用户名: 密码: 验证码:
石墨烯/Ⅱ-Ⅵ族半导体纳米晶复合物的制备及光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯,一个由单层碳原子堆积而成的二维蜂窝状结构的新材料,由于其非凡的电、热、机械性能,及高比表面积(2600m~2/g)、易功能化等特点,目前已成为材料科学领域的一个研究热点,在纳电子学、能源、环境、生物医学等领域具有广泛的应用前景。然而,石墨烯是零带隙材料,在紫外到近红外光学吸收范围内呈现带间吸收主导的恒定的光电导现象,没有共振吸收峰,因而在光电转化应用中受到限制。
     半导体纳米晶,具有分立的电子能级,尺寸及组分依赖的能级间距,由于其优异的可调控的光学性能成为另一个引起人们研究兴趣的纳米体系,在生物荧光标记、电致发光、高效光电转化器件中具有潜在的应用。然而,半导体纳米晶的尺寸较小,稳定性差,需要利用有机配体对其进行包覆,而有机配体严重阻碍了纳米晶之间的耦合,影响纳米晶之间的电荷传输,导致半导体纳米晶体系具有极低电导率和光电导率,限制了它们在光电等方面应用。
     因此,将石墨烯和半导体纳米晶复合被视为一个制备高性能光电器件中潜在的材料的方法,因为它们结合了纳米晶的光电转换能力和石墨烯优异的导电能力,在光电器件、光催化和太阳能电池方面具有潜在的应用前景。
     本论文探索了几种制备II-VI族三元半导体纳米晶以及石墨烯半导体纳米晶复合物的方法,对它们的光学及光电性能进行了研究,并发展了提高石墨烯半导体纳米晶复合物及纳米晶薄膜光电性能的方法。主要研究内容如下:
     1.利用两相离子交换的方法,将预先制备的油溶性的硒化锌(ZnSe)纳米晶与水溶液中的镉离子在高压釜中进行阳离子交换和有机配体交换反应,成功制备了水溶性的Zn_xCd_(1-x)Se合金纳米晶。通过对反应时间和反应温度精确控制,得到了荧光发射波长从412到570nm的水溶性合金纳米晶。得到的纳米晶具有较高的量子产率,良好的稳定性及结晶性。这种新的方法使离子交换和配体交换同时进行,克服了水相制备纳米晶量子产率低、结晶性差等缺点。该方法可扩展到制备其它高质量的水溶性纳米晶材料。
     2.基于第一部分的两相法,在室温下,将水溶性的氧化石墨烯(GO)与油溶性的CdSe及CdSe/ZnS纳米晶混合,得到了高质量的GO-CdSe和GO-CdSe/ZnS复合物。该复合物中,3.0nm CdSe和6.5nm CdSe/ZnS纳米晶均匀的分散在氧化石墨烯的表面。由于该复合物中,氧化石墨烯上存在一定量的含氧基团,不利于电荷的传输,导致该复合物的光电流很小。利用水合肼还原后,复合物的光敏值可达5200%,这是由还原石墨烯的导电能力增强所致。为了进一步提高石墨烯半导体纳米晶的光敏性质,我们研究了煅烧对ITO基底上的CdSe纳米晶薄膜光响应性质的影响。结果表明,煅烧使纳米晶晶粒尺寸增大,纳米晶间距减小,纳米晶表面的有机物有效去除,致使相邻纳米晶之间的势垒高度降低,有利于光生载流子的传输,导致CdSe纳米晶薄膜的光响应速度提高。
     3.利用溶剂热法,分别在二甲基亚砜和乙二醇介质中,成功地制备了石墨烯-Zn_xCd_(1-x)S纳米晶复合物。在二甲基亚砜中,通过加入不同比例的锌源和镉源,一步将Zn_xCd_(1-x)S纳米晶成功地固定在石墨烯片上。纳米晶的尺寸约为9nm,均匀的分布在石墨烯的表面。在该反应中,二甲基亚砜起着溶剂和硫源的双重作用。而在乙二醇中,硫脲作为硫源,聚吡咯烷酮(PVP)为表面活性剂,得到了石墨烯-Zn_xCd_(1-x)S纳米晶复合物。该复合物中纳米晶的尺寸为3-5nm,它们自组装成20-30nm的多孔球。复合物中纳米晶的组分由加入锌和镉前驱体的比例决定。这两种介质中得到的石墨烯-纳米晶复合物均具有较高的光电流。这是因为复合物中石墨烯能够提高光生载流子从纳米晶到石墨烯上转移能力,使得这些复合材料在光电器件中具有广阔的应用前景。
Graphene, a two-dimensional material, composed of monolayer carbon atoms packed into ahoneycomb network, due to its extraordinary electrical, thermal, and mechanical properties, extremely highspecific surface area (2600m2/g) and easy functionalization, has become a hot research topic on thehorizon of material science at present and it is highly attractive for nanoelectronics, energy, environment,and bio-medical applications. However, perfect graphene does not show evident advantages inoptoelectronics owing to its nature as a zero-bandgap semiconductor. Constant photoconductivephenomenon presents in the inter-band absorption of graphene in the range from ultraviolet to near-infrared,that is to say, graphene has not resonance absorption peak, and thus the application for the photoelectricconversion performance is limited.
     Semiconductor nanocrystals have a discrete electronic energy levels, size-and component-dependentenergy level spacing. They have been aroused research interests due to its excellent optical properties. andhave intensively investigated for their significant potential in biological fluorescent labels,electroluminescent, highly efficient photoelectric conversion devices. However, in order to make thesmall-size nanocrystalline stable, nanocrystals are usually coated with organic ligands to preventaggregation and chemical degradation. Neveretheless, the coating organic-ligand layer severely limits theconductivity and the photoconductivity of nanocrystal-array films because of the influence of the ligandson the interactions and the spatial distribution of nanopaticles. This severely encumbers the applications ofnanocrystals in optoelectronic devices.
     Thus, the graphene and semiconductor nanocrystals composites are regarded as a potential materialfor the preparation of high-performance optoelectronic devices, because it combines the photoelectricconversion ability of the nanocrystals and excellent electrical conductivity of the graphene. Thesecomposite materials will have potential applications in optoelectronic devices, photocatalysis and solar cell,and so on.
     In this paper, we explored several methods to prepare II-VI ternary semiconductor nanocrystals andgraphene semiconductor nanocrystal composites, and studied on their optical and photoelectric properties.Meanwhile, we also delveloped methods to improve photoelectric performance of graphene semiconductor nanocrystal composite and nanocrystal film. The main contents are as follows:
     1. A facile two-phase method was developed to synthesize water-soluble Zn_xCd_(1-x)Se nanocrystalsthrough cation exchange reaction of the pre-synthesized ZnSe nanocrystals (in organic phase) with Cd2+(inwater phase). The obtained high-quality alloy nanocrystals with different desired emission wavelengths(ranging from412to570nm) can be made reproducibly and precisely by varying the reaction temperatureand time. The obtained alloy nanocrystals not only have high quantum yields (QYs) and stability, but alsohave good crystallinity. For the first time, this new strategy allows that Zn_xCd_(1-x)Se nanocrystals formationand3-mercaptopropionic acid (MPA) functionalization to be executed simultaneously. It overcomes thepoor quantum yields and crystalline shortcomings in the water-phase synthesis. It is expected that thereported simple synthetic strategy can be developed into a very practical approach to produce high-qualitywater-soluble nanocrystals.
     2. Based on the first part, at room temperature, high-quality graphene oxide–CdSe (GO–CdSe) andgraphene oxide–CdSe/ZnS (GO–CdSe/ZnS) nanocomposites were successfully synthesized by a two-phasemixing method. Many CdSe and CdSe/ZnS nanocrystals are uniformly distributed on surface of the GOsheets with a uniform size of around3.0and6.5nm, respectively. The as-synthesized GO–CdSe andGO–CdSe/ZnS composites show small photocurrent due to the presence of a certain amount ofoxygen-containing groups on the graphene oxide which blocked the transport of photo-generated carriers.After hydrazine reduction, the photosensitive of the composites can reach5200%. This behavior can beinterpreted graphene enhanced the efficient transfer of the photoinduced carriers. In order to furtherimprove the photosensitive properties of graphene semiconductor nanocrystal composites, we investigatedthe annealing effects on the photoresponse properties of CdSe nanocrystal thin films on ITO substrate.Results indicate that the increase of the crystallite sizes and necking the nanocrystals and the organiccapping agents removed effectively are observed after annealing. The photoresponse speed is improvedafter the annealing of the CdSe nanocrystal film due to lowering the height of the potential barriers existingbetween adjacent nanocrystals and enhances the transport speed of photogenerated carriers.
