-521.
    [98] T Sarakonsri, C S Johnson, S A Hackney, M M Thackeray, Solution route synthesis of InSb, Cu_6Sn_5 and Cu_2Sb electrodes for lithium batteries [J]. J. Power Sources, 2006, 153: 319-327.
    [99] W Choi, J Y Lee, H S Lim. Electrochemical lithiation reactions of Cu_6Sn_5 and their reaction products [J]. Electrochem.Commun., 2004,6:816-820.
    [100] S Sharma, L Fransson, E Sjostedt, L Nordstrom, B. Johansson, K Edstrom. A theoretical and experimental study of the lithiation of (?)-Cu6Sn5 in a lithium-ion battery [J]. J. Electrochem. Soc, 2003, 150: A330-A334.
    [101] C Q Zhang, J P Tu, X H Huang, Y F Yuan, S F Wang, F Mao, Preparation and electrochemical performances of nanoscale FeSn_2 as anode material for lithium ion batteries [J]. J. Alloys Compd., 2008,457: 81-85.
    [102] H Kim, Y J Kim, D G Kim,H J Sohn, T Kang, Mechanochemical synthesis and electrochemical characteristics of Mg_2Sn as an anode material for Li-ion batteries [J]. Solid State Ionics, 2001, 144: 41-49.
    [103] D Larcher, A S Prakash, J Saint, M Morcrette, J M Tarascon, Electrochemical reactivity of Mg_2Sn phases with metallic lithium [J]. Chem. Mater., 2004, 16: 5502-5511.
    [104] H Yoshinaga, J Asai, M Wada, K Yamamoto, T Sakai, V-Sn alloy thin film as new anode materials for lithium rechargeable batteries [J]. Electrochemistry, 2005, 73: 897-899.
    [105] Y U Kim, S I Lee, C K Lee, H J Sohn, Enhancement of capacity and cycle-life of Sn_(4+δ) P_3 (0<=5δ<=1) anode for lithium secondary batteries [J]. J Power Sources, 2005,141: 163-6.
    [106] W C Zhou, H X Yang, S Y Shao, X P Ai, Y L Cao, Superior high rate capability of tin phosphide used as high capacity anode for aqueous primary [J]. Electrochem. Commun., 2006, 8: 55-59.
    [107] Y Li, J P Tu, X H Huang, H M Wu, Y F Yuan, Net-like SnS/carbon nanocomposite film anode material (?)or lithium ion batteries [J]. Electrochem. Commun., 2007, 9: 49-53.
    [108] B K Guo, J Shu, K Tang, Y Bai, Z X Wang, L Q Chen, Nano-Sn/hard carbon composite anode material with high-initial coulombic efficiency [J]. J. Power Sources, 2008, 177: 205-210.
    [109] H Konno, T Morishita, C Y Wan, T Kasashima, H Habazaki, M Inagaki, Si-C-O glass-like compound/exfoliated graphite composites for negative electrode of lithium ion battery [J]. Carbon, 2007,45: 477-483
    [110] J Hassoun, S Panero, G Mulas, B Scrosati, An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries [J]. J. Power Sources, 2007, 171: 928-931.
    [111] C Chisholm, E Kuzmann, M El-Sharif, O Doyle, S Stichleutner, K Solymos, Z Homonnay, A Vertes, Preparation and characterization of electrodeposited amorphous, Sn-Co-Fe ternary alloys [J]. Appl. Sur. Sci., 2007,253: 4348-4355.
    [112] O Mao, J R Dahn, Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries - Ⅱ. The SnFe system [J]. J. Electrochem. Soc, 1999,146:414-422.
    [113] O Mao, J R Dahn, Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries - Ⅲ. Sn_2Fe: SnFe_3C active/inactive composites [J]. J. Electrochem. Soc, 1999, 146,423-427.
    [114] L Y Beaulieu, D Larcher, R A Dunlap, J R Dahn, Nanocomposites in the Sn-Mn-C system produced by mechanical alloying [J]. J. Alloys Compd., 2000,297:, 122-128.
    [115] L Y Beaulieu, J R Dahn, The reaction of lithium with Sn-Mn-C intermetallics prepared by mechanical alloying [J]. J. Electrochem. Soc, 2000, 147: 3237-3241.
    [116] M D Fleischauer, M N Obrovac, J R Dahn, Simple model for the capacity of amorphous silicon-aluminum-transition metal negative electrode materials [J]. J. Electrochem. Soc, 2006, 153: A1201-A1205.
    [117] Z B Sun, X D Wang, X P Li, M S Zhao, Y Li, Y M Zhu, X P Song, Electrochemical properties of melt-spun Al-Si-Mn alloy anodes for lithium-ion batteries [J]. J. Power Sources, 2008,182:353-358.
    [118] Z P Xia, Y Lin, Z Q Li, A new phase in Ni-Sn-P system and its property as an anode material for lithium-ion batteries [J].Mater.Characterization,2008,59:1324-1328.
    [119]H Guo,H L Zhao,X D Jia,J C He,W H Qiu,X Li,A novel SnxSbNi composite as anode materials for Li rechargeable batteries[J].J.Power Sources,2007,174:921-926.
    [120]F Wang,M S Zhao,X P Song,Nano-sized SnSbCux alloy anodes prepared by co-precipitation for Li-ion batteries[J].J Power Sources,2008,175:558-563.
    [121]S Mizutani,H Inoue,Negative active material and method for production thereof,non-aqueous electrolyte secondary cell using the same[P].US Patent application,20050208378.
    [122]A D W Todda,R A Dunlapa,J R.Dahna,M(?)ssbauer effect studies of sputter-deposited tin-cobalt and tin-cobalt-carbon alloys[J].J.Alloys Compd.,2007,443:114-120.
    [123]J R Dahn,R E Mar,A Abouzeid,Combinatorial study of Sn_(1-x)Co_x(0<x<0.6)and[Sn_(0.55)Co_(0.45)]_((1-y))Cy(0<y<0.5)alloy negative electrode materials for Li-ion batteries[J].J.Electrochem.Soe.,2006,153:A361-A365.
    [124]A D W Todd,R E Mar,J R Dahn,Tin-transition metal-carbon systems for lithium-ion battery negative electrodes[J].J.Electrochem.Soc.,2007,154:A597-A604.
    [125]A D W Todd,R E Mar,J R Dahn,Combinatorial study of tin-transition metal alloys as negative electrodes for lithium-ion batteries[J].J.Electrochem.Soc.,2006,153:A1998-A2005.
    [126]P Poizot,S Laruelle,S Grugeon,L Dupont,J M Tarascon,Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J].Nature,2000,407:496-499.
    [127]P Balaya,H Li,L Kienle,J Maier,Fully reversible homogeneous and heterogeneous Li storage in RuO_2 with high capacity[J].AdV.Funct.Mater.,2003,13:621-625.
    [128]S Grugeon,S Laruelle,L Dupont,J M Tarascon,An update on the reactivity of nanoparticles Co-based compounds towards Li[J].Solid State Sci.,2003,5,895-904.
    [129]G Binotto,D Larcher,A S Prakash,R Herrera Urbina,M S Hegde,J M Tarascon,Synthesis,characterization,and Li-electrochemical performance of highly porous Co_3O_4 Powders[J].Chem.Mater.,2007,19:3032-3040.
    [130]H Li,P Balaya,J Maier,Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides[J].J.Electrochem.Soc.,2004,151:A 1878-A 1885.
    [131]H N Duan,J Gnanaraj,X P Chen,B Q Li,J Y Liang.Fabrication and characterization of Fe_3O_4-based Cu nanostructured electrode for Li-ion battery[J].J.Power Sources,2008,185:512-518.
