用户名: 密码: 验证码:
热金属水分解动力学及固定床反应器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ITER是由欧盟、中国、日本等七方共同参与建造的磁约束核聚变实验装置。其氚增殖实验包层模块(TBM)的主要目的是验证未来核聚变反应堆氚自持的可行性和可靠性,是ITER的核心技术之一。中国设计采用氦冷陶瓷增殖剂实验包层(HCCB),采用含0.1%H2/He作为吹洗气经同位素交换提取模块中的氚,通过氚提取系统(TES)分析评估实验模块的总产氚量和元素氚与氚化水的份额。为了实现上述目的,需要将以氚化水形态存在的氚转化为元素态氚以便有效回收氚和分析不同形态氚的量。
     热金属法是一种可靠的氚水分解方法,其原理是用金属(或合金)将氚化水还原成元素态的氚。该方法不需要引入复杂的机械体系,具有体积小、成本低和安全可靠等优点,欧盟和中国的HCCB-TBM-TES设计中都采用了该方法。但目前还没有针对TBM特殊要求的相关实验研究报导。因此有必要对水分解材料和水分解反应器进行相应研究,为TBM-TES氚化水处理床的设计提供技术支撑。
     本文面向TBM-TES氚化水处理需求,根据气固反应器研究的一般方法开展了下述两方面工作:①材料水分解动力学实验,考察四种侯选材料的水分解动力学性能,建立水分解动力学方程;②固定床反应器研究,考察反应器的质量、能量传递过程,并与动力学方程耦合,建立了相应的反应器模型方程。具体内容如下:
     (1)基于热金属床填充材料氚滞留量低的要求,在分析文献的基础上,优选了ZrMnFe(ST909)和ZrNi5两类商用锆合金;并采用溶液燃烧-钙还原法制备了超细ZrMnFe合金微粉。考察了这三种锆合金的高温吸氢性能和水分解动力学性能。试验结果表明1000Pa氢压下吸氢质量比均<0.04‰,能够满足热金属床低氚滞留量的要求。在673K-823K范围内考察了三种材料在不同温度和水浓度条件下的水分解反应动力学性能,结果表明ST909的水分解反应可用Ginstring-Brounshtein模型方程描述,反应活化能为118kJ·mol-1;化学合成ZrMnFe可用Jander模型方程描述,反应活化能是47kJ·mol-1,活化能较ST909显著降低;ZrNi5可用均相反应模型方程描述,反应活化能是55.8kJ·mol-1。上述各反应级数均为1级。
     (2)针对热金属材料能够可逆使用的要求,考察了Fe/Fe304体系的水分解反应动力学。采用溶液燃烧-氢还原法合成纳米铁粉,平均反应速率较微米级铁粉提升10倍以上。纳米铁粉中掺加Zr能显著提升抗烧结性能,优化添加量是l0at.%;添加Rh能显著提升反应动力学性能,优化添加量是1at.%。锆铑共掺杂的优化体系是Zr10%-Rhl%-Fe,循环20次后其动力学性能仍无明显下降,水分解反应级数为1级,反应过程可用均相反应方程描述,反应活化能是30.8kJ·mol-1。
     (3)进行了微型反应器的实验和模型验证。一维拟均相恒温模型的计算结果与恒温微型反应器的实验结果一致性良好,表明该动力学模型能够较好地描述微型反应器的实际情况。通过对质量衡算方程的变形处理,建立了归一化传质带的计算方法;对比表明ST909的归一化传质带长度是其余三种材料的10倍以上,不适合作为TBM-TES水分解反应器的填充材料。建立了由归一化传质带结合反应器操作参数的穿透时间预测方法,实验结果表明该方法可较准确预测穿透点,可作为反应器设计的基本方法。
     (4)考察了原料气中加氢对穿透曲线的影响,结果表明氢对锆系合金穿透曲线没有明显影响,TBM-TES工况下不需要考虑氢对锆合金水分解性能的影响。但氢会严重降低铁的水分解效率,铁不适合作为TBM-TES在线氚化水分解材料。考察了同等条件下D2O替换H2O和He替换Ar的穿透曲线,结果表明水质量数改变及载气质量数改变对穿透曲线没有明显影响;TBM-TES工况下不需要考虑HTO与H2O质量数差异对反应速度的影响。
     (5)针对TBM-TES中试规模反应器,分别考察了反应器的动量传递(床层压降)、轴向扩散和能量传递过程。首先以二氧化锆球形颗粒作为模拟填料,考察了颗粒直径、气体流速、温度对压降的影响规律,压降可采用McDonald方程进行描述。试验结果表明粉体材料装填反应器压降大,必须对材料进行造粒处理才能满足TBM-TES低压降要求,适宜的造粒颗粒直径为2mm。针对惰性核滚动造粒颗粒,建立了由粉体动力学方程和孔扩散两项组成的修正动力学方程,获得了造粒颗粒的传质带修正方程。考察了轴向扩散对质量传递过程的影响,结果表明轴向扩散系数增大会导致传质带增长,传质带利用率下降;采用数值方法建立了轴向扩散系数对传质带的修正方程。按一维非均相绝热模型计算了反应器的热点温度,热点温度受水浓度影响显著,而与流速基本无关;TBM-TES工况由于水浓度为ppm量级,可视为等温反应。基于修正传质带的穿透点预测方法可以较准确预测中试反应器的穿透点。
     (6)进行了手套箱惰性气氛氚化水热金属床分解实验,针对放射性源项为0.1Ci/L氚化水的手套箱惰性气氛,手套箱氚化水浓度随循环时间的下降而快速下降,流出热金属床的氚为元素态,实验结果验证了轻水分解模型,表明该模型可用于TBM-TES氚化水分解反应器设计。
     (7)建立了基于传质带方法的TBM-TES氚化水分解反应器的设计程序;拟定10ppm和100ppm两种载气水含量,根据反应器压降5000Pa的设计标准,分别对装填ZrNi5、化学合成ZrMnFe和Zr10%-Rhl%-Fe的反应器进行了设计,获得相关的反应器尺寸、利用率等参数。
ITER is an experimental fusion reactor based on magnetic confinement fusion, with the cooperation of seven countries including EU, China, Japan, et al. The fundamental purpose of TBM (Test Blanket Module) is to verify the feasibility and reliability of tritium self-sufficiency in fusion reactor. China has decided to develop and test the helium-cooled ceramic breeder (HCCB) test blanket module. The tritium in breeder materials will be extracted by0.1%H2/He, hydrogen is used to enhance the performance of isotope exchanging. There will be some amount of tritiated water in the purge gas. In order to evaluate the total amount of tritium and recovey tritium from tritiated water, tritiated water should be transfered to elemental tritium effectively.
     Hot metal bed is a convenient and reliable method to decompose tritiated water, the principle is reduction of water by metal/alloy to produce hydrogen. This method is simple, without mechanics, compact, cost-effective and safe. Hot metal bed has been designed to split HTO in HCCB-TBM TES both by EU and China, but nowadays the is still no corresponding research report, so it is necessary to carry out experimental research to provide project for water decomposition in TBM TES. The general research method for gas-solid reaction was used in this study, and the detailed work is as following:
     (1) Based on the demand of low tritium inventory in material, two kinds of commercial zirconium alloy was selected:one is ST909(ZrMnFe), another is ZrNi5. In addition, ultrafine ZrMnFe was synthesized by solution-combustion and calcium reduction method aimed to improving dynamics property. The hydrogen absorption properties was investigated in the temperature range673-773K and with hydrogen pressure below1000Pa, the hydrogen absorption mass ration is less than0.04%o for all the three alloys, they can meet the demand of low tritium inventory in TBM TES. The kinetics of reaction between the three alloy and water was studied, the results showed that the process of ST909could be described by Ginstrign-Brounshtoerin model with the activation energy118kJ· mol-1, the synthesized ZrMnFe could be described by Jander model with the activation energy47kJ· mol-1, and ZrNi5could be described by homogeneous reaction model with the activation energy55.8kJ· mol-1;the reaction are all one order for water.
     (2) To meet the demand of renewablity of material, the system of Fe/Fe3O4was selected. Nanometer Fe powder was synthesized by solution combustion-hydrogen reduction, and the reaction rate increased more than10times than micrometer Fe powder. The recyclability was promote by addition of zirconium and the optimal proportion is10at%; the addition of Rh significantly improve dynamics performance and the optimal proportion is lat%. Zr10%-Rhl%-Fe was selected as the optimal system, cycle experimental result showed that the dynamics performance didn't drop even after20cycles, the kinetics experiment indicated that the reaction is first order for water and the process could be described by homogeneous reaction model with the activation energy30.8kJ· mol-1.
     (3) The water decomposition experiment in micro-fixed bed reactor was carried out for above four materials and the breakthrough performance was investigated at different conditions. One-dimensional isothermal plug-flow reactor model was established to predict the breakthrough curves. The outcomes of modeling agree well with the experimental results, it showed that the reaction model is correct and is suitable to describe the reaction process. The normalized mass transfer zone was calculated by the modified mass balance equation, the results showed that the length of the mass transfer zone of ST909is about ten times larger than the other three materials, so ST909is not suitable to be used as packing material in TBM-TES water handling. A method for predicting the breakthrough point was established based on the normalized mass transfer zone, the breakthrough time could be accurately predicted by this method.
     (4) The breakthrough performance with hydrogen added in the reactant gas was investigated; the result showed that hydrogen adding has no significant effect on the breakthrough curve of zirconium alloys; but hydrogen has significant negative effect on Fe, so Fe is not suitable for online water decomposition in TBM-TES purge gas. The breakthrough curve of D2O instead of H2O and He instead of Ar was also investigated with the same condition, the result showed that the difference in mass of water or purge gas didn't affect the reaction rate.