     3. Grapheng-Zn_xCd_(1-x)S nanocrystal composites were successfully obtained by solvothermal methodin dimethyl sulfoxide and ethylene glycol, respectively. In the dimethyl sulfoxide, by adding differentproportions of the zinc and cadmium source, Zn_xCd_(1-x)S nanocrystals s were anchored on the surface of graphene by a one-step reaction. Zn_xCd_(1-x)S nanocrystals are uniformly distributed on surface of thegraphene sheets with a size of around9nm. In the reaction, dimethyl sulfoxide plays the role of the solventand the sulfur source. In the ethylene glycol, the graphene-Zn_xCd_(1-x)S nanocrystal composites wereprepared by adding thiourea and polyethylene pyrrolidone (PVP). Zn_xCd_(1-x)S nanocrystals of about3-5nmself-assemble into a porous sphere with a size of20-30nm. The composition of the sulfide can be changedby changing the Cd/Zn ratio in the precursor. The graphene-CdS composites prepared by the two methodshave a dramatically increased photocurrent. This behavior can be interpreted by the efficient transfer of thephotoinduced carriers from the CdS nanocrystals to the graphene. The ability to improve photoinducedcharge transfer makes these composites extraordinarily promising in optoelectronic device applications.
引文
[1] M. Bruchez, M. Moronne, P. Gin, et al. Semiconductor nanocrystals as fluorescent biological labels [J].Science,1998,281(5385):2013-2016.
    [2] W. C. W. Chan, S. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science,1998,281(5385):2016-2018.
    [3] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Hybrid nanorod-polymer solar cells [J]. Science,2002,295(5564):2425-2427.
    [4] I. Gur, N. A. Fromer, M. L. Geier, et al. Air-stable all-inorganic nanocrystal solar cells processed fromsolution [J]. Science,2005,310(5747):462-465.
    [5] G. Konstantatos, I. Howard, A. Fischer, et al. Ultrasensitive solution-cast quantum dot photodetectors [J].Nature,2006,442:180-183.
    [6] V. J. Porter, S. Geyer, J. E. Halpert, et al. Photoconduction in annealed and chemically treatedCdSe/ZnS inorganic nanocrystal films [J]. J. Phys. Chem. C.,2008,112(7):2308-2316.
    [7] K. Novoselov, A. Geim, S. Morozov, et al. Electric field effect in atomically thin carbon films [J].Science,2004,306(5696):666-669.
    [8] C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, et al. Graphene: the new two-dimensionalnanomaterial [J]. Angew. Chem. Int. Ed.,2009,48(42):7752-7777.
    [9] C. Jiang, S. Markutsya, Y. Pikus, et al. Freely suspended nanocomposite membranes as highly sensitivesensors [J]. Nat. Mater.,2004,3(10):721-728.
    [10] R. Miranda, A. L. V. De Parga. Graphene: surfing ripples towards new devices [J]. Nat. Nanotechnol.,2009,4(9):549-550.
    [11] M. D. Stoller, S. Park, Y. Zhu, et al. Graphene-based ultracapacitors [J]. Nano Lett.,2008,8(10):3498-3502.
    [12] A. P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science,1996,271(5251):933-937.
    [13] I. L. Medintz, H. T. Uyeda, E. R. Goldman, et al. Quantum dot bioconjugates for imaging labelling andsensing [J]. Nat. Mater.,2005,4(6):435-446.
    [14] H. Shen, H. Wang, Z. Tang, et al. High quality synthesis of monodisperse zinc-blende CdSe andCdSe/ZnS nanocrystals with a phosphine-free method [J]. Crystengcomm,2009,11(8):1733-1738.
    [15] W. Wang, I. Germanenko, M. S. EL-Shall. Room-temperature synthesis and characterization ofnanocrystalline CdS, ZnS, and CdxZn1-xS [J]. Chem. Mater.,2002,14(7):3028-3033.
    [16] M. Chen, Y. Xie, J. Lu, et al. Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals usinga highly oriented solvothermal recrystallization technique [J]. J. Mater. Chem.,2002,12(3):748-753.
    [17] D. J. Milliron, S. M. Hughes, Y. Cui, et al. Colloidal nanocrystal heterostructures with linear andbranched topology [J]. Nature,2004,430(6996):190-195.
    [18] M. Kazes, D. Y. Lewis, Y. Ebenstein, et al. Lasing from semiconductor quantum rods in a cylindricalmicrocavity [J]. Adv. Mater.,2002,14(4):317-321.
    [19] N. Herron, J. Calabrese, W. Farneth, et al. Crystal structure and optical properties of Cd32S14(SC_6H_5)36\cdotDMF_4, a Cluster with a15Angstrom CdS Core [J]. Science,1993,259(5100):1426-1428.
    [20]丁优仙,于迎春,刘建军等。不同晶型纳米CdS的合成及其光催化活性[J].化学研究,2009,20(2):12-16.
    [21] J. M. Costa-Fernández, R. Pereiro, A. Sanz-Medel. The use of luminescent quantum dots for opticalsensing [J]. TrAC Trends in Analytical Chemistry2006,25(3):207-218.
    [22] C. B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperseCdE (E=S, Se, Te) semiconductor nanocrystallites [J]. J. Am. Chem. Soc.,1993,115:8706-8715.
    [23] L. Qu, X. Peng. Control of photoluminescence properties of CdSe nanocrystals in growth [J]. J. Am.Chem. Soc.,2002,124(9):2049-2055.
    [24] X. Peng. Green Chemical Approaches toward high-quality semiconductor nanocrystals [J]. Chem. Eur.J.,2002,8(2):334-339.
    [25] Z. Deng, L. Cao, F. Tang, et al. A new route to zinc-blende CdSe nanocrystals: mechanism andsynthesis [J]. J. Phys. Chem. C,2005,109(35):16671-16675.
    [26] J. Jasieniak, C. Bullen, V. Embden,et al. Phosphine-free synthesis of CdSe nanocrystals [J]. J. Am.Chem. Soc.,2005,109(44):20665-20668.
    [27] H. B. Shen, H. Z. Wang, X. M. Li, et al. Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, andCu-, Mn-doped ZnSe nanocrystals [J]. Dalton Trans,2009,(47):10534-10540.
    [28] H. Shen, H. Yuan, F. Wu et al. Facile synthesis of high-quality CuInZnxS1-xcore/shell nanocrystals andtheir application for detection of C-reactive protein [J]. J. Mater. Chem.,2012,22(35):18623-
    [29] H. Shen, C. Zhou, S. Xu, et al. Phosphine-free synthesis of Zn1-xCdxSe/ZnSe/ZnSexS1-x/ZnScore/multishell structures with bright and stable blue-green photoluminescence [J]. J. Mater. Chem.,2011,21(16):6046-6053.
    [30] A. L. Rogach, L. Katsikas, A. Kornowski, et al. Synthesis and characterization of thiol-stabilized CdTenanocrystals [J]. Ber. Bunsenges. Phys. Chem.,1996,100(11):1772-1778.
    [31] M. Gao, S. Kirstein, H. Mohwald. Strongly photoluminescent CdTe nanocrystals by proper surfacemodification [J]. J. Phys. Chem. B,1998,102(43):8360-8363.
    [32] H. Zhang, L. Wang, H. Xiong, et al. Hydrothermal synthesis for high-quality CdTe nanocrystals [J].Adv. Mater.,2003,15(20):1712-1715.
    [33] A. Shavel, N. Gaponik, A. Eychmuller. Efficient UV-blue photoluminescing thiol-stabilizedwater-soluble alloyed ZnSe(S) nanocrystals [J]. J. Phys. Chem. B,2004,108(19):5905-5908.
    [34] H. Qian, X. Qiu, L. Li, et al. Microwave-assisted aqueous synthesis: a rapid approach to preparehighly luminescent ZnSe (S) alloyed quantum dots [J]. J. Phys. Chem. B.,2006,110(18):9034-9040.
    [35] Y. G. Zheng, Z.C. Yang, J.Y. Ying. Aqueous Synthesis of Glutathione-capped ZnSe and Zn1-xCdxSealloyed quantum dots [J]. Adv. Mater.2007,19(11):1475-1479.
    [36] Ambrosi, A., Pumera, M.,Regulatory peptides are susceptible to oxidation by metallic impuritieswithin carbon nanotubes [J]. Chem. Eur. J.,2010,16(6):1786-1792.