    [132]L Wang,Y Yu,P C Chen,D W Zhang,C H Chen,Electrospinning synthesis of C/Fe_3O_4 composite nanofibers and their application for high performance lithium-ion batteries[J].J.Power Source,2008,183:717-723.
    [133]D Larcher,D Bonnin,R Cortes,I Rivals,L Personnaz,J M Taraseon,Combined XRD,EXAFS,and Mossbauer studies of the reduction by lithium of alpha-Fe_2O_3 with various particle sizes [J]. J. Electrochem. Soc, 2003, 150: A1643-A1650.
    [134] J J Xu, G Jain, Nanocrystalline ferric oxide cathode for rechargeable lithium batteries [J]. Electrochem. Solid State Lett.,2003,6:A190-A193.
    [135] D Larcher, C Masquelier, D Bonnin, Y Chabre, V Masson, J B Leriche, T M Tarascon, Effect of particle size on lithium intercalation into alpha-Fe_2O_3 [J]. J. Electrochem.Soc, 2003, 150: A133-A139.
    [136] S Kanzaki, A Yamada, R Kanno. Effect of chemical oxidation for nano-size α-Fe_2O_3 as lithium battery cathode [J]. J.Power Sources, 2007, 165: 403-407.
    [137] J Morales, L Sanchez, F Martin, J R Ramos-Barrado, M Sanchez, Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells [J], Thin Solid Films, 2005, 474: 133-140.
    [138] D W Zhang, T H Yi, C H Chen, Cu nanoparticles derived from CuO electrodes in lithium cells [J]. Nanotechnology,2005,16:2338-2341.
    [139] Q M Pan, H Z Jin, H B Wang, G P Yin, Flower-like CuO film-electrode for lithium ion batteries and the effect of surface morphology on electrochemical performance [J]. Electrochim. Acta, 2007, 53: 951-956.
    [140] S Grugeon, S Laruelle, R Herrera-Urbina, L Dupont, P Poizot, J M Tarascon, Particle size effects on the electrochemical performance of copper oxides toward lithium [J]. J. Electrochem. Soc, 2001,148: A285-A292.
    [141] P Poizot, S Laruelle, S Grugeon, L Dupont, J M Tarascon, Searching for new anode materials for the Li-ion technology: time to deviate from the usual path [J]. J. Power Sources, 2001, 97-98: 235-239.
    [142J S Bijani, M Gabas, L Martinez, J R Ramos-Barrado, J Morales, L Sanchez, Nanostructured Cu_2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries [J]. Thin Solid Films, 2007, 515: 5505-5511.
    [143] Q Zhang, J P Tu, X H Huang, Y F Yuan, X T Chen, F Mao, Preparation and electrochemical performances of cubic shape Cu_2O as anode material for lithium ion batteries [J]. J. Alloys Compd., 2007,441: 52-56.
    [144] H Qiao, L F Xiao, Z Zheng, H W Liu, F L Jia, L Z Zhang, One-pot synthesis of CoO/C hybrid microspheres as anode materials for lithium-ion batteries[J]. J. Power Soures, 2008, 185: 486-491.
    [145] W L Yao, J Yang, J L Wang, YNuli, Multilayered cobalt oxide platelets for negative electrode material of a lithium-ion battery [J]. J. Electrochem. Soc, 2008, 155, A903-A908.
    [146] J S Do, C H Weng, Preparation and characterization of CoO used as anodic material of lithium battery [J]. J. Power Sources, 2005,146: 482-486.
    [147] D Larcher, G Sudant, J B Leriche, Y Chabre, J. M. Tarascona, The Electrochemical Reduction of CO_3O_4 in a Lithium Cell [J], J. Electrochem. Soc, 2002,149: A234-A241.
    [148] C L Liao, Y H Lee, S T Chang, K Z Fung. Structural characterization and electrochemical properties of RF-sputtered nanocrystalline Co_3O_4 thin-film anode [J]. J. Power Sources, 2006,158: 1379-1385.
    [149] S A Needham, G X Wang, K Konstantinov, Y Tournayre, Z Lao, H K Liu, Electrochemical performance of Co_3O_4-C composite anode materials [J], Electrochem. Solid State Lett., 2006, 9: A315-A319
    [150] H C Liu, S K. Yen, Characterization of electrolytic Co_3O_4 thin films as anodes for lithium-ion batteries [J], J. Power Sources, 2007,166: 478-484.
    [151] L Dupont, S Laruelle, S Grugeon, C Dickinson, W Zhou, J M Tarascon, Mesoporous Cr_2O_3 as negative electrode in lithium batteries: TEM study of the texture effect on the polymeric layer formation [J]. J. Power Sources, 2008, 175:502-509.
    [152] J Hu, H Li, X J Huang, L Q Chen, Improve the electrochemical performances of Cr_2O_3 anode for lithium ion batteries [J]. Solid State Ionics, 2006,26-32: 2791-2799.
    [153] J Hu, H Li, X J Huang, Cr_2O_3-based anode materials for Li-ion batteries [J]. Electrochem. Solid State Lett., 2005, 8:A66-A69.
    [154] L Dupont, S Grugeon, S Laruelle, J M Tarascon, Structure, texture and reactivity versus lithium of chromium-based oxides films as revealed by TEM investigations [J]. J. Power Sources, 2007,164: 839-848.
    [155] D Aurbach, H Teller, E Levi, Morphology/behavior relationship in reversible electrochemical lithium insertion into graphitic materials [J]. J. Electrochem. Soc, 2002, 149: A1255-A1266.
    [156] K Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J]. Chem. Rev., 2004, 104: 4303-4417
    [157] D Aurbach, Electrode-solution interactions in Li-ion batteries: a short summary and new insights [J]. J. Power Sources,2003,119-121:497-503.
    [158] D Aurbach, A Zaban, Y Ein-Eli, I Weissman, O Chusid, B Markovsky, M D Levi, E Levi, A Schechter, M Moshkovich,E Granot, Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems [J]. J. Power Sources, 1997,86:91-98.
    [159] E Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase Model [J]. J. Electrochem.Soc, 1979,126: 2047-2051.
    [160] D Aurbach, M L Daroux, P W Faguy, E Yeager, Identification of surface films formed on lithium in propylene carbonate solutions [J]. J. Electrochem.Soc., 1987, 134:1611-1620.
    [161] D Aurbach, A Zaban, A Schecheter, Y Ein-Eli, E Zinigrad, B Markovsky, The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries. I. Li metal anodes [J]. J. Electrochem. Soc, 1995, 142: 2873-2882.
    [162] D Aurbach, Y Ein-Ely, A Zaban, The surface chemistry of lithium electrodes in alkyl carbonate solutions [J]. J. Electrochem. Soc, 1994,141: L1-L3
    [163] R Fong, U von Sacken, J R Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells [J]. J. Electrochem. Soc, 1990,137:2009-2013.
    [164] J O Besenhard, H P Fritz, Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts [J]. J. Electroanal. Chem. 1974,53:329-33.
    [165] J O Besenhard, M Winter, J Yang, W Biberacher, Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes [J]. J. Power Sources, 1995, 54: 228-231
    [166] D Aurbach, Y Ein-Eli, The study of Li-graphite intercalation processes in several electrolyte systems using in situ x-ray diffraction [J]. J. Electrochem. Soc, 1995, 142: 1746-1752.
    [167] J R Dahn, The Phase diagram of Li_xC_6 [J]. Phy. Rev. B, 1991,44: 9170-9177.
    [168] M Morita, T Ichimura, M Ishikawa, Y Matsuda, Effects of the electrolyte composition on the electrochemical lithium-intercalation behavior of graphite-analysis by electrochemical quartz crystal microbalance technique [J]. J. Power Sources, 1997, 68: 253-257.
