用户名: 密码: 验证码:
金属纳米粒子/介孔碳复合材料制备及电化学应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔碳具有较大的比表面积和三维立体介孔结构,是一种新型催化剂载体。较大的比表面积能为无机纳米粒子生长提供较多的活性位点。介孔碳骨架上分布的介孔不仅有利于电极表面反应分子的扩散,还可以作为纳米尺度的反应场所去限制无机纳米粒子的生长,提高纳米粒子的分散性。与宏观材料相比较,无机纳米粒子由于体积效应,表现出很多催化性质。介孔碳和纳米粒子分别具有很多优异的特性,将两种材料结合起来可以得到很好的电化学性质。
     本文文献综述介绍了介孔碳材料的分类、制备及其功能化材料。重点介绍了有序介孔碳在修饰电极和电催化中的应用并对有序介孔碳负载的贵金属催化剂在电化学应用做了详细的介绍。本论文以介孔碳为载体,充分利用介孔碳的特点制备介孔碳负载的金属纳米粒子复合物。以甲醇、过氧化氢、葡萄糖和肼为探针,研究了金属纳米粒子/介孔碳复合材料的电化学性质。本论文包括以下几个部分:
     (1)以原位生长法在有序介孔碳孔道内制备硫化亚铜纳米粒。有序介孔碳较大的比表面积和丰富的介孔有利于得到高分散的硫化亚铜纳米粒子。硫化亚铜/有序介孔碳复合物基本保持了有序介孔碳的二维有序结构。两种材料各自的优异性能赋予硫化亚铜/有序介孔碳复合物很好的电化学性质,该复合材料对过氧化氢还原有很好的电催化活性。与有序介孔碳相比较,复合材料表现出较大的电流和较低的过电位。基于复合材料的无酶过氧化氢传感器表现出较高的灵敏度和选择性。
     (2)采用洋葱型碳微囊作为催化剂载体负载PtPd合金纳米粒子。洋葱型介孔碳微囊具有多层空心结构并且层壁上分布着大量介孔,这种特殊的多层多孔结构不仅有利于金属纳米粒子的沉积,还为反应物质的扩散提供了很大的便利。粒径约为4.5nm的PtPd纳米粒子很好的分散在碳微囊的表面和层中。该复合材料对葡萄糖有很好的直接氧化活性。通过优化Pt和Pd的比例发现Pt:Pd质量比为1:1时电化学响应信号最大。由复合材料得到的无酶葡萄糖传感器显示出很好的选择性和较快的响应时间(<3s)。
     (3)离子液体是一种常用的制备碳材料的前驱体,但是普通的离子液体由于具有流动性,作为碳源时所制备的碳材料很难保持固定的形貌。采用可聚合的离子液体和单分散的st ber硅球为前驱体和模板制备了具有空心结构的碳球。可聚合的离子液体形成聚合物包裹硅球表面形成核壳结构,经碳化和除去硅模板可以得到空心状的碳球。用甲酸作为还原剂,室温下将Pt纳米粒子负载在空心碳球的表面。与商业的催化剂载体相比较,空心碳负载的Pt催化剂不仅表现出较大的电活性面积,而且能很好催化甲醇的电化学氧化。Pt纳米粒子负载在空心碳上有着较高的抗污染能力。
     (4)通常制备有序介孔碳表面只含有少量的羧基,不能为金属纳米粒子的生长提供足够的活性位点。用原位聚合离子液体单体的方法修饰有序介孔碳的孔结构和表面,有序介孔碳表面的聚离子液体能提供丰富的吸附金属离子的结合点。通过带负电荷Pt前驱体和聚离子液体带正电荷的官能团之间的自组装的作用,在聚离子液体/有序介孔碳复合物载体上得到了精细Pt纳米粒子。复合材料结合了Pt、有序介孔碳和离子液体的性质可以作为一种新的电极材料用于电化学检测。与未修饰聚离子液体的Pt/有序介孔碳比较,Pt/聚离子液体/有序介孔碳对探针分子表现出了很好的催化活性。
     (5)模板法是一种常用的制备介孔碳的方法。常用模板法有硬模板法(SBA-15和MCM-41等有序介孔硅作为硬模板)和软模板法(嵌段共聚物P123和F127作为软模板)。模板法制备介孔碳步骤繁琐,合成周期较长,而且还需要额外的步骤去制备模板和除去模板。我们发展了一种快速制备介孔碳的方法,丁二酮肟和镍离子在室温下快速反应生成四边形的纳米棒,在氮气氛围下500℃碳化得到的四边形Ni(NiO)/C纳米棒然后除去Ni(NiO)后得到四边形的介孔碳纳米棒。氮气吸附和透射电镜显示四边形纳米棒表面和骨架内含有丰富的介孔。大量的互相连接的介孔不仅有利于物质的扩散,还有利于金属纳米粒子的沉积。Pt纳米粒子能很好分散在四边形的介孔碳纳米棒上。所制备的复合催化剂和商业的Pt/C相比较,具有较高的电化学活性。
Mesoporous carbon materials possess3D porous structure and high surface area, andattract much attention for their application as catalyst support in electrochemistry. The highsurface area of mesoporous carbon is favorable for the exposure of active sites for thedeposition of inorganic nanoparticles. The mesoporous structure provides a more favorablepath for electrolyte penetration and transportation, while the high surface area and the largenumber of mesopores of the mesoporous carbon allow for the obtainment of high metaldispersion. The mesopores also serve as barriers to suppress agglomeration of particles andcan be used as confined space for the growth of nanoparticles. Compared with the bulkmaterials, nanoscale particles exhibit many different properties due to the volume effect. Themesoporous carbon and nanoparticles exhibit different physical and chemical properties,which can compensate each other. Therefore, the combination of porous carbon andnanoparticles into hierarchical structure is a promising method to integrate theirdistinguishing properties together.
