用户名: 密码: 验证码:
TiC_X/Fe-Al材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用陶瓷颗粒增强的方法可以提高金属材料的刚度、比强度、耐磨损、耐冲击、抗蠕变等性能,在交通运输、核能、冶金机械等领域有着良好的应用前景。本研究通过原位反应型复合的常压制备技术和原位热挤压制备技术,成功制备出具有良好性能、可以满足一定工业应用要求的非化学计量比TiCx增强Fe基原位反应型复合材料。本论文以理论分析与实验研究相结合的研究方法,通过材料电子层次的理论设计、热力学与动力学反应机理分析、制备工艺参数影响、材料显微组织结构与宏观性能之间的强韧化规律等分析的技术路线,探讨了MAX-金属反应型复合材料的反应机理、制备工艺、显微组织结构及性能的基本规律,主要研究了如下内容:
     1,通过Ti3AlC2-Fe体系价电子理论和密度泛函理论研究,探讨了原位反应的本质,进而对复合材料的组分和界面等进行设计。
     2,研究了Ti3AlC2-Fe体系材料热力学、动力学反应机理以及高温下Ti3AlC2在Fe基体中拓扑转变行为。
     3,研究TiCx/Fe-Al材料的制备工艺参数、显微组织结构以及宏观性能的变化规律。
     以MAX相为先驱体制备非计量比MX/Fe-A体系反应型复合材料,可以克服传统陶瓷增强相所存在的界面润湿性差、增强相难以达到亚微米尺寸且分布均匀等难题,但也存在反应控制、结构调整等特色问题,需要对传统材料制备技术进行改进,从而实现所制备的复合材料具有良好的组织成分、显微结构与界面联接,使其性能能更充分发挥。本论文解决了如下主要关键问题:
     1,如何控制MAX相的分解,以获得TiCx增强相;
     2,如何实现对复合材料显微组织、结构调整问题;
     3,克服复合材料制备中致密化等工艺技术问题。
     在此基础上,揭示了材料的制备工艺、组织结构与宏观性能之间的基本规律关系,为进一步研制更高性能和更满足实际应用的非化学计量比陶瓷颗粒增强金属基复合材料提供了理论与实验依据。得到了如下主要结论:
     1, Ti3AlC2与Fe之间的原位反应机理,为Fe原子与A1原子之间成键能力较强,使Ti3AlC2中的Al原子析出并扩散到Fe中形成A1原子含量局域梯度变化的Fe-Al过渡层偏聚结构,而Ti3AlC2则转变成TiCx相。所制备的TiCx/Fe-Al复合材料中,最优界面为(110)Fe-A1的晶面与(100)Ticx的晶面联接。
     2, Ti3AlC2在Fe的环境中分解温度会降低,最终在复合材料形成反应产物为TiCx和Fe-Al,并表现出放热效应。Ti3AlC2-Fe体系的反应活化能为75.26kJ/mol。
     3, TiCx/Fe-Al制备的最优烧结温度为1300~1400℃,最优保温时间为30mins,原料中Ti3AIC2的含量应低于30vol.%。
     4, Fe-Ti3AlC2体系反应机制为原位反应-扩散-溃散-颗粒形成,反应后,所形成的TiCx颗粒厚度甚至只有50nm,且颗粒与基体界面洁净,联接较好。
     5,原位热挤压所制备15.61TiCx/Fe-Al样品的抗拉强度能达到666MPa,拉伸应变达到7%。在拉伸载荷的作用下,TiCx/Fe-Al材料的真应力真应变曲线可以分为四个强化阶段,并表现为非均匀变形。
     主要创新成果如下:
     1,通过价电子理论和密度泛函理论计算、材料设计、材料热力学和动力学研究,分析了Ti3AlC2与Fe之间的反应机理。
     2,基于上述分析和计算,制备出TiCx/Fe-Al块体材料。分析了高温条件下Ti3AlC2与Fe的反应机制,并初步得到透射电镜的证实。
     3,采用原位热挤压制备了TiCx/Fe-Al复合材料的抗拉强度达到666MPa,延伸率超过7%。
Metal matrix composites (MMCs) have already attracted much attention for their potential applications in many fields such as nuclear energy, metallurgy, mining and traffic engineering industries where conventional alloy systems are not suitable. But, it is not easy to get a strong interface bonding between conventional reinforcements with metal matrix, and deal with the intractable problems of particles agglomerating caused by the lager surface activity by using conventional methods, such as casting and mechanical alloying. In addition, the preparation and the preservation are also difficult for sub-micron or even nanosize powders.
     By in situ reaction compound method, this work has prepared TiCx/Fe-Al composites through pressureless sintering technique and hot extrusion technique, which consists of nonstoichiometric TiCx particles and Fe-Al matrix and can fulfill many industrial applications requirements. The technology roadmap was adopted via EET and DFT, CALPHAD technique and thermal analysis, the optimum preparation process, mechanical properties and plastic behavior. The major research contents are as follows:
     1, Theoretical aided composite materials were designed at electronic and atomic scale by EET and DFT.
     2, Thermodynamic and thermal kinetics mechanism of Ti3AlC2-Fe investigated according to CALPHAD technique and thermal analysis, and the path of topotactic transformation of Ti3AIC2into TiCx in Fe matrix was judged.
     3, The relation between the preparation process, microstructure and performance were studied.
     Key problems have been solved:
     1, How to control the breakup of MAX and get TiCx phase.
     2, How to realize the adjustment of phase and microstructure in TiCx/Fe-Al composites.
     3, How to overcome the densification and other process problems during composites preparation.
     Main conclusions:
     1, The essence of the reaction is the bonding ability between Fe and Al is stronger than Ti-Al in Ti3AlC2, and lead to break down of Ti3AlC2into TiCx. The interface connection of (110)Fe-Al//(100)TiCx is preferably.