     (5) In order to design the larger scale reactor, momentum transfer mass transfer and energy transfer process were investigated. Firstly, the pressure drop in fixed-bed reactor packed with three size of zirconia pebbles was studied at different temperature and flow rate, pressure drop was calculated by McDonald equation and Ergun equation, the result showed that McDonald equation can accurately describe the pressure drop; the powder of metal/alloy must be made into pellet, and the pellet with the diameter no less than2mm will be needed in TBM-TES HTO decomposition reactor. Secondly, the kinetics of pellet was investigated and the kinetic equation was described by the grain equation adding the diffusion equation of water into interval in particle; the length of the mass transfer zone of pellet is larger than powders. Thirdly, the axial dispersion coefficient was investigated, the mass transfer zone will prolong with the increasing axial dispersion coefficience and the utilization rate of mass transfer zone will decrease. Fourthly, hot point temperature in fixed-bed was investigated, the result showed that hot point temperature depends directly on water concentration in reactant gas but didn't affected obviously by the flow rate. The water concentration in TBM-TES is ppm grade, the water decomposition reactor can be treated as an isothermal.
     (6) The experiment of practical tritiated water decomposition was carried out in glove-box closed system, the result indicated that tritiated water could be splited completely by the ZrNis bed; the conversion efficiencies of H2O and HTO were measured independently and were observed to be similar, so the isotope effect in the reaction needn't be considered.
     (7) The water decomposition reactor for TBM-TES was designed based on the mass transfer zone theory. The programs were established for ZrNi5, ultrafine ZrMnFe and Zr10%-Rhl%-Fe, the parameters can be obtained in these programs, such as dimension of reactor、the loading mass of alloy or metal、the rate of utilization、et al.
引文
1 Holtkamp N.for the ITER Project Team. An overview of the ITER project[J]. Fusion Engineering and Design,2007;82:427-434.
    2刘松林,柏云清,陈红丽,等ITER氚增殖实验包层设计研究进展[J].核科学与工程,2009;29(3):266-272
    3 Cismondi F,Kecskes S,Ilic M,et al.Design update,thermal and fluid dynamic analyses of the EU-HCPB TBM in vertical arrangement[J]. Fusion Engineering and Design,2009;84:607-612.
    4 Salavy J F,Boccaccini L V,Lasser R.Overview of the last progresses for the European Test Blanket Modules projects[J]. Fusion Engineering and Design,2007;82:2105-2112.
    5 Enoeda M,Tsuru D,Akiba M,et al.JA Position to TBM Program and Water Cooled Solid Breeder TBM Progress toward Milestones[C].TBWG-19 Meeting Aix-en-Province,March4-6,2008
    6 Wong C P C,Malang S,Sawan M,et al.An overview of dual coolant Pb-17Li breeder fir st wall and blanket concept development for the US ITER-TBM design[J]. Fusion Engineering and Design,2006;81:461-467.
    7 K.M.Feng,C.H.Pan,G.S.Zhang,et al.Progress on design and R&D for helium-cooled ceramic breeder TBM in China[J]. Fusion Engineering and Design,2012;XX:XXX-XXX.
    8 Abe K.Development of advanced blanket performance under irradiation and system integration through JUPITER-II project[C].2007.
    9冯开明ITER实验包层计划综述[J].核聚变与等离子体物理,2006;26(3):161-169.
    10 Munakata K, Koga A,Yokoyama Y,et al.Effect of water vapor on tritium release from ceramic breeder material[J]. Fusion Engineering and Design,2003;69:27-31.
    11 Munakata K, Shinozaki T, Inoue K.Tritium release from lithium silicate pebbles produced from lithium hydroxide[J]. Fusion Engineering and Design,2008;83:1317-1320.
    12 Nishikawa M, Kinjyo T, Nishida Y.Chemical form of tritium released from solid breeder materials[J]. Journal of Nuclear Materials,2004;325:87-93.
    13 Kinyo T, Nishikawa M, Yamashita N.Chemical form of released tritium from solid breeder materials under the various purge gas conditions[J]. Fusion Engineering and Design,2007;82:2147-2151.
    14 Suematsu K, Nishikawa M, Fukada S, et al. The effect of water on tritium release behavior from solid breeder candidates[J]. Fusion Science and Technology,2008;54:561-564
    15 Nishikaw M,Baba A.Tritium inverntory in Li2ZrO3 blanket[J].J.Nucl.Mater,1998;257:162-171.
    16 Nishikawa,Baba A,Kawamura Y.Tritium inventory in LiAlO2 blanket[J].J.Nucl.Mater,1997;246:1-8.
    17 Kinyo T,Nishikawa M.Release behavior of bred tritium from irradiatedLi4SiO4[J].FusionSci, Technol,2005;48:646-649
    18 Carlo A,Pierluigi C,Sergio C.Li4SiO4 pebbles reduction in He+0.1% H2 purge gas and effect on tritium release properties[J].Journal of Nuclear Materials,2000;280:372-376.
    19 Kawamura Y,Nishikawa M,Shiraishi T,Okuno K.Formation of water in lithium ceramics bed at hydrogen addition to pruge gas[J] Journal of Nuclear Materials,1996;230:287-294.
    20毛世奇,Krutiakov A N,Saunin E I,et al.氚在Li2SiO3中释放行为研究[J].原子能科学技术,1997;31(5):468-470.