     In the introduction, the methods for synthesis of mesoporous carbon and commonmethods for the functionalization of nanoporous carbons were summarized. The applicationof mesoporous carbon in electrocatalysis and catalyst support was emphasized especially. Theintroduction of noble metal nanoparticles further extends the application of mesoporouscarbon and provides new features such as catalytic and electrochemical activity. Many novelmethodologies used to introduce Pt nanoparticles on mesoporous carbon were discussed in theintroduction. In this dissertation, mesoporous carbons were used as catalysts support fordeposition of inorganic nanoparticles. Glucose, hydroperoxide, hydrazine, and methanol wereselected as marked molecules to evaluate the electrochemical activity of inorganicnanoparticles/mesoporous carbon composites. This dissertation mainly consists of thefollowing several aspects:
     (1) A simple and facile synthetic method to incorporate cupper sulfide (Cu2S)nanoparticles inside the mesopores of ordered mesoporous carbons (OMCs) is reported. TheCu2S/OMCs nanocomposite was characterized by transmission electron microscopy (TEM),X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and nitrogenadsorption-desorption. The results show that the incorporation of Cu2S nanoparticles insidethe pores of OMCs does not change the highly ordered two-dimensional hexagonalmesostructure of OMCs matrix. Nonenzymatic amperometric sensor of hydrogen peroxidebased on the Cu2S/OMCs nanocomposite modified glassy carbon (GC) electrode is developed. Compared with the pristine OMCs modified electrode, the Cu2S/OMCs modified electrodedisplays high electrocatalytic activity towards hydrogen peroxide and gives linear range from1to3030μM (R=0.9986). The sensor also exhibits good ability of anti-interference toelectroactive molecules. The combination the unique properties of Cu2S nanoparticles and theordered mesostructure of OMCs matrix guarantee the excellent electrocatalysis for hydrogenperoxide. The good analytical performance and low cost make Cu2S/OMC nanocompositepromising for the development of effective sensor for hydrogen peroxide.
     (2) A facile and fast microwave irradiation method was developed to prepare PtPdbimetallic alloy nanoparticles on onion-like mesoporous carbon vesicle (MCV). With MCVact as a template, its high surface area favors the formation of nanosized PtPd particles. ThePtPd/MCV nanocomposite was characterized by transmission TEM, scanning electronmicrographs (SEM), XRD, and XPS. A nonenzymatic amperometric sensor of glucose basedon the PtPd/MCV modified GC electrode is developed. Compared with the Pt/MCVnanocomposite, the PtPd/MCV modified electrode displays enhanced current responsetowards glucose and gives linear range from1.5to12mM. The particular lamellar structureof the MCV results in favorable transport passage for glucose. The modified electrodeachieves95%of the steady-current within3s. This nonenzymatic glucose sensor also exhibitsgood ability of anti-interference to electroactive molecules. The fast response and facilepreparation method make PtPd/MCV nanocomposite promising for the development ofenzyme-free sensor for glucose.
     (3) Hollow carbon spheres (HCSs) are prepared using poly(ionic liquid)(PIL) as acarbon precursor and monodisperse silica particles as a template for the first time. ThePILs can be used to overcome the fluidity of IL. The IL form a uniform polymer coatingon the template surface after polymerization. Carbonization of the coating and thesubsequent removal of the template produces porous carbon spheres with a hollowstructure. The HCSs possess a high surface area, good conductivity, and porosity suitablefor mass transport, and they can be used as a support for Pt electrocatalysts. Ptnanoparticles with an average size of2.8nm are homogeneously distributed onto theHCSs. The high surface area and unique structure facilitates the fine dispersion of Ptnanoparticles. The obtained Pt/HCSs exhibit significant catalytic activity for the oxidationof methanol.
     (4) Poly(ionic liquid)(PIL) coated OMCs were prepared by in situ polymerization of3-ethyl-1-vinylimidazolium tetrafluoroborate ([VEIM]BF4) monomer on OMCs matrix. PILon the surface of OMCs can provide sufficient binding sites to anchor the precursors of metalion. PIL/OMCs were employed as support materials for the deposition of ultra-fine Ptnanoparticles via the self-assembly between the negative Pt precursor and positively chargedfunctional groups of PIL-functionalized OMCs. The combination the unique properties of each component endows Pt/PIL/OMCs as a good electrode material. Compared with thePt/OMCs nanocomposites, the Pt/PIL/OMCs modified electrode displays high electrocatalyticactivity towards probe molecules. The improved activity makes Pt/PIL/OMCsnanocomposites promising for being developed as a good electrode material inelectrochemical analysis.
     (6) A facile template-free strategy was used for synthesis of rectangular mesoporouscarbon nanorods (meso-CNRs). Rectangular crystalline nanorods of nickeldimethylglyoximate complex are firstly formed in water without template, and subsequentcarbonization and selective etching give rise to rectangular meso-CNRs. The rectangularmeso-CNRs possess a large surface area, good conductivity, and high porosity for masstransport, and they can be used as a support for Pt electrocatalysts. The high surface area andporous structure of meso-CNRs facilitates the fine dispersion of Pt nanoparticles. Ptnanoparticles with an average size of3.1nm are distributed onto the meso-CNRs. Theobtained Pt/meso-CNRs exhibit significant catalytic activity towards the oxidation ofmethanol. The superior performance makes rectangular meso-CNRs promising for beingdeveloped as a good support material.
引文
[1] Eder D. Carbon nanotube-inorganic hybrids [J]. Chemical Reviews,2010,110(3):1348-1385.
    [2] Karousis N, Tagmatarchis N, Tasis D. Current progress on the chemical modification of carbonnanotubes [J]. Chemical Reviews,2010,110(9):5366-5397.
    [3] Huang X, Qi X, Boey F, et al. Graphene-based composites [J]. Chemical Society Reviews,2012,41(2):666-686.
    [4] Chen D, Feng H, Li J. Graphene oxide: Preparation, functionalization, and electrochemical applications[J]. Chemical Reviews,2012,112(11):6027-6053.