    [169] M Winter, W K Appel, B Evers, T Hodal, K C MoEller, I Schneider, M Wachtler, M R Wagner, G H Wrodnigg, J O. Besenhard, Studies on the anode/electrolyte interface in lithium ion batteries [J]. Monatshefte fur Chemie, 2001, 132:473-486.
    [170] D Aurbach, M D Levi, E Levi, H Teller, B Markovsky, G Salitra, U Heider, L Heider, Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides [J]. J. Electrochem. Soc, 1998, 145: 3024-3034.
    [171] D Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J]. J. Power Sources, 2000, 89, 206-218.
    [172] D Aurbach, K Gamolsky, B Markovsky, G Salitra, Y Gofer, U Heider, R Oesten, M Schmidt, The study of surface phenomena related to electrochemical lithium intercalation into Li_xMO_y host mater(?)als (M = Ni, Mn) [J]. J. Electrochem. Soc, 2000, 147: 1322-1331.
    [173] T Eriksson, A M Andersson, A G Bishop, C Gejke, T Gustafsson, J O Thomas, Surface analysis of LiMn_2O_4 electrodes in carbonate-based electrolytes [J]. J. Electrochem. Soc, 2002, 149:A69-A78.
    [174] M G S R Thomas, P G Bruce, J B Goodenough, The a.c. impedance analysis of polycrystalline insertion electrodes: application to Li_(1-x)CoO_2 [J]. J. Electrochem. Soc, 1985, 132: 1521-1528.
    [175] D Guyomard, J M Tarascon, Lithium metal-free rechargeable lithium manganese oxide (LiMn_2O_4)/carbon cells: their understanding and optimization [J]. J. Electrochem. Soc, 1992,139: 937-948.
    [176] D Guyomard, J M Tarascon, Rechargeable lithium manganese oxide (Li_(1+x)Mn_2O_4)/carbon cells with a new electrolyte composition. Potentiostatic studies and application to practical cells [J]. J. Electrochem. Soc, 1993, 140: 3071-3081.
    [177] D Aurbach, Y S Cohen, Lithium ion batteries [M], ed. by P b Balbuena, Y X Wang. London: Imperial College Press,2004.
    [178] D Aurbach, B Markovsky, A Shechter A, Y EinEli, H Cohen H, A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures [J]. J. Electrochem. Soc,1996,143: 3809-3820.
    [179] D Aurbach, A Zaban, Ein-Eli Y, I Weissman, O Chusid, B Markovsky, M Levi, E Levi, A Schechter, E Granot, Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems [J]. J. Power Sources, 1997, 68: 91-98.
    [180] D Aurbach, M D Levi, E Levi, H Teller, B Markovsky, G Salitra, U Heider, Heider L, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J]. Electrochim. Acta, 1999,45:67-86.
    [181] D Aurbach, B Markovsky, A Nimberger, E Levi, Y Gofer, Electrochemical Li-insertion processes into carbons produced by milling graphitic powders: The impact of the carbons' surface chemistry [J]. J. Electroanal. Chem., 2002, 149:A152-A161.
    [182] D Aurbach, B Markovsky, A Rodkin, E Levi, Y S Cohen, H J Kim, M Schmidt, On the capacity fading of LiCoO_2 intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives [J]. Electrochim. Acta, 2002,47: 4291-4036.
    [183] D Aurbach, J S Gnanaraj, W Geissler, M Schmidt. Vinylene carbonate and Li salicylatoborate as additives in LiPF_3(CF_2CF_3)(3) solutions for rechargeable Li-ion batteries [J]. J. Electrochem. Soc, 2004, 151, A23-A30.
    [184] J S Gnanaraj, M D Levi, E Levi, G Salitra, D Aurbach, J E Fischer, A Claye. Comparison between the electrochemical behavior of disordered carbons and graphite electrodes in connection with their structure [J]. J. Electroanal. Chem., 2001,148: A525-Aa536.
    [185] G V Zhuang, H Yang, P N Ross, K Xu, T R Jow, Lithium methyl carbonate as a reaction product of metallic lithium and dimethyl carbonate [J]. Electrochem. Solid State Lett., 2006,9: A64-A68.
    [186] G R V Zhuang, K Xu, H Yang, T R Jow, P N Ross, Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 m LiPF_6/EC:EMC electrolyte [J]. J. Phys. Chem. B, 2005, 109: 17567-17573.
    [187] G V Zhuang, H Yang, B Blizanac, P N Ross, A study of electrochemical reduction of ethylene and propylene carbonate electrolytes on graphite using ATR-FTIR spectroscopy [J]. Electrochem. Solid State Lett., 2005, 8: A441-A445.
    [188] G V Zhuang, K Xu, T R Jow, P N Ross, Study of SEI layer formed on graphite anodes in PC/LiBOB electrolyte using IR spectroscopy [J]. Electrochem. Solid State Lett., 2004,7: A224-A227.
    [189] G V Zhuang, P N Ross, Analysis of the chemical composition of the passive film on Li-ion battery anodes using attenuated total reflection infrared spectroscopy [J]. Electrochem. Solid State Lett., 2003,6: A136-A139.
    [190] D Ostrovskii, F Ronci, B Scrosati, P Jacobsson. A FTIR and Raman study of spontaneous reactions occurring at the LiNi_yCo_(1-x)O_2 electrode/non-aqueous electrolyte interface [J]. J. Power Sources. 2001, 94:183-188.
    [191] D Ostrovskii, F Ronci, B Scrosati, P Jacobsson, Reactivity of lithium battery electrode materials toward non-aqueous electrolytes: spontaneous reactions at the electrode-electrolyte interface investigated by FTIR [J]. J. Power Sources.2001, 103: 10-17.
    [192] A Naji, J Ghanbaja, B Humbert, P Willmann, D Billaud, Electroreduction of graphite in LiClO_4-ethylene carbonate electrolyte. Characterization of the passivating layer by transmission electron microscopy and Fourier-transform infrared spectroscopy [J]. J. Power Sources, 1996, 63: 33-39.
    [193] M Dubois, A Naji, J P Buisson, B Humbert, E Grivei, D Billaud, Characterisation of carbonaceous materials derived from polyparaphenylene pyrolyzed at low temperature [J]. Carbon, 2000, 38: 1411-1417.
    [194] Y S Hu, W H Kong, L Hong, X J Huang, L Q Chen, Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries [J]. Chem. Commum., 2004, 6: 126-131.
    [195] J Z Li, Li H, Z X Wang, L Q Chen, X J Huang, The interaction between SnO anode and electrolytes [J]. J. Power Sources, 1999:346-351.
    [196] J Z Li, Li H, Z X Wang, X J Huang, L Q Chen, The study of surface films formed on SnO anode in lithium rechargeable batteries by FTIR spectroscopy [J]. J. Power Sources.,2002, 107: 1-4.
    [197] H Y Xu, S Xie, Q Y Wang, X L Yao, Q S Wang, C H Chen, Electrolyte additive trimethyl phosphite for improving electrochemical performance and thermal stability of LiCoO_2 cathode [J]. Electrochim. Acta, 2006, 52: 636-642.
    [198] H Nakahara, S Nutt, Compounds in solid electrolyte interface (SEI) on carbonaceous material charged in siloxane-based electrolyte [J]. J. Power Sources, 2006, 160: 1355-1360.
    [199] W Choi, J Y Lee, B H Jung, H S Lim, Microstructure and electrochemical properties of a nanometer-scale tin anode for lithium secondary batteries [J]. J. Power Sources, 2004,136: 154-159.