     2, Ti3AlC2can topotactic transform into TiCx in Fe matrix, those reactions are exothermic and their decalescence about75.26kJ/mol.
     3, The optimal sintering temperature of1300-1400℃, the optimal soaking time are30mins, and Ti3AlC2contents in starting materials are better below30vol.%.
     4, Reaction scheme of Fe-Ti3AlC2system can be divided into4steps:In situ reactions-Diffusion-Collapsing-Further decomposed; The TiCx grains generated possess a platelike shape with about50nm in thickness, and the grain boundary between the TiCx grain and matrix is clear and no interface phase can be found.
     5, The prepared material exhibited a higher tensile strength of about666MPa and a uniform deformation of about7%.
     The innovations of this work can be drawn mainly as follows:
     1, Systematic investigations were done on the fabrication and microstructural characterization of TiCx/Fe-Al composites by pressureless sintering technique and hot extrusion technique.
     2, Systematic investigations were done on the reaction mechanism between Ti3AIC2and Fe, and the results have initially been confirmed by TEM.
     3, Systematic investigations were done on the mechanical and electrical properties of TiCx/Fe-Al composites by pressureless sintering technique and hot extrusion technique. The prepared material exhibited a higher tensile strength of about666MPa and a uniform deformation of about7%.
引文
[1]ZHAI H X, AI M X, HUANG Z Y, et al. Unusual Microstructures and Strength Characteristics of Cu/Ti3AlC2 Cermets[J]. Key Engineering Materials,2007,336:1394-1396.
    [2]AJAYAN P M, SCHADLER L S, BRAUN P V. Nanocomposite science and technology [M]. Wiley-Vch,2006.
    [3]QU X H, ZHANG L, WU M, et al. Review of metal matrix composites with high thermal conductivity for thermal management applications[J]. Progress in Natural Science:Materials International,2011,21(3):189-197.
    [4]UKAI S, FUJIWARA M. Perspective of ODS alloys application in nuclear environments[J]. Journal of Nuclear Materials,2002,307:749-757.
    [5]KARLSOHN M, WEBER S, ZAREE A, et al. Manufacturing, microstructure and wear resistance of novel hot extruded Fe based metal matrix composites[J]. Powder metallurgy,2008,51(1):31-37.
    [6]GURT SANTANACH J, ESTOURN S C, WEIBEL A, et al. Mechanical and tribological properties of Fe/Cr-FeAl2O4-Al2O3 nano/micro hybrid composites prepared by Spark Plasma Sintering[J] Scripta Materialia,2011,64(8):777-780.
    [7]KACZMAR J, PIETRZAK K, WLOSINSKI W. The production and application of metal matrix composite materials[J]. Journal of Materials Processing Technology,2000,106(1):58-67.
    [8]闻荻江.复合材料原理tM].武汉工业大学出版社,1998.
    [9]张国定,赵昌正.金属基复合材料[M].上海:上海交通大学出版社,1996.
    [10]翟洪祥,汪长安.Ti3SiC2材料在受电弓滑板中的应用研究[J].机车电传动,2004,(B12):43-45.
    [11]BARSOUM M W. The MN+1AXN phases:Anew class of solids[J]. Progress in Solid State Chemistry, 2000,28:201-281.
    [12]CLYNE T W, WITHERS P J. An Introduction to Metal Matrix Composites [M]. Cambridge University Press,1995.
    [13]CHOU T W, KELLY A, OKURAA. Fibre-reinforced metal-matrix composites[J]. Composites,1985, 16(3):187-206.
    [14]DHINGRAA. Metals Replacement by Composites[J]. Journal of Metals,1986,38(3):17.
    [15]ETTMAYER P, LENGAUER W. The story of cermets[J]. Powder Metall Int,1989,21(2):37-38.
    [16]BENJAMIN J S. Mechanical alloying—A perspective[J].Metal powder report,1990,45(2): 122-127.
    [17]MUKHERJEE S, BANDYOPADHYAY S. Mechanical and interfacial characterisation of Fe3Al and Fe3Al-Al2O3 intermetallic composite made by mechanical smearing and hot isostatic pressing[J]. Composites Part B, Engineering,1997,28(1-2):45-48.
    [18]MERZHANOV A G. Self-propagating high-temperature synthesis:twenty years of search and findings[J]. Combustion and Plasma Synthesis of High-Temperature Materials,1990:1-53.
    [19]SAHOO P, KOCZAK M J. Microstructure-property relationships of in situ reacted TiC/Al Cu metal matrix composites[J]. Materials Science and Engineering:A,1991,131(1):69-76.
    [20]KOCZAK M, PREMKUMAR M. Emerging technologies for the in-situ production of MMCs[J]. JOM Journal of the Minerals, Metals and Materials Society,1993,45(1):44-48.
    [21]SCHNEIDER J M, SUN Z M, MERTENS R, et al. Ab initio calculations and experimental determination of the structure of Cr2AlC[J]. Solid State Communications,2004,130(7):445-449.
    [22]TJONG S C, MA Z. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Materials Science and Engineering:R:Reports,2000,29(3):49-113.
    [23]IBRAHIM I, MOHAMED F, LAVERNIA E. Particulate reinforced metal matrix composites—a review[J]. Journal of Materials Science,1991,26(5):1137-1156.
    [24]TU J P, WANG N Y, YANG Y Z, et al. Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing[J]. Materials Letters,2002,52(6):448-452.
    [25]于化顺.金属基复合材料及其制备技术[M].化学工业出版社,2006.
    [26]BANDYOPADHYAY T, DAS K. Synthesis and characterization of TiC-reinforced iron-based composites Part Ⅱ on mechanical characterization[J]. Journal of Materials Science,2004,39(21): 6503-6508.
    [27]BURDEN S J, HONG J, RUE J W, et al. Comparison of Hot-Isostatically-Pressed and Uniaxially Hot-Pressed Alumina--Titanium-Carbide Cutting Tools[J]. Am Ceram Soc Bull,1988,67(6): 1003-1005.