    [5] Jun S, Sang Hoon J, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally orderedmesostructure [5][J]. Journal of the American Chemical Society,2000,122(43):10712-10713.
    [6] Ryoo R, Joo S H, Kruk M, et al. Ordered mesoporous carbons [J]. Advanced Materials,2001,13(9):677-681.
    [7] Kruk M, Jaroniec M, Kim T W, et al. Synthesis and characterization of hexagonally ordered carbonnanopipes [J]. Chemistry of Materials,2003,15(14):2815-2823.
    [8] Yang S J, Kim T, Im J H, et al. MOF-derived hierarchically porous carbon with exceptional porosity andhydrogen storage capacity [J]. Chemistry of Materials,2012,24(3):464-470.
    [9] Yang Z, Xia Y, Mokaya R. Enhanced hydrogen storage capacity of high surface area zeolite-like carbonmaterials [J]. Journal of the American Chemical Society,2007,129(6):1673-1679.
    [10] Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic50to300angstrom pores [J]. Science,1998,279(5350):548-552.
    [11] Huo Q, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporoussilica-based materials [J]. Chemistry of Materials,1996,8(5):1147-1160.
    [12] Asefa T, MacLachlan M J, Coombs N, et al. Periodic mesoporous organosilicas with organic groupsinside the channel walls [J]. Nature,1999,402(6764):867-871.
    [13] Niesz K, Yang P, Somorjai G A. Sol-gel synthesis of ordered mesoporous alumina [J]. ChemicalCommunications,2005,(15):1986-1987.
    [14] Morris S M, Fulvio P F, Jaroniec M. Ordered mesoporous alumina-supported metal oxides [J]. Journalof the American Chemical Society,2008,130(45):15210.
    [15] Wu Q, Zhang F, Yang J, et al. Synthesis of ordered mesoporous alumina with large pore sizes andhierarchical structure [J]. Microporous and Mesoporous Materials,2011,143(2–3):406-412.
    [16] Joo S H, Jun S, Ryoo R. Synthesis of ordered mesoporous carbon molecular sieves CMK-1[J].Microporous and Mesoporous Materials,2001,44-45153-158.
    [17] Fang Q R, Yuan D Q, Sculley J, et al. A novel MOF with mesoporous cages for kinetic trapping ofhydrogen [J]. Chemical Communications,2012,48(2):254-256.
    [18] Peng L, Zhang J, Li J, et al. Surfactant-directed assembly of mesoporous metal-organic frameworknanoplates in ionic liquids [J]. Chemical Communications,2012,48(69):8688-8690.
    [19] Ma T-Y, Li H, Deng Q-F, et al. Ordered mesoporous metal-organic frameworks consisting of metaldisulfonates [J]. Chemistry of Materials,2012,24(12):2253-2255.
    [20] Tian B, Liu X, Yang H, et al. General synthesis of ordered crystallized metal oxide nanoarraysreplicated by microwave-digested mesoporous silica [J]. Advanced Materials,2003,15(16):1370-1373.
    [21] Jiao F, Harrison A, Jumas J C, et al. Ordered mesoporous Fe2O3with crystalline walls [J]. Journal ofthe American Chemical Society,2006,128(16):5468-5474.
    [22] Tüysüz H, Weidenthaler C, Schüth F. A strategy for the synthesis of mesostructured metal oxides withlower oxidation states [J]. Chemistry-A European Journal,2012,18(16):5080-5086.
    [23] Kong A G, Wang H W, Li J, et al. Preparation of super paramagnetic crystalline mesoporous γ-Fe2O3with high surface [J]. Materials Letters,2008,62(6):943-945.
    [24] Sun X, Shi Y, Zhang P, et al. Container effect in nanocasting synthesis of mesoporous metal oxides [J].Journal of the American Chemical Society,2011,133(37):14542-14545.
    [25] Dickinson C, Zhou W, Hodgkins R P, et al. Formation mechanism of porous single-crystal Cr2O3andCo3O4templated by mesoporous silica [J]. Chemistry of Materials,2006,18(13):3088-3095.
    [26] Rumplecker A, Kleitz F, Salabas E L, et al. Hard templating pathways for the synthesis ofnanostructured porous Co3O4[J]. Chemistry of Materials,2007,19(3):485-496.
    [27] Ma C Y, Mu Z, Li J J, et al. Mesoporous Co3O4and Au/Co3O4catalysts for low-temperature oxidationof trace ethylene [J]. Journal of the American Chemical Society,2010,132(8):2608-2613.
    [28] Roggenbuck J, Koch G, Tiemann M. Synthesis of mesoporous magnesium oxide by CMK-3carbonstructure replication [J]. Chemistry of Materials,2006,18(17):4151-4156.
    [29] Liu H, Wang G, Liu J, et al. Highly ordered mesoporous NiO anode material for lithium ion batterieswith an excellent electrochemical performance [J]. Journal of Materials Chemistry,2011,21(9):3046-3052.
    [30] Waitz T, Tiemann M, Klar P J, et al. Crystalline ZnO with an enhanced surface area obtained bynanocasting [J]. Applied Physics Letters,2007,90(12):123108.
    [31] Polarz S, Orlov A V, Schüth F, et al. Preparation of high-surface-area zinc oxide with ordered porosity,different pore sizes, and nanocrystalline walls [J]. Chemistry-A European Journal,2007,13(2):592-597.
    [32] Roggenbuck J, Sch fer H, Tsoncheva T, et al. Mesoporous CeO2: Synthesis by nanocasting,characterisation and catalytic properties [J]. Microporous and Mesoporous Materials,2007,101(3):335-341.
    [33] Yen H, Seo Y, Kaliaguine S, et al. Tailored mesostructured copper/ceria catalysts with enhancedperformance for preferential oxidation of co at low temperature [J]. Angewandte Chemie,2012,124(48):12198-12201.
    [34] Tiemann M. Porous metal oxides as gas sensors [J]. Chemistry-A European Journal,2007,13(30):8376-8388.