    [37] L. J. Zhang, C. L. Xu, B. X. Li. Simple and sensitive detection method for chromium (VI) in waterusing glutathione-capped CdTe quantum dots as fluorescent probes [J]. Microchim. Acta.,2009,166(1-2):61-68.
    [38] J. P. Yuan, W. W. Guo, J. Y. Yin, etal. Glutatllione-capped CdTe quantum dots for the sensitivedetection of glueose [J]. Talanta,2009,77(5):1858-1863.
    [39] C. L. Wang, H. Zhang, J. H. Zhang, et al. Application of ultrasonic irradiation in aqueous synthesis ofhighly fluorescent CdTe/CdS core-shell nanocrystals [J]. J. Phys.Chem. C,2007,111(6):2465-2469.
    [39] H. F. Qian, C. Q. Dong, J. F. Weng, et al. Facile one-pot synthesis of luminescent,water-soluble, andbiocompatible glutathione-coated CdTe nanocrystals [J]. Small,2006,2(6):747-751.
    [40] J. S. Jang, U. A. Joshi, J. S. Lee. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogenand electricity production [J]. J. Phys. Chem. C,2007,111(35):13280-13287.
    [41] J. P. Ge, S. Xu, J. Zhuang, et al. Synthesis of CdSe, ZnSe, and ZnxCd1-xSe nanocrystals and their silicasheathed core/shell structures [J]. Inorg. Chem.,2006,45(13):4922-4927.
    [42] Y. D. Li, X. L. Li, Z. X. Deng, et al. From surfactant-inorganic mesostructures to tungsten nanowires[J]. Angew. Chem. Int. Ed.,2002,41(2):333-335.
    [43] W. Chen, K. Chen, Q. Peng, et al. Triangular CdS nanocrystals: rational solvothermal synthesis andoptical studies [J]. Small,2009,5(6):681-684.
    [44] M. Brust, M. Walker, D. Bethell, et al. Synthesis of thiol-derivatized gold nanoparticles in a2-phaseliquid-liquid system [J]. J. Chem. Soc. Chem. Commun.,1994,7(7):801-802.
    [45] D. Pan, Q. Wang, S. Jiang, et al. Synthesis of extremely small CdSe and highly luminescent CdSe/CdScore-shell nanocrystals via a novel two-phase thermal approach [J]. Adv. Mater.,2005,17(2):176-179.
    [46] Q. Wang, D. Pan, S. Jiang, et al. A new two-phase route to high-quality CdS nanocrystals [J]. Chem.Eur. J.,2005,11(13):3843-3848.
    [47] X. Wang, J. Zhuang, Q. Peng, et al. A general strategy for nanocrystal synthesis [J]. Nature,2005,437(7055):121-124.
    [48] L. AL. Traité élémentaire de chimie. Paris1789.
    [49] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
    [50] I. Sumio. Helical microtubules of graphitic carbon [M]. Nature,1991,354:56-58.
    [51] K. HW, H. JR, O. B. SC, et al. C60: Buckminsterfullerene [J]. Nature,1985,318(6042):162-163.
    [52] A. K. Geim, K. S. Novoselov. The rise of graphene [J]. Nat. Mater.,2007,6(3):183-191.
    [53] A. Fasolino, J. Los, M. Katsnelson. Intrinsic ripples in graphene [J]. Nat. Mater.,2007,6(11):858-861.
    [54] N. D. Mermin. Crystalline order in two dimensions [J]. Phys. Rev.,1968,176(1):250–254.
    [55] K. S. Novoselov, D. Jiang, F. Schedin, et al. Two-dimensional atomic crystals [J]. Proc. Natl Acad. Sci.,2005,102(30):10451-10453.
    [56] P. L. Doussal, L. Radzihovsky. Self-consistent theory of polymerized membranes [J]. Phys. Rev. Lett.,1992,69(8):1209-1212.
    [57] D. R. Nelson, T. Piran, S.Weinberg, et al. Statistical Mechanics of Membranes and Surfaces [M].World Scientific,2004.
    [58] M. Eizenberg, J. M. Blakely. Carbon monolayer phase condensation on Ni (111)[J]. Surf. Sci.,1979,82(1):228-236.
    [59] X. Lu, M. Yu, H. Huang, et al. Tailoring graphite with the goal of achieving single sheets [J].Nanotechnology,1999,10(3):269.
    [60] A. Reina, X. Jia, J. Ho, et al. Large area, few-layer graphene films on arbitrary substrates by chemicalvapor deposition [J]. Nano.Lett.,2008,9(1):30-35.
    [61] S. J. Chae, F. Güne, K. K. Kim, et al. Synthesis of Large-area graphene layers on poly-nickel substrateby chemical vapor deposition: wrinkle formation [J]. Adv. Mater.2009,21(22):2328-2333.
    [62] A. Hirsch. Unzipping carbon nanotubes: A peeling method for the formation of graphene nanoribbons[J]. Angew. Chem. Int. Ed.,2009,48(36):6594-6596.
    [63] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, et al. Longitudinal unzipping of carbon nanotubes toform graphene nanoribbons [J]. Nature,2009,458(7240):872-876.
    [64] L. Y. Jiao, L. Zhang, X. R. Wang, et al. Narrow graphene nanoribbons from carbon nanotubes [J].Nature,2009,458(7240):877-880.
    [65] A. K. Geim, K. S. Novoselov, The rise of graphene [J]. Nat. Mater.,2007,6(3):183-191.
    [66] A. Yu, P. Ramesh, M. E. Itkis, et al. Graphite nanoplatelet-epoxy composite thermal interface materials[J]. J. Phys. Chem. C,2007,111(21):7565-7569.
    [67] T. Ramanathan,A. A.Abdala, S. Atankovich, etal. Functionalized graphene sherrts for polymernanocomposites [J]. Nat. Nanotechnol.20083(6):327-331.
    [68] M. Fang, K. Wang, H. Lu, et al. Covalent polymer functionalization of graphene nanosheets andmechanical properties of composites [J]. J. Mater. Chem.,2009,19(38):7098-7105.
    [69] J. Yan, T. Wei, B. Shao, et al. Preparation of a graphene nanosheet/polyaniline composite with highspecific capacitance [J]. Carbon,2010,48(2):487-493.
    [70] R. Muszynski, B. Seger, P. V. Kamat, Decorating graphene sheets with gold nanoparticles [J]. J. Phys.Chem. C,2008,112(14):5263-5266.
    [71] G. Goncalves, P. A. Marques, C. M. Granadeiro, et al. Surface modification of graphene nanosheetswith gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation andgrowth [J]. Chem. Mater.,2009,21(20):4796-4802.
    [72] W. Hong, H. Bai, Y. Xu, et al. Preparation of gold nanoparticle/graphene composites with controlledweight contents and their application in biosensors [J]. J. Phys. Chem. C,2010,114(4):1822-1826.
    [73] Y. Si, E. T. Samulski, Exfoliated graphene separated by platinum nanoparticles [J]. Chem. Mater.,2008,20(21):6792-6797.
    [74] B. Seger, P. V. Kamat, Electrocatalytically active graphene-platinum nanocomposites. Role of2-Dcarbon support in PEM fuel cells [J]. J. Phys. Chem. C,2009,113(19):7990-7995.
    [75] E. Yoo, T. Okata, T. Akita, et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphenenanosheet surface [J]. Nano Lett.,2009,9(6):2255-2259.
    [76] Y. Li, L. Tang, J. Li, Preparation and electrochemical performance for methanol oxidation ofpt/graphene nanocomposites [J]. Electrochem. Commun.,2009,11(4):846-849.
    [77] Y. Li, W. Gao, L. Ci, et al. Catalytic performance of Pt nanoparticles on reduced graphene oxide formethanol electro-oxidation [J]. Carbon,2010,48(4):1124-1130.
    [78] S. Liu, J. Wang, J. Zeng, et al.“Green” electrochemical synthesis of Pt/graphene sheet nanocompositefilm and its electrocatalytic property [J]. J. Power Sources,2010,195(15):4628-4633.
    [79] L. Dong, R. R. S. Gari, Z. Li, et al. Graphene-supported platinum and platinum-rutheniumnanoparticles with high electrocatalytic activity for methanol and ethanol oxidation [J]. Carbon,2010,48(3):781-787.