    [28]REDDY B S B, DAS K, DAS S. A review on the synthesis of in situ aluminum based composites by thermal, mechanical and mechanical-thermal activation of chemical reactions[J]. Journal of Materials Science,2007,42(22):9366-9378.
    [29]SONG M. Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites[J]. Transactions of Nonferrous Metals Society of China,2009,19(6):1400-1404.
    [30]RAMU G, BAURI R. Effect of equal channel angular pressing (ECAP) on microstructure and properties of Al-SiCp composites[J], Materials & Design,2009,30(9):3554-3559.
    [31]PARK B G, CROSKY A G, HELLIER A K. Material characterisation and mechanical properties of Al2O3-Al metal matrix composites[J]. Journal of Materials Science,2001,36(10):2417-2426.
    [32]AGHAJANIAN M K, LANGENSIEPEN R A, ROCAZELLA M A, et al. The effect of particulate loading on the mechanical behaviour of Al2O3/Al metal-matrix composites[J]. Journal of Materials Science,1993,28(24):6683-6690.
    [33]MIRACLE D B. Metal matrix composites-From science to technological significance[J]. Composites Science and Technology,2005,65(15-16):2526-2540.
    [34]YE H Z, LIU X Y. Review of recent studies in magnesium matrix composites[J]. Journal of Materials Science,2004,39(20):6153-6171.
    [35]SARAVANAN R A, SURAPPA M K. Fabrication and characterisation of pure magnesium-30 vol.% SiCp particle composite[J]. Materials Science and Engineering:A,2000,276(1-2):108-116.
    [36]LUO A. Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites[J]. Metallurgical and Materials Transactions A,1995,26(9):2445-2455.
    [37]曾立英,孙洪志.镍基复合材料及其它基体的复合材料的应用[J].稀有金属快报,2001,(11):1.
    [38]CELEBI EFE G, ZEYTIN S, BINDAL C. The effect of SiC particle size on the properties of Cu-SiC composites[J]. Materials & Design,2012,36(0):633-639.
    [39]TJONG S C, LAU K C. Tribological behaviour of SiC particle-reinforced copper matrix composites[J]. Materials Letters,2000,43(5-6):274-280.
    [40]GU W L, YAN C K, ZHOU Y C. Reactions between Al and Ti3SiC2 in temperature range of 600-650℃[J]. Scripta Materialia,2003,49(11):1075-1080.
    [41]ZHANG Y, SUN Z M, ZHOU Y C. Cu/Ti3SiC2 composite:a new electrofriction material[J]. Material Research Innovations,1999,3(2):80-84.
    [42]IIJIMA S. Helical microtubules of graphitic carbon[J]. nature,1991,354(6348):56-58.
    [43]TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. nature,1996,381(6584):678-680.
    [44]WONG E W, SHEEHAN P E, LIEBER C M. Nanobeam mechanics:elasticity, strength, and toughness of nanorods and nanotubes[J]. Science,1997,277(5334):1971-1975.
    [45]ZHANG Z, CHEN D. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites:A model for predicting their yield strength[J]. Scripta Materialia,2006, 54(7):1321-1326.
    [46]BAKSHIS R, LAHIRI D, AGARWAL A. Carbon nanotube reinforced metal matrix composites-a review[J]. International Materials Reviews,2010,55(1):41-64.
    [47]LAHA T, AGARWAL A. Effect of sintering on thermally sprayed carbon nanotube reinforced aluminum nanocomposite[J]. Materials Science and Engineering:A,2008,480(1):323-332.
    [48]KONDOH K, FUKUDA H, UMEDA J, et al. Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites[J]. Materials Science and Engineering:A, 2010,527(16):4103-4108.
    [49]XU C L, WEI B Q, MA R Z, et al. Fabrication of aluminum-carbon nanotube composites and their electrical properties[J]. Carbon,1999,37(5):855-858.
    [50]WANG H H, XU B F, WU X J, et al. In situ processed Al2O3/Al composites with several oxides reaction systems[J]. CHINESE JOURNAL OF NONFERROUS METALS,2003,13(3):666-669.
    [51]HANABE M R, ASWATH P B. Al2O3/Al particle-reinforced aluminum matrix composite by displacement reaction[J]. Journal of materials research,1996,11(06):1562-1569.
    [52]刘金水,舒震,肖汉宁,等.原位TiC粒子增强ZA43复合材料的制备及组织性能[J].复合材料学报,1999,16(3):6.
    [53]PAGOUNIS E, LINDROOS V, TALVITIE M. Influence of reinforcement volume fraction and size on the microstructure and abrasion wear resistance of hot isostatic pressed white iron matrix composites[J]. Metallurgical and Materials Transactions A,1996,27(12):4171-4181.
    [54]KATTAMIS T, SUGANUMA T. Solidification processing and tribological behavior of particulate TiC-ferrous matrix composites[J]. Materials Science and Engineering:A,1990,128(2):241-252.
    [55]GATTI A:General Electric Co. Research Lab., Schenectady, NY,1957.
    [56]汪德宁,徐颖,徐东,等.金属间化合物FeAl与a —Al2O3的界面润湿行为及合金元素Y和Nb的作用[J].材料科学与工艺,1996,4(001):5-9.
    [57]KIPARISOV S, NARVA V, KOLUPAEVA S Y. Dependence of the properties of titanium carbide-steel materials upon the composition of the titanium carbide[J]. Powder Metallurgy and Metal Ceramics,1975,14(7):549-551.
    [58]POLISCHUK V, NALIVKA G, KISEL N. Composite Magnito-Abrasive Powders Based on Iron, Carbides of Titanium, Vanadium and Chromium[J]. Poroshk Metall,1983,3:94-100.