    [35] Ramasamy E, Lee J. Ordered mesoporous SnO2based photoanodes for high-performancedye-sensitized solar cells [J]. The Journal of Physical Chemistry C,2010,114(50):22032-22037.
    [36] Shi Y, Guo B, Corr S A, et al. Ordered mesoporous metallic MoO2materials with highly reversiblelithium storage capacity [J]. Nano Letters,2009,9(12):4215-4220.
    [37] Imperor-Clerc M, Bazin D, Appay M D, et al. Crystallization of β-MnO2nanowires in the pores ofSBA-15silicas: In situ investigation using synchrotron radiation [J]. Chemistry of Materials,2004,16(9):1813-1821.
    [38] Roggenbuck J, Tiemann M. Ordered mesoporous magnesium oxide with high thermal stabilitysynthesized by exotemplating using CMK-3carbon [J]. Journal of the American Chemical Society,2005,127(4):1096-1097.
    [39] Lai X, Li X, Geng W, et al. Ordered mesoporous copper oxide with crystalline walls [J]. AngewandteChemie-International Edition,2007,46(5):738-741.
    [40] Tu ysu z H, Weidenthaler C, Grewe T, et al. A crystal structure analysis and magnetic investigation onhighly ordered mesoporous Cr2O3[J]. Inorganic Chemistry,2012,51(21):11745-11752.
    [41] Bian Z, Zhu J, Wen J, et al. Single crystal like titania mesocages [J]. Angewandte Chemie,2011,123(5):1137-1140.
    [42] Zhou W, Sun F, Pan K, et al. Well ordered large pore mesoporous anatase TiO2with remarkably highthermal stability and improved crystallinity: Preparation, characterization, and photocatalytic performance[J]. Advanced Functional Materials,2011,21(10):1922-1930.
    [43] Wu Z, Hao N, Xiao G, et al. One-pot generation of mesoporous carbon supported nanocrystallinecalcium oxides capable of efficient CO2capture over a wide range of temperatures [J]. Physical ChemistryChemical Physics,2011,13(7):2495-2503.
    [44] Xu L, Song H, Chou L. One-pot synthesis of ordered mesoporous NiO-CaO-Al2O3composite oxidesfor catalyzing CO2reforming of CH4[J]. ACS Catalysis,2012,2(7):1331-1342.
    [45] Ortel E, Reier T, Strasser P, et al. Mesoporous IrO2films templated by peo-pb-peo block-copolymers:Self-assembly, crystallization behavior, and electrocatalytic performance [J]. Chemistry of Materials,2011,23(13):3201-3209.
    [46] Takai A, Doi Y, Yamauchi Y, et al. A rational repeating template method for synthesis of2dhexagonally ordered mesoporous precious metals [J]. Chemistry-An Asian Journal,2011,6(3):881-887.
    [47] Lehoux A, Ramos L, Beaunier P, et al. Metallic nanoparticles: Tuning the porosity of bimetallicnanostructures by a soft templating approach [J]. Advanced Functional Materials,2012,22(23):4899-4899.
    [48] Wang D, Xin H L, Hovden R, et al. Structurally ordered intermetallic platinum-cobalt core–shellnanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts [J]. Nat Mater,2013,12(1):81-87.
    [49] Ataee-Esfahani H, Liu J, Hu M, et al. Mesoporous metallic cells: Design of uniformly sized hollowmesoporous Pt–Ru particles with tunable shell thicknesses [J]. Small,2013, DOI:10.1002/smll.201202539.
    [50] Jun Y-S, Hong W H, Antonietti M, et al. Mesoporous,2d hexagonal carbon nitride and titaniumnitride/carbon composites [J]. Advanced Materials,2009,21(42):4270-4274.
    [51] Li X-H, Wang X, Antonietti M. Mesoporous g-C3N4nanorods as multifunctional supports of ultrafinemetal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis inone step [J]. Chemical Science,2012,3(6):2170-2174.
    [52] Yuliati L, Yang J-H, Wang X, et al. Highly active tantalum(v) nitride nanoparticles prepared from amesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation [J].Journal of Materials Chemistry,2010,20(21):4295-4298.
    [53] Shi Y F, Meng Y, Chen D H, et al. Highly ordered mesoporous silicon carbide ceramics with largesurface areas and high stability [J]. Advanced Functional Materials,2006,16(4):561-567.
    [54] Jiao F, Shaju K M, Bruce P G. Synthesis of nanowire and mesoporous low-temperature LiCoO2by apost-templating reaction [J]. Angewandte Chemie-International Edition,2005,44(40):6550-6553.
    [55] Mohanty P, Landskron K. Synthesis of periodic mesoporous phosphorus-nitrogen frameworks bynanocasting from mesoporous silica using melt-infiltration [J]. Journal of Materials Chemistry,2009,19(16):2400-2406.
    [56] Dibandjo P, Bois L, Chassagneux F, et al. Synthesis of boron nitride with ordered mesostructure [J].Advanced Materials,2005,17(5):571-574.
    [57] Kruk M, Jaroniec M, Ryoo R, et al. Characterization of ordered mesoporous carbons synthesized usingMCM-48silicas as templates [J]. Journal of Physical Chemistry B,2000,104(33):7960-7968.
    [58] Chuenchom L, Kraehnert R, Smarsly B M. Recent progress in soft-templating of porous carbonmaterials [J]. Soft Matter,2012,8(42):10801-10812.
    [59] Deng Y, Yu T, Wan Y, et al. Ordered mesoporous silicas and carbons with large accessible porestemplated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene [J]. Journal of theAmerican Chemical Society,2007,129(6):1690-1697.
    [60] You B, Yang J, Sun Y, et al. Easy synthesis of hollow core, bimodal mesoporous shell carbonnanospheres and their application in supercapacitor [J]. Chemical Communications,2011,47(45):12364-12366.