    21沈文德,曹小华,姜亦祥,等.混合堆产氚演示回路及其氚释放实验[J].核动力工程,1994;15(6):555-561
    22杨本福,万竟平,曹小华,等.锂陶瓷γ-LiAlO2放氚行为研究[J].原子能科学技术,1999;33(5):441-445
    23肖成建,陈晓军,康春梅,等.正硅酸锂陶瓷小球离线释氚实验研究[J].核聚变与等离子体物理,2011;31(3):224-227
    24 Chunmei Kang,Xiaolin Wang,Chengjian Xiao.et al.Out-of-pile tritum release study on Li4SiO4 pebbles from TRINPC-1 experiments[J]. Journal of Nuclear Materials,2011;412:62-65.
    25 DOE Handbook.Tritium Handing and Safe Storage,U.S.Department of Commerce,Technology Administration,National Technical Information Service,Springfield,VA,1999,22161
    26 Heinze S.French experience in tritiated water management[J]. Fusion Engineering and Design, 2003;69:67-70.
    27 Hayashi T.Safety handling characteristics of high-level tritiated water[J]. Fusion Engineering and Design,2006;81:1365-1369.
    28 Heinze S.Self radiolysis of tritiated wate:experimental study and simulation[J].Fusion Science and Technology,2005;48:673-679.
    29 Bellanger G.Localized corrosion of 316L stainless steel in tritiated water containing aggressive radiolytic and decomposition products at different temperatures[J]. Journal of Nuclear Materials,2008;374:20-31.
    30 Shiraishi T,Odoi S,Nishikawa M.Adsorption and desorption behavior of tritiated water on the piping materials[J].Journal of Nuclear Science and Technology,1997;34(7):687-694.
    31 Willma R S,Konishi S.Fuel leanup systems for fusion fuel processing[J]. Fusion Engineering and Design,1991;18:53-60.
    32 Kai Zeng,Dongke Zhang.Recent progress in alkaline water electrolysis for hydrogen production and applications[J].Progress in Energy Combustion Science,2010;36:307-326
    33 Sylver H,Pierre G,Didier D,et al.Bipolar electrolysis for tritium recovery form weakly active tritiated water[J]. Fusion Engineering and Design,2001;58-59:429-432.
    34 Bellanger G.Enrichment of slightly concentrated tritiated water by electrolysis using a palladium cathode coated on ionic solid polymer membrane-Design and results[J]. Fusion Engineering and Design,2007;82:395-405.
    35 Konishi S,Maruyama T,Okuno K,et al.Development of electrolytic reactor for processing of gaseous tritiated compunds[J], Fusion Engineering and Design,1998;39-40:1033-1039.
    36 Iwai Y,Yoshida H.Yamanishi T,et al.A design study of water detritation and hydrogen isotope separation systems for ITER[J].Fusion Engineering and Design,2000;49-50:847-853.
    37 Konishi S,Ohno H,Yoshida H,et al.Solid oxide electrolysis cell for decomposition of tritiated water[J].International Journal of Hydrogen Energy,1986;11(8):507-512.
    38 Isobe K,,Yamanishi T,Uzawa T.Development of ceramic electrolysis method processing high-level tritiated water.In:Proceedings of the 8th IAEA-TM Fusion Power Plant Safety,Wlena,July,2006.
    39梁明德,于波,文明芬,等.YSZ电解质薄膜的制备方法[J].化学进展,2008;20(7/8):1222-1232
    40张文强,于波,陈靖,等.高温固体氧化物电解水制氢技术[J].化学进展,2008;20(5):778-787.
    41 Welte S,Demange D,Wangner R,Gramlich N.Development of a technical scale PERMCAT reactor for processing of highly tritiated water[J]. Fusion Engineering and Design,2012;87:1045-1049.
    42 Welte S,Demange D, Wagner R.Characterisation of a multitube PERMCAT reactor in view of a technical facility for highly tritiated water processing at the Tritium Laboratory Karlsruhe[J]. Fusion Engineering and Design,2011;86:2237-2240.
    43 Santucci A,Demange D,Goerke O,et al.Inactive commissioning of a micro channel catalytic reactor for highly tritiated water production in the CAPER facility of TLK[J]. Fusion Engineering and Design,2012;87:547-550.
    44 Parracho A I,Demange D,Knipe S,et al.Processing highly tritiated water desorbed from molecular sieve bed using PERMCAT[J]. Fusion Engineering and Design,2012;87:1277-1281.
    45 Mendes D,Chibante V.Zheng J M,et al.Enhancing the production of hydrogen via water-gas shift reaction using Pd-based membrane reactors [J].International Journal of Hydrogen Energy,2010;35:12596-12608.
    46 Birdsell S A,Willms R S.Tritium recovery from tritiated water with a two-stage palladium membrane reactor[J]. Fusion Engineering and Design,1998;39-40:1041-1048.
    47 Tosti S,Violante V,Basile A,et al.Catalytic membrane reactors for tritium recovery from tritiated water in the ITER fuel cycle[J]. Fusion Engineering and Design,2000;49-50:953-958.