    [200] M Le Granvalet-Mancini, T Hanrath, D Teeters, Characterization of the passivation layer at the polymer electrolyte/lithium electrode interface [J]. Solid State Ionics. 2000,135: 283-290.
    [201] C R Yang, Y Y Wang, C C Wan, Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte [J]. J. Power Sources,1998, 72: 66-70.
    [202] C M Burba, R Frech, In situ transmission FTIR spectroelectrochemistry: A new technique for studying lithium batteries [J]. Electrochim. Acta, 2006, 52: 780-785.
    [203] K Morigaki, Analysis of the interface between lithium and organic electrolyte solution [J]. J. Power Sources, 2002, 104:13-23.
    [204] K Morigaki, A Ohta, Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy [J]. J. Power Sources, 1998, 76: 159-166.
    [205] K Morigaki, T Fujii, A Ohta, The in situ analysis of interfacial reactions between electrode and organic electrolytes Ⅲ. The reduction of electrolytes at graphite electrode [J]. Denki Kagaku, 1998, 11: 1114-1122.
    [206] K Morigaki, A Ohta, In situ measurements for lithium secondary batteries 2. The in situ analysis of interfacial reaction in secondary lithium batteries by AFM and FTIR [J]. Denki Kagaku, 1998, 66: 977-985.
    [207] K Morigaki, In situ analysis of the interfacial reactions between MCMB electrode and organic electrolyte solutions [J].J. Power Sources, 2002, 103: 253-264.
    [208] K Kanamura, T Umegaki, M Ohashi, S Toriyama, S Shiraishi, Z Takehara, Oxidation of propylene carbonate containing LiBF_4 or LiPF_6 on LiCoO_2 thin film electrode for lithium batteries [J]. Electrochim. Acta, 2001,47: 433-439.
    [209] K Kanamura, Anodic oxidation of nonaqueous electrolytes on cathode materials and current collectors for rechargeable lithium batteries [J]. J. Power Sources, 1999, 81: 123-129.
    [210] K Kanamura, H Takezawa, S Shiraishi, Z Takehara, Dynamic observation of surface reactions of lithium foils immersed in diethyl carbonate electrolytes by using in situ FTIR measurement [J]. Denki Kagaku, 1998,66: 272-278.
    [211] K Kanamura, S Toriyama, S Shiraishi, M Ohashi, Z Takehara. Studies on electrochemical oxidation of non-aqueous electrolyte on the LiCoO_2 thin film electrode [J]. J. Electroanal. Chem. 1996,419: 77-84.
    [212] K Kanamura, H Takezawa, S Shiraishi, Z Takehara. Study on dynamic behavior of diethyl carbonate electrolyte on lithium metal surface using in situ FTIR spectroscopy [J]. Chem. Lett., 1997,1: 41-42.
    [213] K Dokko, T Matsushita, K Kanamura, Studies on electrochemical oxidation of propylene carbonate electrolyte on LiMn_2O_4 thin film electrode [J]. Electrochemistry, 2005, 73: 54-59.
    [214] D Aurbach, O Chusid. The use of in situ Fourier-transform infrared spectroscopy for the study of surface phenomena on electrodes in selected lithium battery electrolyte solutions [J]. J. Power Sources, 1997, 68: 463-470.
    [215] D Aurbach, O Chusid. In-situ FTIR spectroelectrochemical studies of surface-films formed on Li and nonactive electrodes at low potentials in Li salt-solutions containing CO_2 [J]. J. Electrochem. Soc, 1993,140: L155-L157.
    [216] D Aurbach, 0 Chusid, The study of surface-films formed on lithium and noble-metal electrodes in polar aprotic systems by the use of in-situ Fourier-transform infrared-spectroscopy[J]. J. Electrochem. Soc, 1993,140: L1-L4.
    [217] D Aurbach, M Moshkovich, Y Cohen, A Schechter. The study of surface film formation on noble-metal electrodes in alkyl carbonates/Li salt solutions, using simultaneous in situ AFM, EQCM, FTIR, and EIS [J]. Langmuir, 1999, 15:2947-2960.
    [218] O Chusid, Y Gofer, D Aurbach, M Watanabe, T Momma, T Osaka. Studies of the interface between lithium electrodes and polymeric electrolyte systems using in situ FTIR spectroscopy [J]. J. Power Sources, 2001,97: 632-636.
    [219] E Zinigrad, E Levi, H Teller, G Salitra, D Aurbach, Dan P Investigation of lithium electrodeposits formed in practical rechargeable Li-Li_xMnO_2 batteries based on LLAsF_6/1,3-dioxolane solutions [J]. J. Electrochem. Soc, 2004, 151:A111-A118.
    [220] M Moshkovich, M Cojocaru, H E Gottlieb, D Aurbach. The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS [J]. J. Electroanal. Chem, 2001,497: 84-96.
    [221] F Joho, P Novak, SNIFTIRS investigation of the oxidative decomposition of organic-carbonate-based electrolytes for lithium-ion cells [J]. Electrochim. Acta, 2000,45: 3589-3599.
    [222] J Ufheil, A Wursig, O D Schneider, P Novak, Acetone as oxidative decomposition product in propylene carbonate containing battery electrolyte [J]. Electrochem. Commun., 2005, 7: 1380-1384.
    [223] M Winter, R Imhof, F Joho, P Novak, FTIR and DEMS investigations on the electroreduction of chloroethylene carbonate-based electrolyte solutions for lithium-ion cells [J]. J. Power Sources, 1999, 81: 818-823.
    [224] S I Pyun, Y G Ryu, In-situ spectroelectrochemical analysis of the passivating surface film formed on a graphite electrode during the electrochemical reduction of lithium salts and organic carbonate solvent [J]. J. Electrochem. Soc,1998,455: 11-17.
    [225] S B Lee, S I Pyun, Critical assessment of a new in situ spectroelectrochemical cell designed for the study of interfacial reactions between a porous graphite anode and alkyl carbonate solution [J]. J. Solid State Electrochem. 2203, 4:201-207.
    [226] H J Santner, C Korepp, M Winter, J O Besenhard, K C Moller. In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries [J]. Anal. Bioanal. Chem., 2004, 379: 266-271.
    [227] K C Moller, H J Santner, W Kern, S Yamaguchi, J O Besenhard, Winter M In situ characterization of the SEI formation on graphite in the presence of a vinylene group containing film-forming electrolyte additives [J]. J. Power Sources,2003,119:561-566.
    [228] Y Cheng, G Wang, M M Yan, Z Jiang, In situ analysis of interfacial reactions between negative MCMB, lithium electrodes, and gel polymer electrolyte [J]. J. Solid State Electrochim., 2007, 11:310-316.
    [229] S W Song, G V Zhuang, P N Ross, Surface film formation on LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 cathodes using attenuated total reflection IR spectroscopy [J]. J. Electroanal. Chem., 2004,151: Al162-A1167.
    [230] S Leroy, H Martinez, R Dedryvere, D Lemordant, D Gonbeau, Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study [J]. Appl. Surf. Sci., 2007,253: 4895-4905.
    [231] D T Shieh, J T Yin, K Yamamoto, M Wada, S Tanase, T Sakai, Surface characterization on lithium insertion/deinsertion process for sputter-deposited AgSn thin-film electrodes by XPS [J]. J. Electrochem. Soc, 2006,153: A106-A112.
    [232] K Edstrom, T Gustafsson, J O Thomas, The cathode-electrolyte interface in the Li-ion battery [J]. Electrochim. Acta,2004, 50: 397-403.
    [233] E Peled, D Golodnitsky, J Penciner, in Handbook of battery materials [M], ed. by J. Besenhard. Weinheim:WILEY-VCH, 1999.