    [80] G. M. Scheuermann, L. Rumi, P. Steurer, et al. Palladium nanoparticles on graphite oxide and itsfunctionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura couplingreaction [J]. J. Am. Chem. Soc.,2009,131(23):8262-8270.
    [81] J. B. Liu, S. H. Fu, B. Yuan, et al. Toward a universal "adhesive nanosheet" for the assembly ofmultiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide [J]. J. Am.Chem. Soc.,2010,132(21):7279-7281.
    [82] R. Pasricha, S. Gupta, A. K. Srivastava, A facile and novel synthesis of Ag-graphene-basednanocomposites [J]. Small,2009,5(20):2253-2259.
    [83] X. Zhou, X. Huang, X. Qi, et al. In situ synthesis of metal nanoparticles on single-layer grapheneoxide and reduced graphene oxide surfaces [J]. J. Phys. Chem. C,2009,113(25):10842-10846.
    [84] J. Shen, M. Shi, N. Li, et al. Facile synthesis and application of Ag-chemically converted graphenenanocomposite [J]. Nano Res.,2010,3(5):339-349.
    [85] H. M. Hassan, V. Abdelsayed, S. K. Abd El Rahman, et al. Microwave synthesis of graphene sheetssupporting metal nanocrystals in aqueous and organic media [J]. J. Mater. Chem.,2009,19(23):3832-3837.
    [86] G. Williams, B. Seger, P. V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalyticreduction of graphene oxide [J]. ACS Nano,2008,2(7):1487-1491.
    [87] Y. H. Ng, I. V. Lightcap, K. Goodwin, et al. To what extent do graphene scaffolds improve thephotovoltaic and photocatalytic response of TiO2nanostructured films?[J]. J. Phys. Chem. Lett.,2010,1(15):2222-2227.
    [88] J. Liu, H. Bai, Y. Wang, et al. Self-assembling TiO2nanorods on large graphene oxide sheets at atwo-phase interface and their anti-recombination in photocatalytic applications [J]. Adv. Funct. Mater.,2010,20(23):4175-4181.
    [89] H. Zhang, P. Xu, G. Du, et al. A facile one-step synthesis of TiO2/graphene composites forphotodegradation of methyl orange [J]. Nano Res.,2010,4(3):274-283.
    [90] H. I. Kim, G. H. Moon, D. Monllor-Satoca, et al. Solar photoconversion using graphene/TiO2composites: nanographene shell on TiO2core versus TiO2nanoparticles on graphene sheet [J]. J. Phys.Chem. C,2011,116(1):1535-1543.
    [91] D. Wang, D. Choi, J. Li, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhancedLi-ion insertion [J]. ACS Nano,2009,3(4):907-914.
    [92] H. Zhang, X. Lv, Y. Li, et al. P25-graphene composite as a high performance photocatalyst [J]. ACSNano,2010,4(1):380-386.
    [93] G. Williams, P.V. Kamat, Graphene-semiconductor nanocomposites: excited-state interactions betweenZnO nanoparticles and graphene oxide [J]. Langmuir,2009,25(24):13869-13873.
    [94] Q. Zhang, C. G. Tian, A. P. Wu, et al. A facile one-pot route for the controllable growth of small sizedand well-dispersed ZnO particles on GO-derived graphene [J]. J. Mater. Chem.,2012,22(23):11778-11784.
    [95] Z. X. Wang, X. Y. Zhan, Y. J. Wang, et al. A flexible UV nanosensor based on reduced graphene oxidedecorated ZnO nanostructures [J]. Nanoscale,2012,4(8):2678-2684.
    [96] D. I. Son, B. W. Kwon, D. H. Park, et al. Emissive ZnO-graphene quantum dots forwhite-light-emitting diodes [J]. Nat Nano,2012,7(7):465-471.
    [97] F. Li, J. Song, H. Yang, et al. One-step synthesis of graphene/SnO2nanocomposites and its applicationin electrochemical supercapacitors [J]. Nanotechnology,2009,20(45):455602.
    [98] Li Y, Lv X, Lu J, et al. Preparation of SnO2-nanocrystal/graphene-nanosheets composites and theirlithium storage ability [J]. J. Phys. Chem. C.,2010,114(49):21770-21774.
    [99] X. Y. Wang, X. F. Zhou, K. Yao, et al. A SnO2/graphene composite as a high stability electrode forlithium ion batteries [J]. Carbon,2011,49(1):133-139.
    [100] C. F. Zhang, X. Peng, Z. P. Guo, et al. Carbon-coated SnO2/graphene nanosheets as highly reversibleanode materials for lithium ion batteries [J]. Carbon,2012,50(5):1897-1903.
    [101] B. Wang, X. L. Wu, C. Y. Shu, et al. Synthesis of CuO/graphene nanocomposite as ahigh-performance anode material for lithium-ion batteries [J]. J. Mater. Chem.,2010,20(47):10661-10664.
    [102] Y. Mai, X. Wang, J. Xiang, et al. CuO/graphene composite as anode materials for lithium-ionbatteries [J]. Electrochim. Acta,2011,56(5):2306-2311.
    [103] J. Yan, Z. Fan, T. Wei, et al. Fast and reversible surface redox reaction of graphene-MnO2compositesas supercapacitor electrodes [J]. Carbon,2010,48(13):3825-3833.
    [104] Z. S. Wu, W. Ren, D. W. Wang, et al. High-energy MnO2nanowire/graphene and grapheneasymmetric electrochemical capacitors [J]. ACS Nano,2010,4(10):5835-5842.
    [105] H. Wang, L. F. Cui, Y. Yang, et al. Mn3O4-graphene hybrid as a high capacity anode material forlithium ion batteries [J]. J. Am. Chem. Soc.,2010,132(40):13978-13980.
    [106] C. Nethravathi, T. Nisha, N. Ravishankar, et al. Graphene-nanocrystalline metal sulphide compositesproduced by a one-pot reaction starting from graphite oxide [J]. Carbon,2009,47(8):2054-2059.
    [107] A. Cao, Z. Liu, S. Chu, et al. A facile one-step method to produce graphene-CdS quantum dotnanocomposites as promising optoelectronic materials [J]. Adv. Mater.,2010,22(1):103-106.
    [108] J. Wu, S. Bai, X. Shen, et al. Preparation and characterization of graphene/CdS nanocomposites [J].Appl. Surf. Sci.,2010,257(3):747-751.
    [109] T. A. Pham, B. C. Choi, Y. T. Jeong, Facile covalent immobilization of cadmium sulfide quantumdots on graphene oxide nanosheets: preparation, characterization, and optical properties [J].Nanotechnology,2010,21(46):465603-465612.
    [110] X. Geng, L. Niu, Z. Xing, et al. Aqueous-processable noncovalent chemically convertedgraphene-quantum dot composites for flexible and transparent optoelectronic films [J]. Adv. Mater.,2010,22(5):638-642.
    [111] X. Y. Yu, Z. H. Chen, D. B. Kuang, et al. A mild one-step process from graphene oxide and Cd2+to agraphene-CdSe quantum dot nanocomposite with enhanced photoelectric properties [J].Chemphyschem,2012,13(11):2654-2658.
    [112] B. J. Jiang, C. G. Tian, W. Zhou, et al. In situ growth of TiO2in interlayers of expanded graphite forthe fabrication of TiO2–graphene with enhanced photocatalytic activity [J].Chem. Eur. J.,2011,17(30):8379-8387.
    [113] H. Zhang, X. J. Lv, Y. M. Li, et al. P25-graphene composite as a high performance photocatalyst [J].ACS Nano,2009,4(1):380-386.
    [114] Y. Zhang, Z. R. Tang, X. Fu, et al. TiO2-Graphene Nanocomposites for gas-phase photocatalyticdegradation of volatile aromatic pollutant: Is TiO2-Graphene truly different from other TiO2-carboncomposite materials [J]. ACS Nano,2010,4(12):7303-7314.
    [115] X. Y. Zhang, H. P. Li, X. L. Cui, et al. Graphene/TiO2nanocomposites: synthesis, characterizationand application in hydrogen evolution from water photocatalytic splitting [J]. J. Mater. Chem.,2010,20(14):2801-2806.
    [116] M. Pumera. Graphene-based nanomaterials for energy storage [J]. Energy&Environ. Sci.,2011,4(3):668-674.
    [117] S. Guo, S. Dong. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, andenergy and analytical applications [J]. Chem. Soc. Rev.,2011,40(5):2644-2672.
    [118] Y. H. Hu, H. Wang, B. Hu. Thinnest Two-dimensional nanomaterial-graphene for solar energy [J].ChemSusChem,2010,3(7):782-796.