    [59]GRISHIN A, ROMATOVSKII Y I, SEDOV G. Effect of vanadium and titanium on the phase composition and corrosion resistance of a high-carbon alloy of the system Fe-C-Mn-Cr[J]. Metal science and heat treatment,1991,33(1):53-55.
    [60]PAN Y, GAO M X, OLIVEIRA F J, et al. Infiltration of SiC preforms with iron silicide melts: microstructures and properties[J]. Materials Science and Engineering:A,2003,359(1):343-349.
    [61]TANG W, ZHENG Z, DING H, et al. Control of the interface reaction between silicon carbide and iron[J]. Materials Chemistry and Physics,2003,80(1):360-365.
    [62]LEPAKOVA O K, RASKOLENKO L G, MAKSIMOV Y M. Self-propagating high-temperature synthesis of composite material TiB2-Fe[J]. Journal of Materials Science,2004,39(11):3723-3732.
    [63]DEGNAN C, SHIPWAY P, WOOD J. Elevated temperature sliding wear behaviour of TiC-reinforced steel matrix composites[J]. Wear,2001,251(1):1444-1451.
    [64]ZHANG W F, ZHANG X H, WANG J L, et al. Effect of Fe on the phases and microstructure of TiC-Fe cermets by combustion synthesis/quasi-isostatic pressing[J]. Materials Science and Engineering:A,2004,381(1-2):92-97.
    [65]FENG K Q, YANG Y, SHEN B L, et al. In situ synthesis of TiC/Fe composites by reaction casting[J]. Materials & Design,2005,26(1):37-40.
    [66]YANG Y, LAN J, LI X C. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy [J]. Materials Science and Engineering:A,2004,380(1-2):378-383.
    [67]PADHIP, KAR S. A Novel Route for Development of Bulk Al/SiC Metal Matrix Nanocomposites [M].2011.
    [68]严有为,魏伯康,林汉同,等.原位TiC颗粒增强铸造钢基复合材料制备工艺[J].特种铸造及有色合金,2002,(5):3.
    [69]严有为,魏伯康,傅正义,等.原位TiC颗粒增强铁基复合材料及其组织形成机理[J].金属学报,1999,35(10):1117-1120.
    [70]BERNS H, WEWERS B. Development of an abrasion resistant steel composite with in situ TiC particles[J]. Wear,2001,251(1):1386-1395.
    [71]WANG Y S, ZHANG X Y, ZENG G T, et al. Cast sinter technique for producing iron base surface composites[J]. Materials & Design,2000,21(5):447-452.
    [72]JIANG W, FEI J, HAN X. In situ synthesis of (TiW) C/Fe composites[J]. Materials Letters,2000, 46(4):222-224.
    [73]BAUCCIO M. ASM metals reference book [M]. American Society for Metals:ASM International, 1993.
    [74]PANCHAL J, VELA T, ROBISCH T. Ferro-TiC metal matrix composites for high performance tooling and engineering applications [J]. Fabrication of Particulates Reinforced Metal Composites, 1990:245-260.
    [75]XIAO P, DERBY B. Wetting of titanium nitride and titanium carbide by liquid metals[J]. Acta Materialia,1996,44(1):307-314.
    [76]HOWE J M. Bonding, structure, and properties of metal/ceramic interfaces:Part 1 Chemical bonding, chemical reaction, and interfacial structure[J]. International Materials Reviews,1993,38(5): 233-256.
    [77]JEITSCHKO W, NOWOTNY H. Die Kristallstruktur von Ti3SiC2—ein neuer Komplexcarbid-Typ[J]. Monatshefte fur Chemie/Chemical Monthly,1967,98(2):329-337.
    [78]BARSOUM M W, EL-RAGHY T. Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2[J]. Journal of the American Ceramic Society,1996,79(7):1953-1956.
    [79]PIETZKA M, SCHUSTER J. Summary of constitutional data on the aluminum-carbon-titanium system[J]. Journal of Phase Equilibria,1994,15(4):392-400.
    [80]PALMQUIST J P, LI S, PERSSON P A, et al. Mn+1 AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations[J]. Physical Review B,2004,70(16):165401.
    [81]HOGBERG H, EKLUND P, EMMERLICH J, et al. Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering[J]. Journal of materials research,2005,20(4): 779-782.
    [82]HU C F, ZHANG H B, LI F Z, et al. New phases' discovery in MAX family[J]. International Journal of Refractory Metals and Hard Materials,2013,36(0):300-312.
    [83]陈新华,翟洪祥,王文娟,黄振莺.原位反应法制备Cr2AlC-Fe基复合材料[J].硅酸盐学报,2013,(03):309-313.
    [84]GUPTA S, BARSOUM M W. On the tribology of the MAX phases and their composites during dry sliding:A review[J]. Wear,2011,271(9-10):1878-1894.
    [85]HUANG Z Y, ZHAI H X, Al M X. A New Ti3AlC2/Cu Cermet Exhibiting Excellent Tribological Properties[J]. Key Engineering Materials,2007,336:1436-1438.
    [86]AI M X, ZHAI H X, TANG Z Y. Interformational Exfoliation of Ti3Al2 Induced by Cu[J]. Key Engineering Materials,2007,336:1371-1373.
    [87]HUANG Z Y, ZHAI H X, LI M Q, et al. In-Situ Reaction Synthesis of Sub-Micro-Layered Ti3C2/(Cu-Al) Cermet with High Performance[J]. Rare Metal Materials and Engineering,2009:S2.
    [88]CHEN X H, ZHAI H X, HUANG Z Y. Preparation and properties of TiCx/Fe (Al, Ti) composites[J]. Journal of Beijing Jiaotong University,2011,6:024.
    [89]李翠伟,翟洪祥,汪长安.氟化物添加剂对低温合成Ti3SiC2的影响[J].稀有金属材料与工程,2005,34(z1):4.
    [90]AI M X, ZHAI H X, ZHOU Y, et al. Synthesis of Ti3AIC2 powders using Sn as an additive[J]. Journal of the American Ceramic Society,2006,89(3):1114-1117.