    [234] D Bar-Tow, E Peled, L Burstein, A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries [J]. J. Electrochem. Soc, 1999, 146: 824-832.
    [235] A M Anderssona, A Henningsonb, H Siegbahnb, U Janssona, K Edstroma, Electrochemically lithiated graphite characterised by photoelectron spectroscopy [J]. J. Power Sources, 2003,119-121: 522-527.
    [236] E Peled, D B Tow, A Merson, A Gladkich, L Burstein, D Golodnitsky, Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies [J]. J. Power Sources, 2001, 97-98:52-57.
    [237] R I R Blyth, H Buqa, F P Netzer, M G Ramsey, J O Besenhard, M Winter, X-ray photoemission studies of surface pre-treated graphite electrodes [J]. J. Power Sources, 2001, 97-98: 171-173.
    [238] X M Wang, Y Sakiyama, Y Takahashi, C Yamada, H Naito, G Segami, T Hironaka, E Hayashi, K Kibe, Electrode structure analysis and surface characterization for lithium-ion cells simulated low-Earth-orbit satellite operation Ⅱ: Electrode surface characterization [J]. J. Power Sources, 2007,168: 484-492.
    [239] S Naille, R Dedryvere, H Martinez, S Leroy, P E Lippens, J C. Jumas, D Gonbeau, XPS study of electrode/electrolyte interfaces of η-Cu_6Sn_5 electrodes in Li-ion batteries [J]. J. Power Sources, 2007,174: 1086-1090.
    [240] G Z Sauerbrey, Use of quartz crystal vibrator for weighting thin films on a microbalance [J]. Z. Phys. 1959, 155: 206-222.
    [241] E Gileadi, V Tsionsky, Studies of electroplating using an EQCM -Ⅰ. Copper and silver on gold [J]. J. Electrochem. Soc,2000,147: 567-574.
    [242] K Kwon, F P Kong, F McLarnon, J W Evans. Characterization of the SEI on a carbon film electrode by combined EQCM and spectroscopic ellipsometry [J]. J. Electrochem. Soc, 2003,150: A229-A233.
    [243] D Aurbach, M Moshkovich. A study of lithium deposition-dissolution processes in a few selected electrolyte solutions by electrochemical quartz crystal microbalance [J]. J. Electrochem. Soc, 1998,145: 2629-2639.
    [244] X Y Zhang, T M Devine, Identity of passive film formed on aluminum in Li-ion battery electrolytes with LiPF_6 [J]. J.Electrochem. Soc, 2006,153, B344-B351.
    [1] H Gong, S G Sun, J T Li, Y J Chen, S P Chen, Surface combinatorial studies of IR properties of nanostructured Ru film electrodes using CO as probe molecule [J]. Electrochim. Acta, 2003, 48: 2933-2942.
    [2] C J Fan, Surface structure effects in electrochemical of CO_2 reduction on Pt single crystal and Sb modified planes [D].Ph. D dissertation of Xiamen university, Xiamen: 2005.
    [3] G Z Sauerbrey, Use of quartz crystal vibrator for weighting thin films on a microbalance [J]. Z. Phys. 1959, 155:206-222.
    [4] N Y Gu, L Niu, S Dong, Simultaneous determination of both the calibration constant in an electrochemical quartz crystal microbalance and the active surface area of a polycrystalline gold electrode [J]. J. Electrochem. Commun., 2000,2: 48-50.
    [5] T A Carlson, Photoelectron-auger electron spectroscopy [M]. New York: Plenum,1975.
    [6] J Swiatowska-Mrowiecka, V Maurice, S Zanna, L Klein, P Marcus, XPS study of Li ion intercalation in V_2O_5 thin films prepared by thermal oxidation of vanadium metal [J]. Electrochim. Acta, 2007, 52, 5644-56533.
    [7] M L Pacholski and, N Winograd, Imaging with mass spectrometry [J]. Chem. Rev., 1999, 99: 2977-3005.
    [8] A J Bard, L R Faulkner, Electrochemical methods: fundamentals and applications [M]. New York: John Wiley & Sons,2nd Edition, 2000.
    [9] M E Orazem, B Tribollet, Electrochemical impedance spectroscopy [M]. New Jersey: John Wiley & Sons, 2008.
    [1] M Winter, J O Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites [J]. Electrochim. Acta, 1999,45:31-50.
    [2] M Inaba, T Uno, A Tasaka, Irreversible capacity of electrodeposited Sn thin film anode [J]. J. Power Sources, 2005, 146: 473-477.
    [3] M Noh, Y Kim, M G Kim, H Lee, H Kim, Y Kwon, Y Lee, J Cho, Monomer-capped tin metal nanoparticles for anode materials in lithium secondary batteries [J]. Chem. Mater., 2005,17: 3320-3324
    [4] H Li, Q Wang, L H Shi, L Q Chen, X J Huang, Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery [J]. Chem. Mater., 2002,14: 103-108.
    [5] K T Lee, Y S Jung, S M Oh, Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries [J]. J. Am. Chem. Soc, 2003,125: 5652-5653.
    [6] H Mukaibo, T Momma, T Osaka, Changes of electro-deposited Sn-Ni alloy thin film for lithium ion battery anodes during charge discharge cycling [J]. J. Power Sources, 2005, 146: 457-463.
    [7] I A Courtney, J R Dahn, Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass [J]. J. Electrochem. Soc, 1997, 144: 2943-2948.
    [8] I A Courtney, J R Dahn, Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J]. J. Electrochem. Soc, 1997, 144: 2045-2052.
    [9] R A Huggins, Lithium alloy negative electrodes [J]. J. Power Sources, 1999, 81: 13-19.
    [10] G Z Sauerbrey, Use of quartz crystal vibrator for weighting thin films on a microbalance [J]. Z. Phys., 1959, 155: 206-222.
    [11] N Y Gu, L Niu, S Dong, Simultaneous determination of both the calibration constant in an electrochemical quartz crystal microbalance and the active surface area of a polycrystalline gold electrode [J]. J. Electrochem. Commun., 2000,2: 48-50.
    [12] D Aurbach, M Moshkovich, Y Cohen, A Schechter, The study of surface film formation on noble-metal electrodes in alkyl carbonates/Li salt solutions, using simultaneous in situ AFM, EQCM, FTIR, and EIS [J]. Langmuir, 1999, 15:2947-2960.
    [13] D Aurbach, B Markovsky, A Shechter, Y EinEli, H A Cohen, Comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures [J]. J. Electrochem. Soc,1996,143: 3809-3820.
    [14] M Morita, Y Asai, N Yoshimoto, M Ishikawa, A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts [J]. J. Chem. Soc, Faraday Trans., 1998, 94: 3451-3456
    [15] T Fukushima, Y Matsuda, H Hashimoto, R Arakawa, Studies on solvation of lithium ions in organic Electrolyte Solutions by electrospray ionization-mass spectroscopy electrochem [J]. Solid State Lett., 2001,4: A127-A128.
    [16] M Masia, M Probst, R Rey, Ethylene carbonate-Li~+: a theoretical study of structural and vibrational properties in gas and liquid phases [J]. J. Phys. Chem. B, 2004, 108, 2016-2027.
    [17] Y X Wang, P B Balbuena, Theoretical studies on cosolvation of Li ion and solvent reductive decomposition in binary mixtures of aliphatic carbonates [J]. Int. J. Quantum Chem., 2005,102:724-733.
    [18] H Yang, G V Zhuang, P N Ross, Thermal stability of LiPF_6 salt and Li-ion battery electrolytes containing LiPF_6 [J]. J. Power Sources, 2006,161: 573-579.