    [119] Tang Y B, Lee C S, Xu J, et al. Incorporation of graphenes in nanostructured TiO2films via moleculargrafting for dye-sensitized solar cell application [J]. ACS Nano,2010,4(6):3482-3488.
    [120] N. Yang, J. Zhai, D. Wang, et al. Two-dimensional graphene bridges enhanced photoinduced chargetransport in dye-sensitized solar cells [J]. ACS Nano,2010,4(2):887-894.
    [121] S. Sun, L. Gao, Y. Liu. Enhanced dye-sensitized solar cell using graphene-TiO2photoanode preparedby heterogeneous coagulation [J]. Appl. Phys. Lett.,2010,96:083113.
    [122] S. R. Kim, M. K. Parvez, M. Chhowalla. UV-reduction of graphene oxide and its application as aninterfacial layer to reduce the back-transport reactions in dye-sensitized solar cells [J]. Chem. Phys.Lett.,2009,483(1):124-127.
    [123] H. Yang, G. H. Guai, C. Guo, et al. NiO/graphene composite for enhanced charge separation andcollection in p-type dye sensitized solar cell [J]. J. Phys. Chem C.,2011,115(24):12209-12215.
    [124] G. Wang, X. Shen, J. Yao, et al. Graphene nanosheets for enhanced lithium storage in lithium ionbatteries [J]. Carbon,2009,47(8):2049-2053.
    [125] M. Liang, L. Zhi. Graphene-based electrode materials for rechargeable lithium batteries [J]. J. Mater.Chem.,2009,19(33):5871-5878.
    [126] S. M. Paek, E. J. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity ofSnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure [J].Nano. Letters,2008,9(1):72-75.
    [127] J. Yao, X. Shen, B. Wang, et al. In situ chemical synthesis of SnO2-graphene nanocomposite as anodematerials for lithium-ion batteries [J]. Electrochem. Commun.,2009,11(10):1849-1852.
    [128] Y. Li, X. Lv, J Lu, et al. Preparation of SnO2-nanocrystal/graphene-nanosheets composites and theirlithium storage ability [J]. J. Phys. Chem C.,2010,114(49):21770-21774.
    [129] D. Wang, D. Choi, J. Li, et al. Self-assembled TiO2–graphene hybrid nanostructures for enhancedLi-ion insertion [J]. ACS nano,2009,3(4):907-914..
    [130] S. Ding, J. S. Chen, D. Luan, et al. Graphene-supported anatase TiO2nanosheets for fast lithiumstorage [J]. Chem. Commun.,2011,47(20):5780-5782.
    [131] L. Shen, C. Yuan, H. Luo, et al. In situ synthesis of high-loading Li4Ti5O12–graphene hybridnanostructures for high rate lithium ion batteries [J]. Nanoscale,2011,3(2):572-574.
    [132] Li B, Cao H, Shao J, et al. Improved performances of β-Ni(OH)2reduced-graphene-oxide in Ni-MHand Li-ion batteries [J]. Chem. Commun.,2011,47(11):3159-3161.
    [133] J. Choi, J. Jin, I. G. Jung, et al. SnSe2nanoplate–graphene composites as anode materials for lithiumion batteries [J]. Chem. Commun.,2011,47(18):5241-5243..
    [134] F. Ji, Y. L. Li, J. M. Feng, et al. Electrochemical performance of graphene nanosheets and ceramiccomposites as anodes for lithium batteries [J]. J. Mater. Chem.,2009,19(47):9063-9067.
    [135] S. Chen, P. Chen, M. Wu, et al. Graphene supported Sn–Sb@carbon core-shell particles as a superioranode for lithium ion batteries [J]. Electrochem. Commun.,2010,12(10):1302-1306.
    [136] L. Ji, Z. Tan, T. Kuykendall, et al. Multilayer nanoassembly of Sn-nanopillar arrays sandwichedbetween graphene layers for high-capacity lithium storage [J]. Energ. Environ. Sci.,2011,4(9):3611-3616.
    [137] E. J. Yoo, J. Kim, E. Hosono, et al. Large reversible Li storage of graphene nanosheet families for usein rechargeable lithium ion batteries [J]. Nano letters,2008,8(8):2277-2282.
    [138] Y. Ding, Y. Jiang, F. Xu, et al. Preparation of nano-structured LiFePO4/graphene composites byco-precipitation method [J]. Electrochem. Commun.,2010,12(1):10-13.
    [139] H. L. Wang, Y. Yang, Y.Y. Liang, etal. LiMn1xFexPO4Nanorods Grown on Graphene Sheets forUltrahigh-Rate-Performance Lithium Ion Batteries [J]. Angew. Chem. Int. Ed.,2011,50(32):7364-7368.
    [140] H. Liu, P. Gao, J. Fang, et al. Li3V2(PO4)3/graphene nanocomposites as cathode material for lithiumion batteries [J]. Chem. Commun.,2011,47(32):9110-9112.
    [141] C. V. Rao, A. L. M. Reddy, Y. Ishikawa, et al. LiNi1/3Co1/3Mn1/3O2–graphene composite as apromising cathode for Lithium-ion batteries [J]. ACS Appl. Mater. Interfaces,2011,3(8):2966-2972.
    [142] G. D. Du, K. H. Seng, Z. P. Guo, et al. Graphene–V2O5·nH2O xerogel composite cathodes for lithiumion batteries [J]. RSC Adv.,2011,1(4):690–697.
    [143] D. Chen, L. H. Tang, J. H. Li. Graphene-based materials in electrochemistry [J] Chem. Soc. Rev.,2010,39(8):3157–3180.
    [144] F. Schedin, A. K. Geim, S. V. Morozov, et al. Detection of individual gas molecules adsorbed ongraphene [J]. Nat. Mater.,2007,6(9),652–655.
    [145] U. Lange, T. Hirsch, V. M. Mirsky, et al. Hydrogen sensor based on a graphene-palladiumnanocomposite [J].Electrochim. Acta,2011,56(10):3707–3712.
    [146] Z. X. Jiang, J. J. Wang, L. H. Meng, et al. A highly efficient chemical sensor material for ethanol:Al2O3/Graphene nanocomposites fabricated from graphene oxide [J]. Chem. Commun.,2011,47(22):6350–6352.
    [147] J. L. Johnson, A. Behnam, S. J. Pearton et al. Hydrogen sensing using Pd-functionalized multi-layergraphene nanoribbon networks [J]. Adv. Mater.,2010,22(43):4877-4880.
    [148] R. Kumar, D. Varandani, B. R. Mehta, et al. Fast response and recovery of hydrogen sensing in Pd–Ptnanoparticle–graphene composite layers [J]. Nanotechnology,2011,22(27):275719.
    [149] T. V. Cuong, V. H. Pham, J. S. Chung, et al. Solution-processed ZnO-chemically converted graphenegas sensor [J]. Materials Letters,2010,64(22):2479-2482.
    [150] H. Y. Jeong, D. S. Lee, H. K. Choi, et al. Flexible room-temperature NO gas sensors based on carbonnanotubes/reduced graphene hybrid films[J]. Appl. Phys. Lett.,2010,96:213105.
    [151] K. J. Huang, D. J. Niu, X. Liu, et al. Direct electrochemistry of catalase at amine-functionalizedgraphene/gold nanoparticles composite film for hydrogen peroxide sensor [J]. Electrochim. Acta,2011,56(7):2947-2953.
    [152] L. M. Lu, H. B. Li, F. L. Qu, et al. In situ synthesis of palladium nanoparticle–graphene nanohybridsand their application in nonenzymatic glucose biosensors [J]. Biosens. Bioelectron.,2011,26(8):3500–3504.
    [153] F. H. Li, J. Chai, H. F. Yang, et al. Synthesis of Pt/ionic liquid/graphene nanocomposite and itssimultaneous determination of ascorbic acid and dopamine [J]. Talanta,2010,81(3):1063-1068.
    [154] R. S. Dey, C. R. Raj Development of an Amperometric Cholesterol Biosensor Based on Graphene-PtNanoparticle Hybrid Material [J]. J. Phys. Chem. C,2010,114(49):21427–21433.
    [155] X. R. Zhang, S. G. Li, X. Jin, et al. A new photoelectrochemical aptasensor for the detection ofthrombin based on functionalized graphene and CdSe nanoparticles multilayers [J]. Chem. Commun.,2011,47(17):4929-4931.