    48 Lu Guangda, Zhang Guikai,Chen Miao.et al.Tritium aging effects on hydrogen permeation through Pd8.5Y0.19Ru alloy membrane[J]. Fusion Engineering and Design,2011;86:2220-2222.
    49 Kawano T.Water vapor decomposition reaction on ZrNi alloy[J]. Fusion Engineering and Design,2006;81:791-796.
    50蒋国强,罗德礼,陆光达,孙灵霞.氚和氚的工程技术[M].北京:国防工业出版社,2007.
    51 Ghezzi F, Shimayda W T,Bonizzoni G.An experimental investigation of the efficiency of HTO reduction by Zr-Fe-Mn getter alloy[J].Fusion Technol,1997;31:75-78.
    52 Venkataramani N,Ghezzi F,Bonizzoni G,et al.Isotope water handling and hydrogen isotope recovery ofr fusion application using the Zr(V0.5Fe0.5)2 alloy[J].Fusion Technol,1996;29:91-95.
    53 Willms R S,Konishi S,Okuno K.Use of magnesium for recovering hydrogen isotopes from tritiated water[J].Fusion Technol,1994;26:659-663.
    54 C.A.Chen,D.L.Luo,Y.Sun,etal.Tritium safety consideration in the design of tritium systems for China HCSB and DFLL TBMS[J]. Fusion Engineering and Design,2008;83:1455-1460.
    55 Ricapito I,Ciampichetti A,Agostini P,Benamati G.Tritium processing systems for the helium cooled pebble bed test blanket module[J].Fusion Engineering and Design,2008;83:1461-1465.
    56 Tamm U,Hutter E,Neffe G,et al.Uranium getters for tritium cleanup at the Tritium Laboratory Karlsruhe(TLK)[J]. Fusion Technol,1992;21:983-987.
    57 Swansiger W A.Recovery of tritium from tritiated molecules[P]. United States Patent,4657747, 1984-10-17.
    58 Konishi S,Ohno H,Naruse Y,et al.Recovery method of tritium from tritiated water[P].United States Patent,4637866,1987-1-20.
    59 Heung L K, Hsu R H, Rice J L, et al.Performance improvement of a tritiated water recovery system[C].WSRC-MS-2004-00088.
    60 Willms R S,Konishi S,Okuno K.Use of Magnesium for recovering hydrogen isotopes from tritiated water[J]. Fusion Technology,1994;26(3):659-663.
    61罗德礼,熊义富,蒙大桥.手套箱气氛中氚化水处理的新工艺研究[J].核技术,2002;25(3):189-192.
    62 Edwards R A H,Modica G.Reduction of tritiated water on a regenerable iron reactant:Pilot plant design[J].Fusion Technology,1995;28(3):586-590.
    63 Otsuka K.Yamada C,Kaburagi,et al.Hydrogen storage and production by redox of iron oxide for polymer electrolyte fuel cell vehicles[J]. International Journal of Hydrogen,2003;28:335-342.
    64 Yamaguchi D,Tang L,Wong L,et al.Hydrogen production through methane-steam cyclic redox processes with iron-based metal oxides[J].International Journal of Hydrogen,2011;36:6646-6656.
    65 Lorente E, Herguido J, Pena J A.Steam-iron process:Influence of steam on the kinetics of iron oxide reduction[J].International Journal of Hydrogen,2011;36:13425-13434.
    66 Otsuka K,Kaburagi T,Yamada C,et al.Chemical storage of hydrogen by modified iron oxides[J].J Power Sources,2003;122(2):111-121.
    67 Takenaka S,Hanaizumi N,Son VTD,et al.Porduction of prue hydrogen from methane mediated by the redox of Ni-and Cr-added iron oxides[J].Cata,2004;228(2):405-416.
    68 Urasaki K,Tanimoto N,Hayashi T,et al.Hydrogen production via steam-iron reaction using iron oxide modified with very small amounts of palladium and zirconia[J].Appl Catal,A2005;288(1-2):143-148.
    69 Young S L,Jae C R,Dong H L,et al.Hydrogen storage characteristics using redox of M/Fe2O3(M=Rh, Ce and Zr)[C].WHEC16/13-16 June 2006-Lyon France.
    70 Larson E J,Cook K J,Wermer J R,et al.Nitriding reactions with a Zr-Mn-Fe metal getter[J] Journal of alloy and compounds,2002;330-332:897-901.
    71 Ghezzi F,Boffito C.Pressure-concentration-temperature characterization of St909 getter alloy with hydrogen[J].Vacuum,1996;47(6-8):991-995
    72 Ghezzi F,Shmayda W T,Venkataramani N,et al.Efficient HTO reduction using a Zr-Fe-Mn alloy[J]. Fusion Engineering and Design,1995;28:367-372.
    73 Fukada S,Toyoshima Y,Nishikawa M.Zr2Fe and Zr(Mn0.5Fe0.5)2 particle beds for tritium purification and impurity removal in a fusion fuel cycle[J]. Fusion Engineering and Design,2000;49-50:805-809.