    [91]翟洪祥,艾明星,周洋,等.一种钛铝碳化物粉料及其以锡为反应助剂的合成方法[发明专利].2005-2005-4-29]. http://d.wanfangdata.com.cn/Patent_CN200510011650.7.aspx.
    [92]李世波,向卫华,陈新华,等.一种碳化铝钛陶瓷粉体的合成方法[发明专利].2007-2007-6-29].http://d.wanfangdata.com.cn/Patent CN200710118166.3.aspx.
    [93]李世波,向卫华,陈新华,等.一种无TiC杂质相的碳化硅钛陶瓷粉体的合成方法[发明专利].2007-2007-6-13]. http://d.wanfangdata.com.cn/Patent CN200710118878.5.aspx.
    [94]李世波,向卫华,陈新华,等.一种碳化硅钛陶瓷粉体的常压合成方法[发明专利].2007-2007-7-3]. http://d.wanfangdata.com.cn/Patent CN200710118230.8.aspx.
    [95]李世波,翟洪祥,张志力.一种制备钛硅碳陶瓷粉的方法[发明专利].2004-2004-6-18].http://d.wanfangdata.eom.cn/Patent CN200410009220.7.aspx.
    [96]翟洪祥,周洋,张志力,等.一种以铝为添加剂的钛硅碳块体材料及其制备方法[发明专利].2004-2004-6-23]. http://d.wanfangdata.com.cn/Patent_CN200410009243.8.aspx.
    [97]翟洪祥,周洋,艾明星,等.一种钛硅碳化物粉及其以铝为反应助剂的常压合成方法[发明专 利].2004-2004-9-21]. http://d.wanfaagdata.com.cn/Patent_CN200410009589.8.aspx.
    [98]ZHAI H X, HUANG Z Y, AI M X, et al. Tribophysical Properties of Polycrystalline Bulk Ti3AlC2[J]. Journal of the American Ceramic Society,2005,88(11):3270-3274.
    [99]HUANG Z Y, ZHAI H X, ZHOU W, et al. Tribological behaviors and mechanisms of Ti3AlC2[J]. Tribology Letters,2007,27(2):129-135.
    [100]HUANG Z Y, ZHAI H X, ZHANG H, et al. Wear Characteristics of Bulk Ti3AlC2 under Current-Carrying Conditions; proceedings of the Materials Science Forum, F,2007 [C]. Trans Tech Publ.
    [101]LI S B, SONG G M, KWAKERNAAK K, et al. Multiple crack healing of a Ti2AlC ceramic[J]. Journal of the European Ceramic Society,2012,32(8):1813-1820.
    [102]AI M X, ZHAI H X, LIANG S G, et al. Fabrication of the Ti3A1.2-xSnxC1.8 Solid Solutions Powder[J]. Rare Metal Materials and Engineering,2007,36:150.
    [103]赵青,翟洪祥,李翠伟,等.热压合成Ti3Si0.9Al0.3C1.95固溶体材料[J].硅酸盐学报,2008,36(5):5.
    [104]丁艳,翟洪祥,李翠伟,等.原位热压制备Ti3Si0.8Al0.4C1.95固溶体陶瓷[J].稀有金属材料与工程,2007,36(z1):3.
    [105]李荣久.陶瓷-金属复合材料[M].冶金工业出版社,2004.
    [106]HUANG Z Y, ZHAI H X, LI M Q, et al. High Performance of Sub-Micro-Layered Ti3C2/(Cu-Al) Cermets Prepared by In-Situ Hot-Extruding Method; proceedings of the Materials Science Forum, F, 2010 [C]. Trans Tech Publ.
    [107]GIBBS J W, SMITH A W, TUTTLE M. On the equilibrium of heterogeneous substances [M]. The Academy,1878.
    [108]LORENTZ H. The motion of electrons in metallic bodies; proceedings of the KNAW, Proceedings, F,1905 [C].
    [109]李云凯.金属材料学[M].北京理工大学出版社,2006.
    [110]刘志林,林成.合金电子结构参数统计值及合金力学性能计算[M].冶金工业出版社,2008.
    [111]HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review,1964,136(3B): B864.
    [112]KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Physical Review,1965,140(4A):A1133-A1138.
    [113]THOMAS L H. The calculation of atomic fields; proceedings of the Mathematical Proceedings of the Cambridge Philosophical Society, F,1927 [C]. Cambridge Univ Press.
    [114]FERMI E. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente[J]. Zeitschrift fur Physik A Hadrons and Nuclei,1928,48(1):73-79.
    [115]余瑞璜.固体与分子经验电子理论[J].科学通报,1978,(04):217-224.
    [116]刘宁,吕庆荣,姜勇,等Ti(C,N)基金属陶瓷抗弯强度的价电子判据研究[J].硅酸盐学报,1999,27(3).
    [117]郑勇,刘文俊,游敏,等.Cr3C2和VC对Ti(C,N)基金属陶瓷中环形相的价电子结构和性能的影响[J].硅酸盐学报,2004,32(4):7.
    [118]李嘉,尹衍升,谭训彦,等.ZrO2/Fe3AI复合材料的界面电子结构计算及材料制备[J].人工晶体学报,2003,32(3).
    [119]KAUFMAN L, BERNSTEIN H. Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals [M]. New York:Academic Press,1970.
    [120]MORINAGA M, YUKAWA N, ADACHI H, et al. New PHACOMP and its application to alloy design[J]. Superalloys,1984:523-532.
    [121]CHENG K J. Application of the TFD Model and Yu's Theory to Material Design[J]. Progress in Natural Science,1993, (03):211-230.
    [122]LIN C, YIN G L, ZHAO Y Q, et al. Analysis of the effect of alloy elements on martensitic transformation in titanium alloy with the use of valence electron structure parameters[J]. Materials Chemistry and Physics,2011,125(3):411-417.