    [19] Y X Wang, S Nakamura, M Ue, P B Balbuena, Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate [J]. J. Am. Chem. Soc, 2001,123: 11708-11718.
    [20] E Endo, M Ata, K Tanaka, K Sekai, Electron spin resonance study of the electrochemical reduction of electrolyte solutions for lithium secondary batteries [J]. J. Electrochem. Soc, 1998, 145: 3757-3764.
    [21] E Endo, K Tanaka, K Sekai, Initial reaction in the reduction decomposition of electrolyte solutions for lithium batteries [J]. J. Electrochem. Soc, 2000, 147:4029-4033.
    [1] N C Li, C R Martin, B Scrosati, Nanomaterial-based Li-ion battery electrodes [J]. J. Power Sources, 2001, 97-98:240-243.
    [2] I Grigoriants, L Sominski, H L Li, I Ifargan, D Aurbach, A Gedanken, Chem. Commun., The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries [J]. 2005,7: 921-923.
    [3] A D W Todd, R A Dunlap, J R Dahn, Mossbauer effect studies of sputter-deposited tin-cobalt and tin-cobalt-carbon alloys [J]. J. Alloys Compd., 2007,443:114-120.
    [4] J Hassoun, S Panero, P Simon, P L Taberna, B Scrosati, High-rate, long-life Ni-Sn nanostructured electrodes for lithium-Ion batteries [J]. Adv. Mater., 2007,19: 1632-1636.
    [5] F S Ke, L Huang, J S Cai, S G Sun, Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries [J]. Electrochim. Acta, 2007, 52: 6741-6747.
    [6] J O Besenhard, J Yang, M Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries [J]? J. Power Sources, 1997,68: 87-90.
    [7] N Tamura, Y Kato, A Mikami, M Kamino, S Matsuta, S Fujitani, Study on Sn-Co alloy anodes for lithium secondary batteries I. Amorphous system [J]. J. Electrochem. Soc, 2006,153: A1626-A1632.
    [8] N Tamura, Y Kato, A Mikami, M Kamino, S Matsuta, S Fujitani, Study on Sn-Co alloy electrodes for lithium secondary batteries II. nanocomposite system [J]. J. Electrochem. Soc, 2006, 153: A2227-A2231.
    [9] http://www.sony.net/SonyInfo/News/Press/200502/05-006E/index.html.
    [10] D Aurbach, B Markovsky, A Shechter, Y EinEli, H Cohen. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries. II. Graphite electrodes [J]. J Electrochem Soc, 1995, 142: 2882-2890.
    [11] A D W Todd, R E Mar, J R Dahna, Combinatorial study of Tin-transition metal alloys as negative electrodes for lithium-ion batteries [J]. J. Electrochem. Soc, 2006,153: A1998-A2005.
    [12] D Larcher, L Y Beaulieu, O Mao, A E George, J R Dahn, Study of the reaction of lithium with isostructural A(2)B and various AlxB alloys [J]. J. Electrochem. Soc, 2000,147: 1703-1708.
    [13] M Wachtler, M Winter, J O Besenhard, Anodic materials for rechargeable Li-batteries [J]. J. Power Sources, 2002, 105:151-160.
    [14] T Fukushima, Y Matsuda, H Hashimoto, R Arakawa, Studies on solvation of lithium ions in organic electrolyte solutions by electrospray ionization-mass spectroscopy [J]. Electrochem. Solid State Lett., 2001,4: A127-A128.
    [15] Y X Wang, P B Balbuena, Theoretical studies on cosolvation of Li ion and solvent reductive decomposition in binary mixtures of aliphatic carbonates[J], Int. J. Quantum Chem., 2005, 102: 724-733.
    [16] M Masia, M Probst, R Rey, Ethylene carbonate-Li~+: A theoretical study of structural and vibrational properties in gas and liquid phases [J]. J. Phys. Chem. B, 2004, 108: 2016-2027.
    [17] H L Yeager, J D Fedyk, R J Parker, Spectroscopic Studies of Ionic Solvation in Propylene Carbonate [J]. J. Phys. Chem.1973, 77: 2407-2410.
    [18] D Aurbach, B Markovsky, A Shechter, Y EinEli, H Cohen, A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures [J]. J. Electrochem. Soc, 1996, 143:3809-3820.
    [19] H Yoshida, T Fukunaga, T Hazama, M Terasaki, M Mizutani, M Yamachi, Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging [J]. J. Power Sources, 1997,68: 311-315.
    [20] J Z Li, H Li, Z X Wang, X J Huang, L Q Chen, The interaction between SnO anode and electrolytes [J]. J. Power Sources, 1999,81-82: 346-35.
    [21] C R Wang, Y Y Wang, C C Wan, Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte [J]. J. Power Sources, 1998, 72: 66-70.
    [22] Q C Zhuang, Z F Chen, Q F Dong, Y X Jiang, L Huang, S G Sun, Studies of the first lithiation of graphite materials by electrochemical impedance spectroscopy [J]. Chinese Science Bulletin, 2006, 51: 1055-1059.
    [1] L Taberna, S Mitra, P Poizot, P Simon, J M Tarascon, High rate capabilities Fe_3O_4-based Cu nano-architectured electrodes for lithium-ion battery applications [J]. Nature Mater., 2006, 5: 567-573.
    [2] K T Nam, D W Kim, P J Yoo, C Y Chiang, N Meethong, P T Hammond, Y M Chiang, A M Belcher, Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes [J]. Science, 2006,312: 885-888.
    [3] P Poizot, S Laruelle, S Grugeon, L Dupont, J M Tarascon, Nano-sizedtransition- metaloxidesas negative-electrode materials for lithium-ion batteries [J]. Nature, 2000,407: 496-499.
    [4] E Hosono, S Fujihara, I Honma, H S Zhou, The high power and high energy densities Li ion storage device by nanocrystalline and mesoporous Ni/NiO covered structure [J]. Electrochem. Commun., 2006, 8: 284-288.
    [5] P C Wang, H P Ding, T Bark, C H Chen, Nanosized α-Fe_2O_3 and Li-Fe composite oxide electrodes for lithium-ion batteries [J]. Electrochim. Acta, 2007, 52: 6650-6655.
    [6] Y Takeda, R Kanno, Y Tsuji, O Yamamoto, H Taguch, Chromium oxide as cathodes for lithium cells [J]. J. Power Sources, 1983, 9: 325-328.
    [7] J O Besenhard, M Schwake, N Misailidis, Modified chromium oxides for high-arte lithium intercalation cathodes [J]. J. Power Sources, 1989, 26: 409-414.
    [8] I Jakubeci, J Vondrak, J Bludska, The preparation and electrochemical properties of chromium oxides CrO_x both in lithium and sodium aprotic electrolytes[J]. J. Power Sources, 1992, 39:133-145.
    [9] A Manthiram, J Kim, Low temperature synthesis of insertion oxides for lithium batteries [J]. Chem. Mater., 1998, 10:2895-2909.
    [10] S Grugeon, S Laruelle, L Dupont, F Chevallier, P L Taberna, P Simon, L Gireaud, S Lascaud, E Vidal, B Yrieix, J M Tarascon, Combining electrochemistry and metallurgy for new electrode designs in Li-ion batteries [J]. Chem. Mater.2005, 17:5041-5047.
    [11] L Dupont, S Laruelle, S Grugeon, C Dickinson, W Zhou, J M Tarascon, Mesoporous Cr_2O_3 as negative electrode in lithium batteries: TEM study of the texture effect on the polymeric layer formation [J]. J. Power Sources, 2008, 175:502-509.
    [12] J Hu, H Li, X J Huang, L Q Chen, Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries [J]. Solid State Ionics, 2006, 26-32: 2791-2799.