    74 Bibeault M L,Paglieri S N,Tuggle D G,et al.Design,fabrication,and tesing of a getter-based atmosphere purification and waste treatment system for a nitrogen-hydrogen-hellium glovebox[J].Fusion Science and Technology,2008;54:623-626.
    75 Watanabe K, Shu W M,Motohashi E,et al.Decomposition of methane on Zr-Ni alloys[J].Fusion Engineering and Design,1998;39-40:1055-1060.
    76 Ghezzi F,Boffito C.Pressure-concentration-temperature characterization of St909 getter alloy with hydrogen[J].Vacuum,1996;47(6-8):991-995
    77 Klein J E, Holder J S. Screeing tests for improved methane cracking materials [J].Fusion Science and Technology,2008,54(2):611-614.
    78 Filipek S M,Boncour V P,Liu R S.ZrNi5-based hydrogenated phases formed under high hydrogen pressure conditions[J].Applied Surface Science,2011;257:8237-8240.
    79 Luo Deli,Song Jiangfeng,Huang Guoqiang,et al.Progress of China's TBM tritium technology [J].Fusion Engineering and Design,2012;xxx:xxx-xxx.
    80 Chuyanov V A,Campbell D J.Giancarli L M.TBM program implementation in ITER[J]. Fusion Engineering and Design,2010;85:2005-2011.
    81罗德礼,陈长安,黄志勇,刘从贤,等.中国ITER氦冷固态实验包层模块氚工艺系统设计[J].核聚变与等离子体物理,2006;26(3):217-221.
    82张濂,许志美.化学反应器分析[M].上海,华东理工大学出版社,2005.
    83刘维桥,孙桂大.固体催化剂实用研究方法[M].北京,中国石化出版社,2001.
    84 Weidong Li,Jiazhi Li,Jingkun Guo.Synthesis and characterization of nanocrystalline CoAl2O4 spinel powder by low temperature combustion[J].Journal of the European CeramicSociety,2003;23: 2289-2295.
    85 Xiaoming Guo,Dongsen Mao,Song Wang,et al.Combustion synthesis of CuO-ZnO-ZrO2 catalysts for the hydrognenation of carbon dioxide to methanol[J].Catalysis Communications,2009;10: 1661-1664.
    86李岳,米晓云,季洪雷,等.低温燃烧合成无机化合物的研究进展[J].长春理工大学学报,2007,30(2):90-93.
    87于永丽,翟秀静,符岩,等.纳米TiO2的燃烧合成及其光催化性能[J].中国有色金属学报,2004,14(5):831-835.
    88徐美,张慰萍,尹民,等.纳米ZnO的燃烧法制备和光谱特性[J].无机材料学报,2003,18(4):933-936.
    89 Ryosuke O S, Tatemoto K, Hitoshi K. Direct synthesis of the hydrogen storage V-Ti alloy powder from the oxides by calcium co-reduction [J]. Journal of Alloys and Compounds,2004,385(1/2): 173-180.
    90李自强,苏辉煌.还原扩散法直接制造ZrNi合金粉末的研究[J].粉末冶金技术,1996,14(4):243-248.
    91 Jain S R, Adiga K C, Verneker V R P. A new approach to the thermochemical calculations of condensed fuel-oxidizer mixtures [J]. Combustion and Flame,1981,40:71-79.
    92徐红梅,严红革,陈振华,等.氧化剂用量对燃烧合成掺杂Ce02纳米粉体的影响[J].湖南大学学报:自然科学版,2006,33(6):90-93.
    93 Mani N, Sivakumar, Ramaprabhu S.Hydrogen sotorage properties of ZrMnFe1-xNix(x=0.2,0.4,0.5, 0.6) alloys[J].Journal of Alloys and Compounds,2002;337:148-154.
    94 Ramaprabhu S.Structure and Hydrogen solubility studies on ZrMnFe1-xCox(x=0.2,0.3 and 0.5) alloys[J].International Journal of Hydrogen Energy,2000;25:879-885.
    95潘金生.材料科学基础[M].北京:清华大学出版社,1998:
    96 Baker J D,Meikrantz D H,Pawelko R J,et al.Tritium Purification via Zirconium-Manganese-Iron Alloy Getter St909 in Flow Processes[J].Journal of Vaccum Sciecnce and Technology,1994; 12(2):548-553.
    97 Meikrantz D H,Baker J D,Bourne G L,et al.Tritium Process Applications Using SAES Getters for Purification and Collection From Inert Gas Streams[J]. Fusion Technol,1995; 27:14-18
    98 Fukada S,Toyoshima Y.Hydrogen isotope absorption in Zr(MnO.5FeO.5)2[J]. Journal of Alloy and Compounds,1999;289:306-310.
    99 Fukada S,Tokunaga K,Nishikawa.Recovery of low-concentration hydrogen from different gas treams with Zr2Fe particle beds[J].Fusion Engineering and Design,1997;36:471-478.
    100 Prina M,Kullech J G,Bowman Jr R C.Assessment of Zr-V-Fe getter alloy for gas-gap heat switches[J].Journal of Alloy and Compounds,2002;330-332:886-891.