    [61] Fang B, Kim M, Fan S-Q, et al. Facile synthesis of open mesoporous carbon nanofibers with tailorednanostructure as a highly efficient counter electrode in cdse quantum-dot-sensitized solar cells [J]. Journalof Materials Chemistry,2011,21(24):8742-8748.
    [62] Liu H-J, Wang X-M, Cui W-J, et al. Highly ordered mesoporous carbon nanofiber arrays from a crabshell biological template and its application in supercapacitors and fuel cells [J]. Journal of MaterialsChemistry,2010,20(20):4223-4230.
    [63] Li W, Zhang F, Dou Y, et al. A self-template strategy for the synthesis of mesoporous carbonnanofibers as advanced supercapacitor electrodes [J]. Advanced Energy Materials,2011,1(3):382-386.
    [64] Hu M, Reboul J, Furukawa S, et al. Direct synthesis of nanoporous carbon nitride fibers using al-basedporous coordination polymers (Al-PCPs)[J]. Chemical Communications,2011,47(28):8124-8126.
    [65] Liu B, Shioyama H, Akita T, et al. Metal-organic framework as a template for porous carbon synthesis[J]. Journal of the American Chemical Society,2008,130(16):5390-5391.
    [66] Schuster J, He G, Mandlmeier B, et al. Spherical ordered mesoporous carbon nanoparticles with highporosity for lithium-sulfur batteries [J]. Angewandte Chemie International Edition,2012,51(15):3591-3595.
    [67] Gu D, Bongard H, Deng Y, et al. An aqueous emulsion route to synthesize mesoporous carbon vesiclesand their nanocomposites [J]. Advanced Materials,2010,22(7):833-837.
    [68] Feng D, Lv Y, Wu Z, et al. Free-standing mesoporous carbon thin films with highly ordered porearchitectures for nanodevices [J]. Journal of the American Chemical Society,2011,133(38):15148-15156.
    [69] Wang Y, Song H, Zhang H, et al. Direct synthesis of flat cake-type ordered mesoporous carbon in adouble surfactant system of P123/CTAB [J]. Journal of Materials Chemistry,2011,21(15):5576-5579.
    [70] Bo X, Zhu L, Wang G, et al. Template-free synthesis of rectangular mesoporous carbon nanorods andtheir application as a support for Pt electrocatalysts [J]. Journal of Materials Chemistry,2012,22(12):5758-5763.
    [71] Che S, Lund K, Tatsumi T, et al. Direct observation of3d mesoporous structure by scanning electronmicroscopy (SEM): SBA-15silica and CMK-5carbon [J]. Angewandte Chemie International Edition,2003,42(19):2182-2185.
    [72] Vinu A, Ariga K, Mori T, et al. Preparation and characterization of well-ordered hexagonalmesoporous carbon nitride [J]. Advanced Materials,2005,17(13):1648-1652.
    [73] Jin X, Balasubramanian V V, Selvan S T, et al. Highly ordered mesoporous carbon nitridenanoparticles with high nitrogen content: A metal-free basic catalyst [J]. Angewandte Chemie InternationalEdition,2009,48(42):7884-7887.
    [74] Vinu A, Anandan S, Anand C, et al. Fabrication of partially graphitic three-dimensional nitrogen-dopedmesoporous carbon using polyaniline nanocomposite through nanotemplating method [J]. Microporous andMesoporous Materials,2008,109(1–3):398-404.
    [75] Groenewolt M, Antonietti M. Synthesis of g-C3N4nanoparticles in mesoporous silica host matrices [J].Advanced Materials,2005,17(14):1789-1792.
    [76] Paraknowitsch J P, Zhang J, Su D, et al. Ionic liquids as precursors for nitrogen-doped graphitic carbon[J]. Advanced Materials,2010,22(1):87-92.
    [77] Yang C M, Weidenthaler C, Spliethoff B, et al. Facile template synthesis of ordered mesoporouscarbon with polypyrrole as carbon precursor [J]. Chemistry of Materials,2005,17(2):355-358.
    [78] Shin Y, Fryxell G E, Engelhard M H, et al. Functional mesoporous carbon built from the1,10-phenanthroline building block: A new class of catalyst support [J]. Inorganic ChemistryCommunications,2007,10(12):1541-1544.
    [79] Shin Y, Fryxell G E, Um W, et al. Sulfur-functionalized mesoporous carbon [J]. Advanced FunctionalMaterials,2007,17(15):2897-2901.
    [80] Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions ofplatinum nanoparticles [J]. Nature,2001,412(6843):169-172.
    [81] Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinumnanowires, carbon nanorods and carbon nanotubes [J]. Chemical Communications,2003,9(17):2136-2137.
    [82] Zhang F, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly ordered mesoporouspolymers and carbon frameworks with ia3d bicontinuous cubic structure [J]. Journal of the AmericanChemical Society,2005,127(39):13508-13509.
    [83] Zhang F, Gu D, Yu T, et al. Mesoporous carbon single-crystals from organic-organic self-assembly [J].Journal of the American Chemical Society,2007,129(25):7746-7747.
    [84] Liu R, Shi Y, Wan Y, et al. Triconstituent co-assembly to ordered mesostructured polymer-silica andcarbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas [J]. Journal of theAmerican Chemical Society,2006,128(35):11652-11662.
    [85] Song R, Song H, Zhou J, et al. Hierarchical porous carbon nanosheets and their favorable high-rateperformance in lithium ion batteries [J]. Journal of Materials Chemistry,2012,22(24):12369-12374.
    [86] Fechler N, Fellinger T P, Antonietti M.“salt templating”: A simple and sustainable pathway towardhighly porous functional carbons from ionic liquids [J]. Advanced Materials,2013,25(1):75-79.
    [87] Lim S, Suh K, Kim Y, et al. Porous carbon materials with a controllable surface area synthesized frommetal-organic frameworks [J]. Chemical Communications,2012,48(60):7447-7449.
    [88] Jiang H-L, Liu B, Lan Y-Q, et al. From metal–organic framework to nanoporous carbon: Toward avery high surface area and hydrogen uptake [J]. Journal of the American Chemical Society,2011,133(31):11854-11857.