    [13] J Hu, H Li, X J Huang, Cr_2O_3-based anode materials for Li-ion batteries [J]. Electrochem. Solid State Lett., 2005,8:A66-A69.
    [14] L Dupont, S Grugeon, S Laruelle, J M Tarascon, Structure, texture and reactivity versus lithium of chromium-based oxides films as revealed by TEM investigations [J]. J. Power Sources, 2007,164: 839-848.
    [15] H Li, P Balaya, J Maier, Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides [J]. J. Electrochem. Soc, 2004, 151: A1878-A1885.
    [16] G Binotto, D Larcher, A S Prakash, R H Urbina, M S Hegde, J M Tarascon, Synthesis, characterization, and li-electrochemical performance of highly porous Co_3O_4 powders [J]. Chem. Mater., 2007,19: 3032-3040.
    [17] V Maurice, S Cadot, P Marcus, Hydroxylation of ultra-thin films of alpha-Cr_2O_3(0001) formed on Cr(l 10) [J]. Surf. Sci.2001,471:43-58.
    [18] A R Pratt, N S Mclntyre, Comment on 'Curve Fitting of Cr 2p Photoelectron Spectra of Cr203 and CrF3' [JJ. Surf. Interface Anal., 1996,24: 529-530.
    [19] M Oku, S Suzuki, N Ohtsu, T Shishido, K Wagatsuma, Comparison of intrinsic zero-energy loss and Shirley-type background corrected profiles of XPS spectra for quantitative surface analysis: Study of Cr, Mn and Fe oxides [J]. Appl. Surf. Sci., 2008, 254: 5141-5148.
    [20] S A Chambers, T Droubay, Role of oxide ionicity in electronic screening at oxide/metal interfaces [JJ. Phys. Rev. B,2001,64:075410.
    [21] S Le Pevedic, D Schmaus, C Cohen, Formation of a well-ordered ultrathin aluminum oxide film on Ni(111): Determination of its thickness, composition and structure [J]. Surf. Sci., 2008,602:67-68.
    [22] D Schmaus, I C Vickridge, in Analytical Methods for Corrosion Science and Engineering [M], ed. by P Marcus, F Mansfeld. Now York: CRC press, 2006.
    [23] S A Chambers, T Droubay, Role of oxide ionicity in electronic screening at oxide/metal interfaces [J]. Phys. Rev. B,2001,64:075410.
    [24] A M Andersson, M Herstedt, A G Bishop, K Edstrom, The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes [J]. Electrochim. Acta, 2002,47: 1885-1889.
    [25] V Maurice, W P Yang, P Marcus, XPS and STM investigation of the passive film formed on Cr(110) single-crystal surfaces [J]. J. Electrochem. Soc, 1994,141: 3016-3027.
    [26] X M Wang, T Hironaka, E Hayashi, C Yamada, H Naito, G Segami, Y Sakiyama, Y Takahashi, K Kibe, Electrode structure analysis and surface characterization for lithium-ion cells simulated low-Earth-orbit satellite operation Ⅱ: Electrode surface characterization [J]. J. Power Sources, 2007,168:484-492.
    [27] G R Zhuang, K Wang, Y Chen, P.N. Ross Jr., Study of the reactions of Li with tetrahydrofuran and propylene carbonate by photoemission spectroscopy [J]. J. Vac. Sci. Technol., 1998, A16: 3041-3045.
    [28] M Herstedt, A M Andersson, H Rensmo, H Siegbahn, K Edstrom, Characterization of the SEI formed on natural graphite in PC-based electrolytes [J]. Electrochim. Acta, 2004,49: 4939-4947.
    [29] J Swiatowska-Mrowiecka, V Maurice, S Zanna, L Klein, P Marcus, XPS study of Li ion intercalation in V_2O_5 thin films prepared by thermal oxidation of vanadium metal [J], Electrochim. Acta, 2007, 52: 5644-5653.
    [30] H Hagiwara, S Koya, M Wilde, M Matsumoto, T Okano, K Fukutani, Growth and vibrational properties of ultra-thin Cr_2O_3 films grown on Cr(l10) studied by RAIRS [J]. Surf. Sci., 2006, 600: 3252-3257.
    [31] V M Bermudez, W J DeSisto, Study of chromium oxide film growth by chemical vapor deposition using infrared reflection absorption spectroscopy [J]. J. Vac. Sci. Technol. A, 2001, 19: 576-583.
    [32] Y S Hu, W H Kong, L Hong, X J Huang, L Q Chen, Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries [J]. Electrochem. Commun., 2004, 6: 126-131.
    [33] D Ostrovskii, F Ronci, B Scrosati, P Jacobsson, A FTIR and Raman study of spontaneous reactions occurring at the LiNiyCo_(1-x)O_2 electrode/non-aqueous electrolyte interface [J]. J. Power Sources, 2001,94: 183-188.
    [34] C Naudin, J L Bruneel, A Chami, B Desbat, J Grondin, J C Lassegues, L Servant, Characterization of the lithium surface by infrared and Raman spectroscopies [J]. J. Power Sources, 2003, 124: 518-525.
    [35] D Aurbach, B Markovsky, A Shechter, Y Ein-Eli, H Cohen, J. Electrochem. Soc, A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures [J]. 1996, 143: 3809-3820.
    [36] J Z Li, H Li, Z X Wang, L Q Chen, X J Huang, The study of surface films formed on SnO anode in lithium rechargeable batteries by FTIR spectroscopy J. Power Sources, 2002,107:1-4.
    [1] M S Whittingham, Electrical energy storage and intercalation chemistry [J]. Science, 1976, 192: 1126-1127.
    [2] G X Wang, S Bewlay, J Yao, H K Liu, S X Dou, Tungsten disulfide nanotubes for lithium storage [J]. Electrochem. Solid State Lett., 2004, 7: A321-A323.
    [3] X Zhu, Z Wen, Z Gu, S Huang, Room-temperature mechanosynthesis of Ni_3S_2 as cathode material for rechargeable lithium polymer batteries [J]. J. Electrochem. Soc, 2006, 153: A504-A507.
    [4] K Suzukia, T Iijimaa, M Wakiharab, Chromium Chevrel phase sulfide (Cr_Mo_6S_(8-y)) as the cathode with long cycle life in lithium rechargeable batteries [J], Solid State Ionics, 1998, 109: 311-320.
    [5] J Wang, S H Ng, G X Wang, J Chen, L. Zhao, Y. Chen, H K Liu, Synthesis and characterization of nanosize cobalt sulfide for rechargeable lithium batteries [J]. J. Power Sources, 2006, 159: 287-290.
    [6] T Matsumura, K Nakano, R Kanno, A Hirano, N Imanishi, Y Takeda, Nickel sulfides as a cathode for all-solid-state ceramic lithium batteries [J]. J. Power Sources, 2007, 174: 632-636.
    [7] J Wang, S Y Chew, D Wexler, G X Wang, S H. Ng, S Zhong, H K Liu, Nanostructured nickel sulfide synthesized via a polyol route as a cathode material for the rechargeable lithium battery [J]. Electrochem. Commun., 2007, 9: 1877-1880.
    [8] T J Kim, C Kirn, D Son, M Choi, B Park, Novel SnS_2-nanosheet anodes for lithium-ion batteries [J]. J. Power Sources,2007,167: 529-535.
    [9] J Chen, Z L Tao, S L Li, Lithium intercalation in open-ended TiS_2 nanotubes [J]. Angew. Chem. Int. Ed. 2003, 42:2147-2151.
    [10] S C Yin, H Grondey, P Strobel, H Huang, L F Nazar, Charge ordering in lithium vanadium phosphates: Electrode materials for lithium-ion batteries [J]. J. Am. Chem. Soc, 2003,125: 326-327.