    [123]LI J P, DONG S L, MENG S H, et al. Calculation of crystal cohesive energy of ZrB2 compound[J]. Frontiers of Materials Science in China,2010,4(3):245-250.
    [124]HUANG Z F, XING J D, GUO C. Improving fracture toughness and hardness of Fe2B in high boron white cast iron by chromium addition[J]. Materials & Design,2010,31(6):3084-3089.
    [125]ZHENG Y, YOU M, XIONG W H, et al. Effect of Cr3C2 on Valence-Electron Structure and Plasticity of Rim Phase in Ti (C, N)-Based Cermets[J]. Journal of the American Ceramic Society, 2008,87(3):460-464.
    [126]曹茂盛,黄龙男,陈铮,等.材料现代设计理论与方法[M].哈尔滨工业大学出版社,2002.
    [127]刘志林,刘伟东,林成.连铸连轧非调质钢的强度计算及其预报[J].金属学报,2004,40(12).
    [128]WANG C Y, AN F, GU B, et al. Electronic structure of the light-impurity (boron)-vacancy complex in iron[J]. Physical Review B,1988,38(6):3905.
    [129]胡壮麒,彭平,刘轶,等.镍基合金中γ’相界面的强化设计[J].金属学报,2002,38(11):6.
    [130]谢佑卿.固体中多原子相互作用的新势能函数[J].中国科学A辑,1992,8:880.
    [131]MEDVEDEVA N I, NOVIKOV D L, IVANOVSKY A L, et al. Electronic properties of Ti3SiC2-based solid solutions[J]. Physical Review B,1998,58(24):16042-16050.
    [132]SUN Z M, ZHOU Y C. Ab initio calculation of titanium silicon carbide[J]. Physical Review B, 1999,60(3):1441-1443.
    [133]WANG J Y, ZHOU Y C. Ab initio elastic stiffness of nano-laminate (MxM'2-x) AlC (M and M'= Ti, V and Cr) solid solution[J]. Journal of Physics:Condensed Matter,2004,16(16):2819.
    [134]SUN Z M, LI S, AHUJA R, et al. Calculated elastic properties of M2A1C (M= Ti, V, Cr, Nb and Ta)[J]. Solid State Communications,2004,129(9):589-592.
    [135]TOGO A, CHAPUT L, TANAKA I, et al. First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2[J]. Physical Review B,2010,81(17):174301.
    [136]SAITO T. Computational Materials Design [M]. Springer,2010.
    [137]熊家炯.材料设计[M].天津大学出版社,2000.
    [138]NAKAMURA K, YASHIMA M. Crystal structure of NaCl-type transition metal monocarbides MC (M=V, Ti, Nb.Ta, Hf, Zr), a neutron powder diffraction study [J]. Materials Science and Engineering: B,2008,148(1-3):69-72.
    [139]张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993.
    [140]刘志林,李志林,刘伟东.界面电子结构与界面性能[M].科学出版社,2002.
    [141]CHENG K J, CHENG S Y. Theoretical foundations of condensed materials[J]. Progress in Natural Science,1996, (01):14-27.
    [142]CHEN X H, ZHAI H X, SONG P F, et al. Reaction behavior of Ti3AlC2 with Fe at high temperature[J]. Rare Metal Materials and Engineering,2011,40(S1):499-502.
    [143]ZARRINFAR N, SHIPWAY P H, KENNEDY A R, et al. Carbide stoichiometry in TiCx and Cu-TiCx produced by self-propagating high-temperature synthesis[J]. Scripta Materialia,2002,46(2): 121-126.
    [144]LI Y X, HU J D, WANG H Y, et al. Thermodynamic and lattice parameter calculation of TiCx produced from Al-Ti-C powders by laser igniting self-propagating high-temperature synthesis[J]. Materials Science and Engineering:A,2007,458(1-2):235-239.
    [145]TASHMETOV M Y, EM V T, LEE C H, et al. Neutron diffraction study of the ordered structures of nonstoichiometric titanium carbide[J]. Physica B:Condensed Matter,2002,311(3-4):318-325.
    [146]范润华,尹衍升,孙家涛,等.铁铝化合物/碳化钛复合材料的界面电子结构[J].自然科学进展,2004,(03):69-73.
    [147]孙振国,李志林,刘志林.合金异相界面电子密度的计算[J].科学通报,1995,(24):2219-2222.
    [148]刘志林,孙振国,李志林.奥氏体/马氏体异相界面的电子密度[J].科学通报,1995,(22):2040-2042.
    [149]张建民,仲增墉,张瑞林,等.Fe-Al系金属间化合物本征脆性的电子理论[J].材料研究学报,1996,10(3):230-234.
    [150]BAKER H, OKAMOTO H. ASM handbook[J]. Alloy Phase Diagrams, ASM International, USA, 1992:145.
    [151]MAUPIN H E, WILSON R D, HAWK J A. Wear deformation of ordered Fe-Al intermetallic alloys[J]. Wear,1993,162-164, Part A(0):432-440.
    [152]ALMAN D E, HAWK J A, TYLCZAK J H, et al. Wear of iron-aluminide intermetallic-based alloys and composites by hard particles[J]. Wear,2001,251(1-12):875-884.
    [153]DURLU N. Titanium carbide based composites for high temperature applications[J]. Journal of the European Ceramic Society,1999,19(13-14):2415-2419.
    [154]屈华.钛与钛铝化合物基合金相变及力学性能的价电子理论研究[D],2006.
    [155]BARSOUM M W, EL-RAGHY T, FARBER L, et al. The topotactic transformation of Ti3SiC2 into a partially ordered cubic Ti (C0.67Si0.06) phase by the diffusion of Si into molten cryolite[J]. Journal of the Electrochemical Society,1999,146(10):3919-3923.