    [156] C. Xu, X. Wang. Fabrication of Flexible Metal-Nanoparticle Films Using Graphene Oxide Sheets asSubstrates [J]. Small,2009,5(19):2212–2217.
    [157] X. Y. Yang, X. Y. Zhang, Y. F. Ma, et al. Superparamagnetic graphene oxide–Fe3O4nanoparticleshybrid for controlled targeted drug carriers[J]. J. Mater. Chem.,2009,19(18),2710–2714.
    [158] H. P. Cong, J. J. He, Y. Lu etal. Water-soluble magnetic-functionalized reduced graphene oxide sheets:In situ synthesis and magnetic resonance imaging applications [J]. Small,2010,6(2):169-173.
    [159] N. W. Li, M. B. Zheng, X. F. Chang, et al. Preparation of magnetic CoFe2O4-functionalized graphenesheets via a facile hydrothermal method and their adsorption properties [J].J. Solid State Chem.,2011,184(4):953-958.
    [160] H. Jabeen, V. Chandra, S. Jung, et al. Enhanced Cr (vi) removal using iron nanoparticle decoratedgraphene [J].Nanoscale,2011,3,3583–3585.
    [1] N. Tessler, V. Medvedev, M. Kazes, et al. Efficient near-infrared polymer nanocrystal light-emittingdiodes [J]. Science,2002,295(5559):1506-1508.
    [2] D. M. Yeh, C. F. Huang, Y. C. Lu, et al. White-light light-emitting device based on surfaceplasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-colorlight-emitting diode [J]. Appl. Phys. Lett.,2008,92(9):091112.1-091112.3.
    [3] V. I. Klimov, A. A. Mikhailovsky, S. Xu, et al. Optical gain and stimulated emission in nanocrystalquantum dots [J]. Science,2000,290(5490):314-317.
    [4] M. V. Artemyev, U. Woggon, R. Wannemacher, et al. Light trapped in a photonic dot: Microspheres actas a cavity for quantum dot emission [J]. Nano Lett.,2001,1(6):309-314.
    [5] M. Han, X. Gao, J. Z. Su, et al. Quantum-dot-tagged microbeads for multiplexed optical coding ofbiomolecules [J]. Nat. Biotechnol.,2001,19(7):631-635.
    [6] X. Gao, L. Yang, J. A. Petros, et al. In vivo molecular and cellular imaging with quantum dots [J]. Opin.Biotechnol.,2005,16(1):63-72.
    [7] L. Qu, X. Peng, Control of photoluminescence properties of CdSe nanocrystals in growth [J]. J. Am.Chem. Soc.,2002,124(9):2049-2055.
    [8] X. Peng, Green chemical approaches toward high-quality semiconductor nanocrystals [J]. Chem. Eur. J.,2002,8(2):334-339.
    [9] C.B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE(E=sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J. Am. Chem. Soc.,1993,115(19):8706-8715.
    [10] X. Zhong, Y. Feng, Y. Zhang, et al. A facile route to violet-to orange-emitting CdxZn1xSe alloynanocrystals via cation exchange reaction [J]. Nanotechnology,2007,18(38):385606-385611.
    [11] X. Zhong, Z. Zhang, S. Liu, et al. Embryonic nuclei-induced alloying process for the reproduciblesynthesis of blue-emitting ZnxCd1-xSe nanocrystals with long-time thermal stability in size distributionand emission wavelength [J]. J. Phys. Chem. B.,2004,108(40):15552-15559.
    [12] X. Zhong, M. Han, Z. Dong, et al. Composition-tunable ZnxCd1-xSe nanocrystals with highluminescence and stability [J]. J. Am. Chem. Soc.,2003,125(28):8589-8594.
    [13] H. Sharma, S. N. Sharma, S. Singh, et al. Comparison of the properties of composition-tunableCdSe-ZnSe and ZnxCd1-xSe nanocrystallites: Single-and double-pot synthesis approach [J]. Mater.Chem. Phys.,2010,124(1):670-680.
    [14] H. Shen, C. Zhou, S. Xu, et al. Phosphine-free synthesis of Zn1-xCdxSe/ZnSe/ZnSexS1-x/ZnS core/multishell structures with bright and stable blue–green photoluminescence [J]. J. Mater. Chem.,2011,21(16):6046-6053.
    [15] W. W. Yu, E. Chang, C.M. Sayes, et al. Aqueous dispersion of monodisperse magnetic iron oxidenanocrystals through phase transfer [J]. Nanotechnology,2006,17(17):4483-4487.
    [16] W. L. Tseng, F. C. Liu, T. L. Cheng, et al. Synthesis of cysteine-capped ZnxCd1-xSe alloyed quantumdots emitting in the blue-green spectral range [J]. Langmuir,2008,24(5):2162-2167.
    [17] C. Wang, W. X. Zhang, X. F. Qian, et al. An aqueous approach to ZnSe and CdSe semiconductornanocrystals [J]. Mater. Chem. Phys.,1999,60(1):99-102.
    [18] H. Shen, H. Wang, X. Li, et al. Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-,Mn-doped ZnSe nanocrystals [J]. Dalton Trans.,2009,11(47):10534-10540.
    [19] X. C. Wu, A. M. Bittner, K. Kern, Photoluminescence, and adsorption of CdS/dendrimernanocomposites [J]. J. Phys. Chem. B.,2004,109(1):230-239.
    [20] Q. Wang, Y. Xu, X. Zhao, et al. A facile one-step in situ functionalization of quantum dots withpreserved photoluminescence for bioconjugation [J]. J. Am. Chem. Soc.,2007,129(20):6380-6381.
    [21] A. Ihs, B. Liedberg, Chemisorption of l-cysteine and3-mercaptopropionic acid on gold and coppersurfaces: An infrared reflection-absorption study [J]. J.Colloid Interface Sci.,1991,144(1):282-292.
    [22] M. J. Mulvihill, S. E. Habas, I. J-L Plante, et al. Influence of size, shape, and surface coating on thestability of aqueous suspensions of CdSe nanoparticles [J]. Chem. Mater.,2010,22(18):5251-5257.
    [23] H. Bao, Y. Gong, Z. Li, M. Gao, Enhancement effect of illumination on the photoluminescence ofwater-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core-shell structure [J]. Chem.Mater.,2004,16(20):3853-3859.
    [24] X. Wang, J. Zhuang, Q. Peng, et al. A general strategy for nanocrystal synthesis, Nature,2005,437(7055):121-124.
    [25] N. Zhao, W. Nie, J. Mao, et al. A general synthesis of high-quality inorganic nanocrystals via atwo-phase method [J]. Small,2010,6(22):2588-2565.
    [26] D. Jian, Q. Gao, Synthesis of CdS nanocrystals and Au/CdS nanocomposites through ultrasoundactivation liquid–liquid two-phase approach at room temperature [J]. Chem. Eng. J.,2006,121(1):9-16.
    [1] A. K. Geim, K. S. Novoselov. The rise of graphene [J]. Nat. Mater.,2007,6(3):183-191.
    [2] D. Li, R. B. Kaner. Graphene-based materials [J]. Nat. Nanotechnol.,2008,320(5880):1170-1171.
    [3] K.S. Kim, Y. Zhao, H. Jang, et al. Large-scale pattern growth of graphene films for stretchabletransparent electrodes [J]. Nature,2009,457(7230):706-710.
    [4] S. Stankovich, D. A. Dikin, G. H. Dommett, et al. Graphene-based composite materials [J]. Nature,2006,442(7100):282-286.
    [5] S. Park, R.S. Ruoff. Chemical methods for the production of graphenes [J]. Nat. Nanotechnol.,2009,4(4):217-224.
    [6] X. Wan, G. Long, L. Huang, et al. Graphene-a promising material for organic photovoltaic cells [J].Adv. Mater.2011.23(45):5342-5358.
    [7] M.A. Hines, P. Guyot-Sionnest. Synthesis and characterization of strongly luminescing ZnS-CappedCdSe Nanocrystals [J]. J. Phys. Chem.,1996,100(2):468-471.
    [8] X. Peng, L. Manna, W. Yang, et al. Shape control of CdSe nanocrystals [J]. Nature,2000,404(6773):59-61.
    [9] D.V. Talapin, A.L. Rogach, A. Kornowski, et al. Highly luminescent monodisperse CdSe andCdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospinemixture [J]. Nano. Lett.,2001,1(4):207-211.