    [89] Bazu a P A, Lu A H, Nitz J J, et al. Surface and pore structure modification of ordered mesoporouscarbons via a chemical oxidation approach [J]. Microporous and Mesoporous Materials,2008,108(1-3):266-275.
    [90] Lu A H, Li W C, Muratova N, et al. Evidence for C-C bond cleavage by H2O2in a mesoporousCMK-5type carbon at room temperature [J]. Chemical Communications,2005,(41):5184-5186.
    [91] Vinu A, Hossian K Z, Srinivasu P, et al. Carboxy-mesoporous carbon and its excellent adsorptioncapability for proteins [J]. Journal of Materials Chemistry,2007,17(18):1819-1825.
    [92] Xue C, Lv Y, Zhang F, et al. Copper oxide activation of soft-templated mesoporous carbons and theirelectrochemical properties for capacitors [J]. Journal of Materials Chemistry,2012,22(4):1547-1555.
    [93] Wang X, Liu R, Waje M M, et al. Sulfonated ordered mesoporous carbon as a stable and highly activeprotonic acid catalyst [J]. Chemistry of Materials,2007,19(10):2395-2397.
    [94] Xing R, Liu Y, Wang Y, et al. Active solid acid catalysts prepared by sulfonation ofcarbonization-controlled mesoporous carbon materials [J]. Microporous and Mesoporous Materials,2007,105(1-2):41-48.
    [95] Li Z, Yan W, Dai S. Surface functionalization of ordered mesoporous carbons-a comparative study [J].Langmuir,2005,21(25):11999-12006.
    [96] Li Z, Dai S. Surface functionalization and pore size manipulation for carbons of ordered structure [J].Chemistry of Materials,2005,17(7):1717-1721.
    [97] Wang X, Jiang D E, Dai S. Surface modification of ordered mesoporous carbons via1,3-dipolarcycloaddition of azomethine ylides [J]. Chemistry of Materials,2008,20(15):4800-4802.
    [98] Titirici M M, Thomas A, Antonietti M. Aminated hydrophilic ordered mesoporous carbons [J]. Journalof Materials Chemistry,2007,17(32):3412-3418.
    [99] Choi M, Ryoo R. Ordered nanoporous polymer-carbon composites [J]. Nature Materials,2003,2(7):473-476.
    [100] Wang J, Yu X, Li Y, et al. Poly(3,4-ethylenedioxythiophene)/mesoporous carbon composite [J].Journal of Physical Chemistry C,2007,111(49):18073-18077.
    [101] Zhu S, Gu J, Chen Z, et al. Controlled synthesis of polyaniline inside mesoporous carbon forelectroanalytical sensors [J]. Journal of Materials Chemistry,2010,20(24):5123-5128.
    [102] Dou Y-Q, Zhai Y, Liu H, et al. Syntheses of polyaniline/ordered mesoporous carbon composites withinterpenetrating framework and their electrochemical capacitive performance in alkaline solution [J].Journal of Power Sources,2011,196(3):1608-1614.
    [103] Wang Y G, Li H Q, Xia Y Y. Ordered whiskerlike polyaniline grown on the surface of mesoporouscarbon and its electrochemical capacitance performance [J]. Advanced Materials,2006,18(19):2619-2623.
    [104] Guo Z, Li S, Liu X M, et al. Mesoporous carbon-polyaniline electrode: Characterization andapplication to determination of copper and lead by anodic stripping voltammetry [J]. Materials Chemistryand Physics,2011,128(1-2):238-242.
    [105] Bo X, Bai J, Qi B, et al. Ultra-fine Pt nanoparticles supported on ionic liquid polymer-functionalizedordered mesoporous carbons for nonenzymatic hydrogen peroxide detection [J]. Biosensors andBioelectronics,2011,28(1):77-83.
    [106] Choi Y S, Joo S H, Lee S A, et al. Surface selective polymerization of polypyrrole on orderedmesoporous carbon: Enhancing interfacial conductivity for direct methanol fuel cell application [J].Macromolecules,2006,39(9):3275-3282.
    [107] Zhang J, Kong L-B, Cai J-J, et al. Nano-composite of polypyrrole/modified mesoporous carbon forelectrochemical capacitor application [J]. Electrochimica Acta,2010,55(27):8067-8073.
    [108] Zhu S, Chen C, Chen Z, et al. Thermo-responsive polymer-functionalized mesoporous carbon forcontrolled drug release [J]. Materials Chemistry and Physics,2011,126(1-2):357-363.
    [109] Kalbasi R J, Mosaddegh N. Synthesis, characterization and catalytic activity studies of Pd-basedsupported nanoparticle catalyst anchoring on poly(n-vinyl-2-pyrrolidone) modified CMK-3[J]. MaterialsChemistry and Physics,2011,130(3):1287-1293.
    [110] Hwang C-C, Jin Z, Lu W, et al. In situ synthesis of polymer-modified mesoporous carbon CMK-3composites for co2sequestration [J]. ACS Applied Materials&Interfaces,2011,3(12):4782-4786.
    [111] Luo L, Li F, Zhu L, et al. Electrochemical sensing platform of natural estrogens based on thepoly(l-proline)-ordered mesoporous carbon composite modified glassy carbon electrode [J]. Sensors andActuators B: Chemical,2013, doi.org/10.1016/j.snb.2012.09.056,.
    [112] Qi B, Peng X, Fang J, et al. Ordered mesoporous carbon functionalized with polythionine forelectrocatalytic application [J]. Electroanalysis,2009,21(7):875-880.
    [113] Lu B, Bai J, Bo X, et al. Electrosynthesis and efficient electrocatalytic performance of poly(neutralred)/ordered mesoporous carbon composite [J]. Electrochimica Acta,2010,55(15):4647-4652.