    101 Liu Chaozhuo,Shi Liqun.Effect of nickel alloying layer on hydrogen absorption ability of Zr-Al getter material[J].CHIN.PHYS.LETT,2004;21 (6):1035-1038
    102 Felicai V,Preda A,Ioan S,Claudia D.Storage of Hydrogen Isotope on ZrCo and ZrNi[J].Asian Journal of Chemistry,2010;22:4291-4294.
    103胡子龙.贮氢材料[M].北京:化学工业版社,2002.
    104 Ghezzi F,Angeli M D.On the dependence of true hydrogen equilibrium pressure on the granular size distribution of the Zr(Fe0.5Mn0.5)2 getter alloy [J]. Journal of Alloys and Compounds,2002; 330-332:76-80.
    105 Stanislaw M F,Valerie P B,Ru S L.ZrNi5-based hydrogenated phases formed under high hydrogen pressure conditions [J].Applied Surface Science,2011;257:8237-8240.
    106 Blaine R L, Hahn B K.Obtaining kinetic parameters by modulated thermogravimetry[J] Journal of Thermal Analysis,1998;54:695-704.
    107 House Jr J E.A TG study of the kinetics of decomposition of ammonium carbonate and ammonium bibarbonate[J].Thermochimica Acta,1980;40(2):225-233.
    108 Mohajeri N,Raissi A T,Baik J.TG/DTA of hydrogen reduction kinetics of TiO2 supported PdO chemochromic pigment[J]. Thermochimica Acta,2011;518(1-2):119-122.
    109 Fukada S,Toyoshima Y,Nishikawa M.Zr2Fe and Zr(Mn0.5Fe0.5)2 particle beds for tritium purification and impurity removal in a fusion fuel cycle[J]. Fusion Engineering and Design,2000;49-50:805-809.
    110林荣英,张济宇.低活性无烟煤二氧化碳催化气化动力学-热天平等温热重法[J].化工学报,2005;56(12):2332-2341.
    111郭汉贤.应用化工动力学[M].北京:化学工业出版社,2003.
    112 Luo Shi-yong,Zhang Jia-yun,Zhou Tu-ping.Computer prediction system on solid/solid reaction kinetics[J].Trans.Nonferrrous Met.Soc.China,2001;11(3):466-470.
    113 Alenazey F,Cooper C G,Dave C B,et al.Coke removal from deactivated Co-Ni steam reforming catalyst using different gasifying agents:An analysis of the gas-solid reaction kinetics[J].Catalysis Communications,2009; 10:405-411.
    114 Piotrowski K,Mondal K,Lorethova H,et al.Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process[J].International Journal of Hydrogen Energy,2005;30:1543-1554.
    115 Koga N,Tanaka,H A physico-geometric approach to the kintics of solid-state reactions a exemplified by the thermal dehydration and decomposition of inorganic solids[J].Thermochimica Acta,2002;388:41-61
    116 Mahfouz R M,Alshehri S M,Monshi M A S,et al.Isothermal decomposition of y-irradiated dysprosium acetate[J].Radiation Effects and Defects in Solids,2002;157:515-519.
    117 Eugen S. Rate equations of solid state reactions euclidean and fractal models[J].Rev.Roum.Chim, 2012;57(4-5):491-493
    118 Paik J G,Lee M J,Hyun S H.Reaction kinetics and formation mechanism of magnesium ferrites[J]. Thermochimica Acta,2005;425:131-136.
    119 Barea A G, Ollero P.An approximate method for solving gas-solid non-catalytic reactions[J]. Chemical Engineering Science,2006;61:3725-3735.
    120 Jian Yu,Xi Zeng,Juwei Zhang,et al.Isothermal differential characteristics of gas-solid reaction in micro-fluidized bed reactor[J].Fuel,2013;103:29-36.
    121 Lee S K,Kim H S,Noh S J.Hydrogen permeability,diffusion and solubility of SUS 316L stainless steel in the temperature range 400 to 800℃ for fusion reactor applications[J].Journal of the Korean Physical Society,2011;59(5):3019-3023.
    122 Longhurst G R.Tritiated water interaction with stainless steel [D]. Idaho National Laboratory. INL/EXT-07-12587,2007.
    123郭晋菊,黄戒介,赵建涛,等.Ni-Zn-Fe复合氧化物脱硫剂再生研究[J].燃料化学学报,2010;38(3):352-358.
    124王建华,陶智超,杨勇,等.微球状a-Fe2O3还原动力学[J].过程工程学报,2007;7(2):288-2.92.
    125 Kang S G,Suang R S,Sang D K.Reaction kinetics of reduction and oxidation of metal oxides for hydrogen production[J].International Journal of Hydrogen Energy,2008;33:5986-5995.
    126 Perevezensev A N,Andreev B M,Borisenko A N,et al.Absorption kinetics and dynamics of gaseous impurities in helium and hydrogen by intermetallic compounds[J] Journal of Alloys and Compounds,2002;335:246-253.
    127叶瑞伦,方永汉.无材料材料物理化学[M].北京,中国建筑工业出版社,1986.