    [10] H. Mattoussi, J.M. Mauro, E.R. Goldman, et al. Bioconjugation of highly luminescent colloidalCdSe–ZnS quantum dots with an engineered two-domain recombinant protein [J]. phys. status solidi(b).,2001,224(1):277-283.
    [11] V.J. Porter, S. Geyer, J.E. Halpert, et al. Photoconduction in annealed and chemically treatedCdSe/ZnS inorganic nanocrystal films [J]. J. Phys. Chem. C.,2008,112(7):2308-2316.
    [12] S.R. Sun, L.A. Gao, Y.Q. Liu, et al. Assembly of CdSe nanoparticles on graphene for low-temperaturefabrication of quantum dot sensitized solar cell [J]. Appl. Phys. Lett.,2011,98(9):093112.
    [13] K. Yu, G. Lu, S. Mao, et al. Selective deposition of CdSe nanoparticles on reduced graphene oxide tounderstand photoinduced charge transfer in hybrid nanostructures [J]. ACS Appl. Mate.&Inte.,2011,3(7):2073-2079.
    [14] Y. Wang, H.B. Yao, X.H. Wang, et al. One-pot facile decoration of CdSe quantum dots on graphenenanosheets: novel graphene-CdSe nanocomposites with tunable fluorescent properties [J]. J. Mater.Chem.,2010,21(2):562-566.
    [15] D. Lu, Y. Zhang, S. Lin, et al. Sensitive detection of esculetin based on a CdSenanoparticles-decorated poly(diallyldimethylammonium chloride)-functionalized graphenenanocomposite film [J]. Analyst,2011,136(21):4447-4453.
    [16] M. Feng, R. Sun, H. Zhan, et al. Lossless synthesis of graphene nanosheets decorated with tinycadmium sulfide quantum dots with excellent nonlinear optical properties [J]. Nanotechnology,2010,21(7):075601.
    [17] X. Y. Yu, Z. H. Chen, D. B. Kuang, et al. A mild one-step process from graphene oxide and Cd2+to agraphene–CdSe quantum dot nanocomposite with enhanced photoelectric properties [J]. Chem. Phys.Chem.,2012,13(11):2654-2658.
    [18] J. Liu, H. Bai, Y. Wang, et al. Self-assembling TiO2nanorods on large graphene oxide sheets at atwo-phase interface and their anti-recombination in photocatalytic applications [J]. Adv. Func. Mater.,2010,20(23):4175-4181.
    [19] H. Shen, H. Wang, Z. Tang, et al. High quality synthesis of monodisperse zinc-blende CdSe andCdSe/ZnS nanocrystals with a phosphine-free method [J]. Cryst. Eng. Comm.,2009,11(8):1733-1738.
    [20] A. L. Higginbotham, D.V. Kosynkin, A. Sinitskii, et al. Lower-defect graphene oxide nanoribbonsfrom multiwalled carbon nanotubes [J]. ACS nano.,2010,4(4):2059-2069.
    [21] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, et al. Longitudinal unzipping of carbon nanotubesto form graphene nanoribbons [J]. Nature,2009,458(7240):872-876.
    [22] A. Cao, Z. Liu, S. Chu, et al. A facile one-step method to produce graphene–CdS quantum dotnanocomposites as promising optoelectronic materials [J]. Adv. Mater.,2010,22(1):103-106.
    [23] Y. Xu, H. Bai, G. Lu, et al. Flexible graphene films via the filtration of water-soluble noncovalentfunctionalized graphene sheets [J]. J.Am.Chem.Soc.,2008,130(18):5856-5857.
    [24] P.J. Thistlethwaite, M.S. Hook. Diffuse reflectance fourier transform infrared study of the adsorptionof oleate/oleic acid onto titania [J]. Langmuir,2000,16(11):4993-4998.
    [25] M. Nara, H. Torii, M. Tasumi, et al. Correlation between the vibrational frequencies of the carboxylategroup and the types of its coordination to a metal ion: an ab initio molecular orbital study [J]. J. Phys.Chem.,1996,100(51):19812-19817.
    [26] Z.B. Shang, Y. Wang, W.J. Jin, et al. Triethanolamine-capped CdSe quantum dots as fluorescentsensors for reciprocal recognition of mercury (II) and iodide in aqueous solution [J]. Talanta,2009,78(2):364-369.
    [27] T. Szabó, O. Berkesi, P. Forgó, et al. Evolution of surface functional groups in a series ofprogressively oxidized graphite oxides [J]. Chem. Mater.,2006,18(11):2740-2749.
    [28] W.W. Yu, L. Qu, W. Guo, et al. Experimental determination of the extinction coefficient of CdTe,CdSe, and CdS nanocrystals [J]. Chem. Mater.,2003,15(14):2854-2860.
    [29] I.V. Lightcap, P.V. Kamat. Fortification of CdSe quantum dots with graphene oxide. Excited stateinteractions and light energy conversion [J]. J.Am.Chem.Soc.,2012,134(16):7109-7116.
    [30] D. C Oertel, M. G. Bawendi, A. C. Arango, et al. Photodetectors based on treated CdSe quantum-dotfilms [J]. Appl. Phys. Lett.,2005,87(21):213505.1-213505.3.
    [31] G. Konstantatos, L. Levina, A. Fischer, et al. Engineering the Temporal response of photoconductivephotodetectors via selective introduction of surface trap states [J]. Nano Lett.,2008,8(5):1446-1450.
    [32] A. H. Mueller, M. A. Petruska, M. Achermann, et al. Multicolor light-emitting diodes based onsemiconductor nanocrystals encapsulated in GaN charge injection layers [J]. Nano Lett.,2005,5(6):1039-1044.
    [33] Y. W. Lin, W. L. Tseng, H. T. Chang. Using a layer-by-layer assembly technique to fabricatemulticolored-light-emitting films of CdSe@CdS and CdTe quantum dots [J]. Adv. Mater.,2006,18(11):1381-1386.
    [34] S. N. Jun, E. J. Jang, J. J. Park, et al. Photopatterned semiconductor nanocrystals and theirelectroluminescence from hybrid light-emitting devices [J]. Langmuir,2006,22(4):2407-2410.
    [35] I. Gur, N. A. Fromer, A. P. Alivisatos. Controlled assembly of hybrid bulk heterojunction solar cellsby sequential deposition [J]. J. Phys. Chem. B,2006,110(50):25543-25546.
    [36] I. Gur, N. A. Fromer, M. L. Geier, et al. Air-stable all-inorganic nanocrystal solar cells processed fromsolution [J]. Science,2005,310(5747):462-465.
    [37] R. Kniprath, J. P. Rabe, J. T. McLeskey Jr, et al. Hybrid photovoltaic cells with II–VI quantum dotsensitizers fabricated by layer-by-layer deposition of water-soluble components [J]. Thin Solid Films,2009,518(1):295-298.
    [38] D. Steiner, D. Azulay, A. Aharoni, et al. Photoconductivity in aligned CdSe nanorod arrays [J]. Phys.Rev. B,2009,80:195308.1-195308.7.
    [39] M. Drndic′, M. V. Jarosz, N. Y. Morgan, et al. Transport properties of annealed CdSe colloidalnanocrystal solids [J]. J. Appl. Phys.,2002,92(12):7498-7503.
    [40] V. J. Porter, T. Mentzel, S. Charpentier, et al. Temperature-, gate-, and photoinduced conductance ofclose-packed CdTe nanocrystal films [J]. Phys. Rev. B,2006,73:155303.1-155303.9.
    [41] G. Konstantatos, I. Howard, A. Fischer, et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature,2006,442:180-183.
    [42] J. A. Kloepfer, S. E. Bradforth, J. L. Nadeau. photophysical properties of biologically compatibleCdSe quantum dot structures [J]. J. Phys. Chem. B,2005,109(20):9996-10003.
    [43] A. Persano, M. D. Giorgi, A. Fiore, et al. Photoconduction properties in aligned assemblies ofcolloidal CdSe/CdS nanorods [J]. ACS Nano,2010,4(3):1646-1652.
    [44] Y. Jiang, W. J. Zhang, J. S. Jie, et al. Photoresponse properties of CdSe single-nanoribbonphotodetectors [J]. Adv. Funct. Mater.,2007,17(11):1795-1800.
    [45] V. Palermo, M. Palma, P. Samorì. Electronic characterization of organic thin films by Kelvin probeforce microscopy [J]. Adv. Mater.,2006,18(2):145-164.
    [46] M. A. Salem, H. Mizuta, S. Oda. Probing electron charging in nanocrystalline Si dots using Kelvinprobe force microscopy [J]. Appl. Phys. Lett.,2004,85(15):3262-3264.