    [156]EL-RAGHY T, BARSOUM M W. Diffusion kinetics of the carburization and silicidation of Ti3SiC2[J]. Journal of Applied Physics,1998,83(1):112-119.
    [157]EL-RAGHY T, BARSOUM M, SIKA M. Reaction of Al with Ti3SiC2 in the 800-1000℃ temperature range[J]. Materials Science and Engineering:A,2001,298(1):174-178.
    [158]NAGUIB M, PRESSER V, TALLMAN D, et al. On the Topotactic Transformation of Ti2AlC into a Ti-C-O-F Cubic Phase by Heating in Molten Lithium Fluoride in Air[J]. Journal of the American Ceramic Society,2011,94(12):4556-4561.
    [159]PIETZKA M A, SCHUSTER J C. Summary of constitutional data on the Aluminum-Carbon-Titanium system[J]. Journal of Phase Equilibria,1994,15(4):392-400.
    [160]TZENOV N V, BARSOUM M W. Synthesis and characterization of Ti3AlC2[J]. Journal of the American Ceramic Society,2000,83(4):825-832.
    [161]LI S B, ZHAI H X, BEI G P, et al. Synthesis and microstructure of Ti3AlC2 by mechanically activated sintering of elemental powders[J]. Ceramics international,2007,33(2):169-173.
    [162]李子扬,寇自力,安佩,等.Ti3AlC2在静高压下的热稳定性[J].材料研究学报,2010,24(04):368-372.
    [163]ZHANG J, WANG J Y, ZHOU Y C. Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu-Ti3AlC2 composites[J]. Acta Materialia,2007,55(13):4381-4390.
    [164]ZHANG J, ZHOU Y. Microstructure, mechanical, and electrical properties of Cu-Ti3AlC2 and in situ Cu-TiCx composites[J]. Journal of materials research,2008,23(04):924-932.
    [165]WANG X H, ZHOU Y C. Oxidation behavior of Ti3AlC2 at 1000-1400℃ in air[J]. Corrosion Science,2003,45(5):891-907.
    [166]SUNDBERG M, MALMQVIST G, MAGNUSSON A, et al. Alumina forming high temperature silicides and carbides[J]. Ceramics international,2004,30(7):1899-1904.
    [167]AKUEZUE H, WHITTLE D. Interdiffusion in Fe-Al system:aluminizing[J]. Metal Science,1983, 17(1):27-31.
    [168]罗宏,尹显飞.低碳钢和不锈钢粉末渗铝研究进展[J].四川理工学院学报(自然科学版),2008,21(2):97-100.
    [169]丁庆如.渗铝钢的性能及在石油化工装备中的应用[J].石油机械,1999,27(5):52-54.
    [170]LI H, SEKHAR J. Dimensional changes during micropyretic synthesis[J]. Materials Science and Engineering:A,1993,160(2):221-227.
    [171]张鹏.钢-铝固液相轧制复合工艺及理论研究[D];东北大学,1998.
    [172]王兴庆,隋永江,吕海波.铁铝原子在金属间化合物形成中的扩散[J].上海大学学报(自然科学版),1998,(06):74-80.
    [173]LAURENT V, CHATAIN D, EUSTATHOPOULOS N. Wettability of SiO2 and oxidized SiC by aluminium[J]. Materials Science and Engineering:A,1991,135(0):89-94.
    [174]EUSTATHOPOULOS N. Dynamics of wetting in reactive metal/ceramic systems[J]. Acta Materialia,1998,46(7):2319-2327.
    [175]LANDRY K, EUSTATHOPOULOS N. Dynamics of wetting in reactive metal/ceramic systems: linear spreading[J]. Acta Materialia,1996,44(10):3923-3932.
    [176]DE GENNES P G The dynamics of reactive wetting on solid surfaces[J]. Physica A:Statistical Mechanics and its Applications,1998,249(1-4):196-205.
    [177]GE Z B, CHEN K X, GUO J M, et al. Combustion synthesis of ternary carbide Ti3AlC2 in Ti-Al-C system[J]. Journal of the European Ceramic Society,2003,23(3):567-574.
    [178]CAO W, CHEN S L, ZHANG F, et al. PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation[J]. Calphad,2009,33(2):328-342.
    [179]梁英教,车荫昌.无机物热力学数据手册[M].东北大学出版社,1993.
    [180]李吉泉.基体合金化、烧结及热处理工艺对SiCp/Fe合金基复合材料组织性能的影响[D],2002.
    [181]赵学庄.化学反应动力学原理[M].高等教育出版社,1984.
    [182]LUND E W. Guldberg and waage and the law of mass action[J]. Journal of Chemical Education, 1965,42(10):548.
    [183]朱开宏,袁渭康.化学反应工程分析[M].高等教育出版社,2002.
    [184]胡英.物理化学[M].高等教育出版社,1999.
    [185]傅献彩,沈文霞,姚天扬,等.物理化学[M].高等教育出版社,2005.
    [186]SEST K J, BERGGREN G Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures[J]. Thermochimica Acta,1971,3(1):1-12.
    [187]VYAZOVKIN S. Alternative description of process kinetics[J]. Thermochimica Acta,1992,211: 181-187.
    [188]BROWN M, MACIEJEWSKI M, VYAZOVKIN S, et al. Computational aspects of kinetic analysis: part A:the ICTAC kinetics project-data, methods and results[J]. Thermochimica Acta,2000,355(1): 125-143.
    [189]JOVIC V D, JOVIC B M, GUPTA S, et al. Corrosion behavior of select MAX phases in NaOH, HC1 and H2SO4[J]. Corrosion Science,2006,48(12):4274-4282.
    [190]JOVIC V, BARSOUM M. Corrosion Behavior and Passive Film Characteristics Formed on Ti, Ti3SiC2, and Ti4AIN3 in H2SO4 and HCI[J]. Journal of the Electrochemical Society,2004,151(2): B71-B76.
    [191]果世驹.粉末烧结理论[M].冶金工业出版社,1998.