    [114] Fang J, Qi B, Yang L, et al. Ordered mesoporous carbon functionalized with poly-azure b forelectrocatalytic application [J]. Journal of Electroanalytical Chemistry,2010,643(1-2):52-57.
    [115] Ju J, Bo X, Wang H, et al. Poly-o-toluidine cobalt supported on ordered mesoporous carbon as anefficient electrocatalyst for oxygen reduction [J]. Electrochemistry Communications,2012,25(0):35-38.
    [116] Weidenthaler C, Lu A H, Schmidt W, et al. X-ray photoelectron spectroscopic studies of pan-basedordered mesoporous carbons (omc)[J]. Microporous and Mesoporous Materials,2006,88(1-3):238-243.
    [117] Lu A, Kiefer A, Schmidt W, et al. Synthesis of polyacrylonitrile-based ordered mesoporous carbonwith tunable pore structures [J]. Chemistry of Materials,2004,16(1):100-103.
    [118] Jang J, Lim B, Choi M. A simple synthesis of mesoporous carbons with tunable mesopores using acolloidal template-mediated vapor deposition polymerization [J]. Chemical Communications,2005,(33):4214-4216.
    [119] Xia Y, Mokaya R. Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials withgraphitic pore walls via a simple chemical vapor deposition method [J]. Advanced Materials,2004,16(17):1553-1558.
    [120] Jun Y S, Hong W H, Antonietti M, et al. Mesoporous,2d hexagonal carbon nitride and titaniumnitride/carbon composites [J]. Advanced Materials,2009,21(42):4270-4274.
    [121] Karimi B, Behzadnia H, Bostina M, et al. A nano-fibrillated mesoporous carbon as an effectivesupport for palladium nanoparticles in the aerobic oxidation of alcohols “on pure water”[J]. Chemistry–AEuropean Journal,2012,18(28):8634-8640.
    [122] Fellinger T-P, Hasché F, Strasser P, et al. Mesoporous nitrogen-doped carbon for the electrocatalyticsynthesis of hydrogen peroxide [J]. Journal of the American Chemical Society,2012,134(9):4072-4075.
    [123] Park K-Y, Jang J-H, Hong J-E, et al. Mesoporous thin films of nitrogen-doped carbon withelectrocatalytic properties [J]. The Journal of Physical Chemistry C,2012,116(32):16848-16853.
    [124] Mane G P, Talapaneni S N, Anand C, et al. Preparation of highly ordered nitrogen-containingmesoporous carbon from a gelatin biomolecule and its excellent sensing of acetic acid [J]. AdvancedFunctional Materials,2012,22(17):3596-3604.
    [125] Lee K T, Ji X, Rault M, et al. Simple synthesis of graphitic ordered mesoporous carbon materials by asolid-state method using metal phthalocyanines [J]. Angewandte Chemie,2009,121(31):5771-5775.
    [126] Liu R, Wu D, Feng X, et al. Nitrogen-doped ordered mesoporous graphitic arrays with highelectrocatalytic activity for oxygen reduction [J]. Angewandte Chemie International Edition,2010,49(14):2565-2569.
    [127] Kowalewski T, Tsarevsky N V, Matyjaszewski K. Nanostructured carbon arrays from blockcopolymers of polyacrylonitrile [J]. Journal of the American Chemical Society,2002,124(36):10632-10633.
    [128] Wan Y, Qian X, Jia N, et al. Direct triblock-copolymer-templating synthesis of highly orderedfluorinated mesoporous carbon [J]. Chemistry of Materials,2007,20(3):1012-1018.
    [129] Borchardt L, Kockrick E, Wollmann P, et al. Ordered mesoporous boron carbide based materials viaprecursor nanocasting [J]. Chemistry of Materials,2010,22(16):4660-4668.
    [130] Wang D-W, Li F, Chen Z-G, et al. Synthesis and electrochemical property of boron-dopedmesoporous carbon in supercapacitor [J]. Chemistry of Materials,2008,20(22):7195-7200.
    [131] Zhao X, Wang A, Yan J, et al. Synthesis and electrochemical performance of heteroatom-incorporatedordered mesoporous carbons [J]. Chemistry of Materials,2010,22(19):5463-5473.
    [132] Zhao X, Zhang Q, Zhang B, et al. Dual-heteroatom-modified ordered mesoporous carbon:Hydrothermal functionalization, structure, and its electrochemical performance [J]. Journal of MaterialsChemistry,2012,22(11):4963-4969.
    [133] Yang D-S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons withdifferent lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media [J].Journal of the American Chemical Society,2012,134(39):16127-16130.
    [134] Lee H I, Joo S H, Kim J H, et al. Ultrastable Pt nanoparticles supported on sulfur-containing orderedmesoporous carbon via strong metal-support interaction [J]. Journal of Materials Chemistry,2009,19(33):5934-5939.
    [135] Zheng Y, Jiao Y, Chen J, et al. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts forhighly efficient oxygen reduction [J]. Journal of the American Chemical Society,2011,133(50):20116-20119.
    [136] Li Z, Guillermo D, Yan W, et al. Fluorinated carbon with ordered mesoporous structure [J]. Journal ofthe American Chemical Society,2004,126(40):12782-12783.
    [137] Liu L, Deng Q-F, Ma T-Y, et al. Ordered mesoporous carbons: Citric acid-catalyzed synthesis,nitrogen doping and CO2capture [J]. Journal of Materials Chemistry,2011,21(40):16001-16009.
    [138] Wang X, Lee J S, Zhu Q, et al. Ammonia-treated ordered mesoporous carbons as catalytic materialsfor oxygen reduction reaction [J]. Chemistry of Materials,2010,22(7):2178-2180.
    [139] Wen Z, Liu J, Li J. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as amethanol-tolerant cathode catalyst in direct methanol fuel cells [J]. Advanced Materials,2008,20(4):743-747.
    [140] Liu S-H, Yu W-Y, Chen C-H, et al. Fabrication and characterization of well-dispersed and highlystable PtRu nanoparticles on carbon mesoporous material for applications in direct methanol fuel cell [J].Chemistry of Materials,2008,20(4):1622-1628.