    128 Charvin P,Abanades S,Flamant G,et al.Two-step water splitting thermolchemical cycle based on iron oxide redox pair for solar hydrogen production[J].Energy,2007;32:1124-1133.
    129 Takenaka S,Kaburagi T.Yamada C,et al.Storage and supply of hydrogen by means of the redox of the iron oxides modified with Mo and Rh species[J].Jounal of catalysis,2004;228:66-74.
    130 Pieter W V G,Emiel J M H,Rutger A V S.DFT study on H2O activation by stepped and planar Rh surface[J].Surface Science,2009;603:3275-3281.
    131陈诵英,孙予罕,丁云杰,等.吸附与催化[M].郑州,河南科学技术出版社,2001.
    132王普善.微型反应器技术开创过程化学新领域[J].精细与专用化学品,2007;15(23):1-6.
    133 Gil J H,Jang J H,Lee H R,et al.Micro packed-bed reactor using MEMS technology[C].209th ECS Meeting,Abstract#278,copyrightECS.
    134张全信,刘希尧,雷鸣.复合氧化物催化剂(Cu)CeO2上硝基苯加氢反应研究[J].催化学报,2002;23(5):400-404
    135辜敏,鲜学福.模拟的煤层气在活性炭吸附柱上穿透曲线的研究[J].天然气化工,2003;28:23-25.
    136塞克利J,埃文斯J W.气固反应[M].北京:中国建筑工业出版社,1986,279.
    137孙寿家,王军,李亚.活性炭固定床处理甲酚废水的计算机模拟[J].哈尔滨工业大学学报,1995;27(6):104-108
    138 Plou J,Duran P,Herguido J,Rena J A.Stream-iron process kinetic model using intergral data regression[J].International Journal of Hydrogen,2011;ⅹⅹⅹ:1-10
    139刘卓衢,余微,夏素兰,沈倩.烟气S02活性炭吸附床层负荷分布及透过曲线模型计算[J].天然气化工,2007;32:36-39
    140葛庆仁.气固反应动力学[M].北京,原子能出版社,1991.
    141 Dou B L,Gao J S,Baek S W,Sha X Z.High temperature HC1 removal with sorbents in a fixed bed reactor[J].Energy Fuel,2003; 17:874-878.
    142 Wang W Y,Ye Z C,Buerle I.The kinetics of the reaction of hydrogen chloride with fresh and spent Ca-based desulfurization sorbents[J].Fuel,1996;75:207-212.
    143 FACTSAGE 6.3.http://www.crct.polymtl.ca/FACT/documentation/
    144伊赫桑.巴伦.纯物质热化学数据手册[M].北京,科学出版社.
    145张濂,许志美,袁向前.化学反应工程原理[M].上海,华东理工大学出版社,2000.
    146 Huang-Lung Chiang,Jiun-Horng Tsai,Gen-Mu Chang,et al.Compparison of a single grain activated carbon and column adsorption system[J].Carbon,2002;40:2921-2930.
    147付万发.TBM氚系统的氚安全分析研究[D].博士论文.绵阳:中国工程物理研究院,2012.
    148刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京,化学工业出版社,2002.
    149诸林,刘瑾,王兵,等.化工原理[M].北京,石油工业出版社,2000.
    150张立奎.固定床压降估算[J].化工装备技术,1997;18(2):51.
    151 Zhang long,Luo Tiangyong,Feng kaiming.Conceptual design on interface between ITER and tritium extraction system of Chinese helium-cooled solid breeder test blanket module [J].Fusion Engineering and Design,2010;85:2213-2216.
    152李建平,李承政,王天勇,等.我国粉体造粒技术的现状与展望[J].化工机械,2001;28(5):295-298.
    153许贺卿.气固反应工程[M].北京:原子能出版社,1993.
    154胡道和,徐德龙,蔡玉良.气固过程工程学及其在水泥工业中的应用[M].武汉,武汉理工大学出版社,2003.
    155 Sohn H Y, Szekely J. A general bimensionless representation of the irreversible reaction between a porous solid and a reactant gas[J].Chemical Engineering Science,1972;27:763-778.
    156 Liger K, Lefebvre X, Ciampichetti A, et al. HCLL and HCPB coolant purification system:Design of the copper oxide bed[J]. Fusion Engineering and Design,2011;XXX:XXX-XXX.
    157 Chu Xiao-zhong,Zhao Yi-jiang,Kan Yu-he,et al.Dynamic experiments and model of hydrogen and deuterium speparation with micropore molecular sieve Y at 77K[J].Chemical Engineering Journal, 2009;152:428-433.
    158 Osorio V G.Ydstie B E.Vapor recovery reactor in carbothermic aluminum production:model verification and sensitivity study for a fixed bed column[J].Chemical Engineering Science,20;59: 2053-206404
    159 Tirzha L P.Dantas,Francisco M T.Luna,Ivanildo J.Silva Jr,et al.Carbon dioxide-nitrogen separation through adsorption on activated carbon in a fixed bed[J].Chemical Engineerigng Journal,2011; 169:11-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700