    [11] H Yamada, K Tagawa, M Komatsu, I Moriguchi, T Kudo, High power battery electrodes using nanoporous V_2O_5/carbon composites [J]. J. Phys. Chem. C, 2007, 111: 8397-8402.
    [12] J M Gallardo-Amores, N Biskup, U Amador, K Persson, G Ceder, E Moran, M E Arroyo, M E A Y de Dompablo, Computational and experimental investigation of the transformation of V_2O_5 under pressure [J]. Chem. Mater., 2007, 19:5262-5271.
    [13] M E A Y de Dompablo, J M Gallardo-Amores, U Amador, E Moran, Are high pressure materials suitable for electrochemical applications? HP-V_2O_5 as a novel electrode material for Li batteries [J]. Electrochem. Commun., 2007,9: 1305-1310.
    [14] J Swiatowska-Mrowiecka, S de Diesbach, V Maurice, S Zanna, L Klein, E Briand, I Vickridge, P Marcus, Li-ion intercalation in thermal oxide thin films of MoO_3 as studied by XPS, RBS, and NRA [J], J. Phys. Chem. C, 2008, 112:11050-11058.
    [15] W Y Li, F Y Cheng, Z L Tao, J Chen, Vapor-transportation preparation and reversible lithium intercalation/deintercalation of-MoO_3 Microrods [J]. J. Phys. Chem. B, 2006, 110: 119-124.
    [16] AN Day, B P Sullivan. Method of Preparing Cathodic Electrodes [P]. US Patent 3655585, 1972.
    [17] J Swiatowska-Mrowiecka, V Maurice, S Zanna, L Klein, P Marcus, XPS study of Li ion intercalation in V_2O_5 thin films prepared by thermal oxidation of vanadium metal [J]. Electrochim. Acta, 2007, 52: 5644-5653.
    [18] M Gomez-Cazalilla, A Infantes-Molina, R Moreno-Tost, P J Maireles-Torres, J Merida-Robles, E Rodrguez-Castellon,A Jimenez-Lopez, Al-SBA-15 as a support of catalysts based on chromium sulfide for sulfur removal [J], Catal. Today,2008, to be published.
    [19] G Beamson, D Briggs, High resolution XPS of organic polymers [M], New York: John Wiley & Sons, 1992.
    [20] A M Andersson, M Herstedt, A G Bishop, K Edstrom, The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes [J]. Electrochim. Acta, 2002,47: 1885-1889.
    [21] G R Zhuang, K Wang, Y Chen, P.N. Ross Jr., Study of the reactions of Li with tetrahydrofuran and propylene carbonate by photoemission spectroscopy [J]. J. Vac. Sci. Technol. 1998, A16: 3041-3045.
    [22] A Levasseur, P Vinatier, D Gonbeau, X-ray photoelectron spectroscopy: A powerful tool for a better characterization of thin film materials [J]. Bull. Mater. Sci.,1999,22,607-614.
    [23] X M Wang, T Hironaka, E Hayashi, C Yamada, H Naito, G Segami, Y Sakiyama, Y Takahashi, K Kibe, Electrode structure analysis and surface characterization for lithium-ion cells simulated low-Earth-orbit satellite operation Ⅱ:Electrode surface characterization [J]. J. Power Sources, 2007, 168: 484-492.
    [24] R Lindstrom, V Maurice, S Zanna, L Klein, H Groult, L Perrigaud, C Cohen, P Marcus, Thin films of vanadium oxide grown on vanadium metal: oxidation conditions to produce V_2O_5 films for Li-intercalation applications and characterisation by XPS, AFM, RBS/NRA [J]. Surf. Interface Anal. 2006, 38: 6-18.
    [25] J. Mendialdua, R. Casanova, Y. Barbaux, XPS studies of V_2O_5, V_6O_(13), VO_2 and V_2O_3 [J]. J. Electron. Spectrosc. Relat. Phenom., 1995, 71:249-261.
    [26] J M Cocciantelli, J P Doumerc, M Pouchard, M Broussely, J Labta, Crystal chemistry of electrochemically inserted Li_xV_2O_5 [J]. J. Power Sources, 1991,34: 103-111.
    [27] M D Levi, Z Lu, D Aurbach, Application of finite-diffusion models for the interpretation of chronoamperometric and electrochemical impedance responses of thin lithium insertion V_2O_5 electrodes [J], Solid State Ionics, 2001, 143:309-318
    [28] F Varsano, F Decker, E Masetti, F Croce, Lithium diffusion in cerium-vanadium mixed oxide thin films: a systematic study [J]. Electrochim. Acta, 2001,46: 2069-2075.
    [29] M D Levi, Z Lu, D Aurbach, Li-insertion into thin monolithic V_2O_5 films electrodes characterized by a variety of electroanalytical techniques [J], J. Power sources, 2001, 97-98: 482-485
    [30] R Lindstroma, V Maurice, H Groult, L Perrigaud, S Zanna, C Cohenc, P Marcus, Li-intercalation behavior of vanadium oxide thin film prepared by thermal oxidation of vanadium metal [J]. Electrochim. Acta, 2006, 51: 5001-5011.
    [31] M Liberatore, F Decker, A S Vuk, B Orel, G Drazic, Effect of the organic-inorganic template ICS-PPG on sol-gel deposited V_2O_5 electrochromic thin filmSolar Energy Materials & Solar Cells [J]. 2006, 90: 434-443.
    [32] A Benayad, H Martinem, A Gies, B Pecquenard, A Lavasseur, D Gonbeau, XPS investigations achieved on the first cycle of V_2O_5 thin films used in lithium microbatteries [J]. J. Electron Spectrosc. 2006, 150: 1-10.
    [33] G R Zhuang, K Wang, Y Chen, and P N Ross, Jr. Study of the reactions of Li with tetrahydrofuran and propylene carbonate by photoemission spectroscopy [J]. J. Vac. Sci. Technol. A, 1998,16: 3041-3045.
    [34] M Herstedta, A M Anderssona, H Rensmob, H Siegbahnb, K Edstroma, Characterisation of the SEI formed on natural graphite in PC-based electrolytes [J]. Electrochim. Acta, 2004,49:4939-4947.
    [35] R Dedryvere, L Gireaud, S Grugeon, S Laruelle, J M Tarascon, D Gonbeau, Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy: experimental and theoretical study [J]. J. Phys. Chem. B, 2005, 109:15868-15875.
    [36] W Chen, J F Peng, L Q Mai, Q Y Zhu, Q Xu, Synthesis of vanadium oxide nanotubes from V_2O_5 sols [J]. Mater. Lett.,2004, 58: 2275-2278.
    [37] A Surca, B Orel, G Drazic, B Pihlar, Ex situ and in situ infrared spectroelectrochemical investigations of V_2O_5 crystalline films [J]. J. Electrochem. Soc, 1999, 146: 232-242.
    [38] V V Fomichev, P I Ukrainskaya, T M Ilyin, Vibrational spectra and electrostatic fields of V_2O_5 and lithium vanadium bronzes [J]. Spectrochim. Acta Part A, 1997, 53: 1833-1837.
    [39] Y S Hu, W H Kong, L Hong, X J Huang, L Q Chen, Electrochem. Commun. Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries [J]. Electrochem.Commun., 2004,6: 126-131.
    [40] D Ostrovskii, F Ronci, B Scrosati, P Jacobsson, A FTIR and Raman study of spontaneous reactions occurring at the LiNi_yCo_(1-x)O2 electrode/non-aqueous electrolyte interface [J]. J. Power Sources, 2001, 94: 183-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700