    [192]LEE D J, GERMAN R M. Sintering behavior of iron-aluminum powder mixes [M], Princeton, NJ, ETATS-UNIS:American powder metallurgy institute,1985.
    [193]RABIN B H, WRIGHT R N. Synthesis of iron aluminides from elemental powders:Reaction mechanisms and densification behavior[J]. Metallurgical Transactions A,1991,22(2):277-286.
    [194]SHEASBY J. Powder Metallurgy of Iron--Aluminum[J]. Powder Metall Powder Technol,1979, 15(4):301-305.
    [195]TRUMBLE K P. Spontaneous infiltration of non-cylindrical porosity:Close-packed spheres[J]. Acta Materialia,1998,46(7):2363-2367.
    [196]OH S Y, CORNIE J A, RUSSELL K C. Wetting of ceramic particulates with liquid aluminum alloys: Part Ⅱ. Study of wettability[J]. Metallurgical Transactions A,1989,20(3):533-541.
    [197]STOLYAROV V V, ZHU Y T, LOWE T C, et al. Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion[J], Materials Science and Engineering:A,2000,282(1-2):78-85.
    [198]Workshop on thermodynamic modeling of solutions and alloys:Schloss Ringberg, March 10-16, 1996[J]. Calphad,1997,21(2):155-170.
    [199]KACZMAR J W, PIETRZAK K, WLOSINSKI W. The production and application of metal matrix composite materials[J]. Journal of Materials Processing Technology,2000,106(1-3):58-67.
    [200]师昌绪.材料大辞典[M].化学工业出版社,1994.
    [201]黄培云.粉末冶金原理[M].第2版ed.:冶金工业出版社,1997.
    [202]WAKAIF, CHIHARA K, YOSHIDA M. Anisotropic shrinkage induced by particle rearrangement in sintering[J]. Acta Materialia,2007,55(13):4553-4566.
    [203]KINGERY W D, BOWEN H K, UHLMANN D R, et al.陶瓷导论[M].高等教育出版社,2010.
    [204]LUTTEROTTI L, MATTHIES S, WENK H. MAUD (material analysis using diffraction):a user friendly Java program for Rietveld texture analysis and more; proceedings of the Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12), F,1999 [C]. NRC Press Ottawa, Canada.
    [205]JB/T 6646-2007烧结金属制品.物理性能检测规范[M].2007.
    [206]关振铎,张中太,焦金生.无机材料物理性能[M].清华大学出版社,1992.
    [207]GAO Y, JIA J, LOEHMAN R E, et al. Microstructure and composition of Al-Al2O3 composites made by reactive metal penetration[J]. Journal of Materials Science,1996,31(15):4025-4032.
    [208]BRESLIN M C, RINGNALDA J, XU L, et al. Processing, microstructure, and properties of co-continuous alumina-aluminum composites[J]. Materials Science and Engineering:A,1995, 195(0):113-119.
    [209]陈子勇.熔体反应内生Al-4.5Cu/TiB2复合材料的组织和性能[D];哈尔滨工业大学,1998.
    [210]EWSUK K G, GLASS S J, LOEHMAN R E, et al. Microstructure and properties of Al2O3-Al(Si) and Al2O3-Al(Si)-Si composites formed byin situ reaction of Al with aluminosilicate ceramics[J]. Metallurgical and Materials Transactions A,1996,27(8):2122-2129.
    [211]GB/T 228.1-2010金属材料.拉伸试验.第1部分:室温试验方法[M].2010.
    [212]GB/T 6525-1986烧结金属材料室温压缩强度的测定[M].1986.
    [213]GB/T 231.1-2009金属材料.布氏硬度试验.第1部分:试验方法[M].2009.
    [214]黄振莺.高速列车受电弓滑板用Ti3SiC2系材料的制备与性能研究[D],2008.
    [215]GB/T 5680-1998高锰钢铸件[M].1998.
    [216]EL-MAHALLAWI I, ABDEL-KARIM R, NAGUIB A. Evaluation of effect of chromium on wear performance of high manganese steel[J]. Materials Science and Technology,2001,17(11): 1385-1390.
    [217]ZHANG Z, CHEN D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites:A model for predicting their yield strength[J]. Scripta Materialia,2006, 54(7):1321-1326.
    [218]RAMAKRISHNAN N. An analytical study on strengthening of particulate reinforced metal matrix composites[J]. Acta Materialia,1996,44(1):69-77.
    [219]LID M, GHOSH A. Tensile deformation behavior of aluminum alloys at warm forming temperatures[J]. Materials Science and Engineering:A,2003,352(1-2):279-286.
    [220]VEDANI M, GARIBOLDI E. Damage and ductility of particulate and short-fibre Al-Al2O3 composites[J]. Acta Materialia,1996,44(8):3077-3088.
    [221]PRANGNELL P, DOWNES T, STOBBS W, et al. The deformation of discontinuously reinforced MMCs—Ⅰ. The initial yielding behaviour[J]. Acta Metallurgica et Materialia,1994,42(10): 3425-3436.
    [222]GB/T 5028-2008金属材料.薄板和薄带.拉伸应变硬化指数(n值)的测定[M].2008.
    [223]LUDWIGSON D C. Modified stress-strain relation for FCC metals and alloys[J]. Metallurgical Transactions,1971,2(10):2825-2828.
    [224]CLYNE T, WITHERS P. An Introduction to Metal Matrix Composites.1993 [J]. Cambridge, Cambridge University Press.
    [225]朱瑛,姚英学,周亮.硬度测量技术现状及发展趋势[J].机械科学与技术,2003,22(51):6-7.
    [226]韦斯特布鲁克,康拉德著,李承欧等译.硬度试验科学及其应用[M].中国计量出版社,1987.
    [227]朱元右,顾军.高锰钢微合金化的研究[J].江苏冶金,2002,30(6):14-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700