    [47] T. Yamauchi, M. Tabuchi, A. Nakamura. Size dependence of the work function in InAs quantum dotson GaAs(001) as studied by Kelvin force probe microscopy [J]. Appl. Phys. Lett.,2004,84(19):3834-3836.
    [48] S. Shusterman, A. Raizman, A. Sher, et al. Nanoscale mapping of strain and composition in quantumdots using Kelvin probe force microscopy [J]. Nano Lett.,2007,7(7):2089-2093.
    [49] Q. J. Sun, Y. A. Wang, L. S. Li, et al. Bright, multicoloured light-emitting diodes based on quantumdots [J]. Nature Photonics,2007,1:717-722.
    [50] W. W. Yu, L. H. Qu, W. Z. Guo, et al. Experimental determination of the extinction coefficient ofCdTe, CdSe, and CdS nanocrystals [J]. Chem. Mater.,2003,15(14):2854-2860.
    [51] B. Kwangsub, C. Kyoungah, K. Sangsig. Sintering effect on the optoelectronic characteristics of HgSenanoparticle films on plastic substrates [J]. Mater. Chem. Phys.,2010,122(1):246-249.
    [52] J. Cao, J. Z. Sun, J. Hong, et al. Direct observation of microscopic photoinduced charge redistributionon TiO2film sensitized by chloroaluminum phthalocyanine and perylenediimide [J]. Appl. Phys. Lett.,2003,83(9):1896-1898.
    [53] H. Mattoussi, B. O. Dabbousi, D. E. Fogg, et al. Composite thin films of CdSe nanocrystals and asurface passivating/electron transporting block copolymer: Correlations between film microstructureby transmission electron microscopy and electroluminescence [J]. J. Appl. Phys.,1999,86(8):4390-4399.
    [54] J. E. B. Katari, V. L. Colvin, A. P. Alivisatos. X-ray Photoelectron spectroscopy of CdSe nanocrystalswith applications to studies of the nanocrystal surface [J]. J. Phys. Chem.,1994,98(15):4109-4117.
    [55] E. Talgorn, R. D. Abellon, P. J. Kooyman, et al. Supercrystals of CdSe quantum dots with high Chargemobility and efficient electron transfer to TiO2[J]. ACS Nano,2010,4(3):1723-1731.
    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
    [2] A. H. C Neto, F. Guinea, N. M. R Peres, et al. The electronic properties of graphene [J]. Rev. Mod.Phys.,2009,81(109):109-162.
    [3] L. Xie, X. Ling, Y. Fang, et al. Graphene as a substrate to suppress fluorescence in resonance Ramanspectroscopy [J]. J. Am. Chem. Soc.,2009,131(29):9890-98901.
    [4] A. A Balandin, S. Ghosh, W. Z Bao, et al. Superior thermal conductivity of single-layer graphene [J].Nano Lett.,2008,(3):902-907.
    [5] C. Lee, X.D. Wei, J.W. Kysar, et al. Measurement of the elastic properties and intrinsic strength ofmonolayer graphene [J]. Science,2008,321(5887):385-388.
    [6] H. Pang, T. Chen, G. M. Zhang, et al. An electrically conducting polymer/graphene composite with avery low percolation threshold [J]. Mater. Lett.,2010,64(20):,2226-2229.
    [7] S. Guo, D. Wen, Y. Zhai, et al. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot,rapid synthesis, and used as new electrode material for electrochemical sensing [J]. ACS Nano.,2010,4(7):3959-3968.
    [8] G. Williams, P.V. Kamat. Graphene-semiconductor nanocomposites: excited-state interactions betweenZnO nanoparticles and graphene oxide [J]. Langmuir,2009,25(24):13869-13873.
    [9] X. M. Geng, L. Niu, Z. Y. Xing, et al. Aqueous-Processable noncovalent chemically convertedgraphene-quantum dot composites for flexible and transparent optoelectronic films [J]. Adv. Mater.,2010,22(5):638-642.
    [10] Y. Lin, K. Zhang, W. Chen, et al. Dramatically enhanced photoresponse of reduced graphene oxidewith linker-free anchored CdSe nanoparticles [J]. ACS Nano,2010,(6):3033-3038.
    [11] C. Nethravathi, T. Nisha, N. Ravishankar, et al. Graphene-nanocrystalline metal sulphide compositesproduced by a one-pot reaction starting from graphite oxide [J]. Carbon,2009,47(8):2054-2059.
    [12] M. Feng, R. Sun, H. Zhan, et al. Lossless synthesis of graphene nanosheets decorated with tinycadmium sulfide quantum dots with excellent nonlinear optical properties [J]. Nanotechnology,2010,21(7):075601-075607.
    [13] H. X. Chang, X. J. Lv, H. Zhang, et al. Quantum dots sensitized graphene: In situ growth andapplication in photoelectrochemical cells [J]. Electrochem. Commun.,2010,12(3):483-487.
    [14] T. A. Pham, B. C. Choi, Y. T. Jeong. Facile covalent immobilization of cadmium sulfide quantum dotson graphene oxide nanosheets: preparation, characterization, and optical properties [J].Nanotechnology,2010,21(46):465603-465612.
    [15] L. P. Xue, C. F. Shen, M. B. Zheng, et al. Hydrothermal synthesis of graphene-ZnS quantum dotnanocomposites [J]. Mater. Lett.,2011,65(2):198-200.
    [16] Z. Lu, C. X. Guo, H. B. Yang, et al. One-step aqueous synthesis of graphene-CdTe quantumdot-composed nanosheet and its enhanced photoresponses [J]. J. Colloid. Interf. Sci.,2011,353(12):588-592.
    [17] A. P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science,1996,271(5251):933-937.
    [18] R. E. Bailey, S. Nie. Alloyed semiconductor quantum dots: tuning the optical properties withoutchanging the particle size [J]. J. Am. Chem. Soc.,2003,125(23):7100-7106.
    [19] X. Zhong, Y. Feng, W. Knoll, et al. Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescencespectral width [J]. J. Am. Chem. Soc.,2003,125(44):13559-13563.
    [20] Y. C. Li, M. F. Ye, C. H. Yang, et al. Composition-and shape-controlled synthesis and opticalproperties of alloyed ZnxCd1-xS nanocrystals [J]. Adv. Funct. Mater.,2005,15(3):433-441.
    [21] A. L. Higginbotham, D. V. Kosynkin, A. Sinitskii, et al. Lower-defect graphene oxide nanoribbonsfrom multiwalled carbon nanotubes [J]. ACS Nano,2010,4(4):2059-2069.
    [22] A. Cao, Z. Liu, S. Chu, et al. A facile one-step method to produce graphene–CdS quantum dotnanocomposites as promising optoelectronic materials [J]. Adv. Mater.,2010,22(1):103-106.
    [23] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, et al. Longitudinal unzipping of carbon nanotubesto form graphene nanoribbons [J]. Nature,2009,458(7240):872-876.
    [24] T. Szabo, E. Tombacz, E. Illes, et al. Enhanced acidity and pH-dependent surface chargecharacterisation of successively oxidised graphite oxide [J]. Carbon,2006,44(3):537-545.
    [25] J. Wu, S. Bai, X. Shen, et al. Preparation and characterization of graphene/CdS nanocomposites [J].Appl. Surf. Sci.,2010,257(3):747-751.
    [26] C. Nethravathi, M. Rajamathi. Chemically modified graphene sheets produced by the solvothermalreduction of colloidal dispersions of graphite oxide [J]. Carbon,2008,46(14):1994-1998.
    [27] D. Li, M. B. Müller, S. Gilje, et al. Processable aqueous dispersions of graphene nanosheets [J]. Nat.Nanotechnol.,2008,3(2):101-105.
    [28] J. S. Hu, L. L. Ren, Y. G. Guo, et al. Mass production and high photocatalytic activity of ZnSnanoporous nanoparticles [J]. Angew. Chem. Int. Ed.,2005,117(8):1269-1273.
    [29] Y. Zhao, Y. Zhang, H. Zhu, et al. Low-temperature synthesis of hexagonal (wurtzite) ZnS nanocrystals[J]. J.Am. Chem. Soc.,2004,126(22):6874-6875.
    [30] J. Nanda, S. Sapra, D. D. Sarma, et al. Size-selected zinc sulfide nanocrystallites: synthesis, structure,and optical studies [J]. Chem. Mater.,2000,12(4):1018-1024.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700