    [141] Orilall M C, Matsumoto F, Zhou Q, et al. One-pot synthesis of platinum-based nanoparticlesincorporated into mesoporous niobium oxide-carbon composites for fuel cell electrodes [J]. Journal of theAmerican Chemical Society,2009,131(26):9389-9395.
    [142] Choi W C, Woo S I, Jeon M K, et al. Platinum nanoclusters studded in the microporous nanowalls ofordered mesoporous carbon [J]. Advanced Materials,2005,17(4):446-451.
    [143] Lu A H, Li W C, Hou Z, et al. Molecular level dispersed Pd clusters in the carbon walls of orderedmesoporous carbon as a highly selective alcohol oxidation catalyst [J]. Chemical Communications,2007,(10):1038-1040.
    [144] Saha D, Deng S. Hydrogen adsorption on ordered mesoporous carbons doped with Pd, Pt, Ni, and Ru[J]. Langmuir,2009,25(21):12550-12560.
    [145] Gao P, Wang A, Wang X, et al. Synthesis of highly ordered ir-containing mesoporous carbonmaterials by organic–organic self-assembly [J]. Chemistry of Materials,2008,20(5):1881-1888.
    [146] Wu Z, Lv Y, Xia Y, et al. Ordered mesoporous platinum@graphitic carbon embedded nanophase as ahighly active, stable, and methanol-tolerant oxygen reduction electrocatalyst [J]. Journal of the AmericanChemical Society,2011,134(4):2236-2245.
    [147] Sun Z, Sun B, Qiao M, et al. A general chelate-assisted co-assembly to metallicnanoparticles-incorporated ordered mesoporous carbon catalysts for fischer-tropsch synthesis [J]. Journal ofthe American Chemical Society,2012,134(42):17653-17660.
    [148] Dai M, Song L, LaBelle J T, et al. Ordered mesoporous carbon composite films containing cobaltoxide and vanadia for electrochemical applications [J]. Chemistry of Materials,2011,23(11):2869-2878.
    [149] Tian Y, Wang X, Pan Y. Simple synthesis of Ni-containing ordered mesoporous carbons and theiradsorption/desorption of methylene orange [J]. Journal of Hazardous Materials,2012,213–214(0):361-368.
    [150] Lu A-H, Nitz J-J, Comotti M, et al. Spatially and size selective synthesis of Fe-based nanoparticles onordered mesoporous supports as highly active and stable catalysts for ammonia decomposition [J]. Journalof the American Chemical Society,2010,132(40):14152-14162.
    [151] Huwe H, Fr ba M. Iron (iii) oxide nanoparticles within the pore system of mesoporous carbonCMK-1: Intra-pore synthesis and characterization [J]. Microporous and Mesoporous Materials,2003,60(1-3):151-158.
    [152] Minchev C, Huwe H, Tsoncheva T, et al. Iron oxide modified mesoporous carbons: Physicochemicaland catalytic study [J]. Microporous and Mesoporous Materials,2005,81(1-3):333-341.
    [153] Huwe H, Fr ba M. Synthesis and characterization of transition metal and metal oxide nanoparticlesinside mesoporous carbon CMK-3[J]. Carbon,2007,45(2):304-314.
    [154] Lee J J, Han S, Kim H, et al. Performance of CoMoS catalysts supported on nanoporous carbon in thehydrodesulfurization of dibenzothiophene and4,6-dimethyldibenzothiophene [J]. Catalysis Today,2003,86(1-4):141-149.
    [155] Wang W, Wang H, Wei W, et al. Self-assembling and size-selective synthesis of Ni and NiOnanoparticles embedded in ordered mesoporous carbon and polymer frameworks [J]. Chemistry-AEuropean Journal,2011,17(48):13461-13472.
    [156] Kong L, Wei W, Zhao Q, et al. Active coordinatively unsaturated manganese monoxide-containingmesoporous carbon catalyst in wet peroxide oxidation [J]. ACS Catalysis,2012,2(12):2577-2586.
    [157] Wei W, Yu C, Zhao Q, et al. Improvement of the visible-light photocatalytic performance of tio2bycarbon mesostructures [J]. Chemistry-A European Journal,2013,19(2):566-577.
    [158] Calvillo L, Lázaro M J, García-Bordejé E, et al. Platinum supported on functionalized orderedmesoporous carbon as electrocatalyst for direct methanol fuel cells [J]. Journal of Power Sources,2007,169(1):59-64.
    [159] Gupta G, Slanac D A, Kumar P, et al. Highly stable Pt/ordered graphitic mesoporous carbonelectrocatalysts for oxygen reduction [J]. Journal of Physical Chemistry C,2010,114(24):10796-10805.
    [160] Ji X, Lee K T, Holden R, et al. Nanocrystalline intermetallics on mesoporous carbon for direct formicacid fuel cell anodes [J]. Nature Chemistry,2010,2(4):286-293.
    [161] Yu J, Yu D, Zhao T, et al. Development of amperometric glucose biosensor through immobilizingenzyme in a Pt nanoparticles/mesoporous carbon matrix [J]. Talanta,2008,74(5):1586-1591.
    [162] Joo S H, Kwon K, You D J, et al. Preparation of high loading Pt nanoparticles on ordered mesoporouscarbon with a controlled Pt size and its effects on oxygen reduction and methanol oxidation reactions [J].Electrochimica Acta,2009,54(24):5746-5753.
    [163] Liu N, Yin L, Wang C, et al. One-pot synthesis of ptru nanoparticle decorated ordered mesoporouscarbons with improved hydrogen storage capacity [J]. The Journal of Physical Chemistry C,2010,114(50):22012-22018.
    [164] Bo X, Ndamanisha J C, Bai J, et al. Nonenzymatic amperometric sensor of hydrogen peroxide andglucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite [J]. Talanta,2010,82(1):85-91.
    [165] Salgado J R C, Alcaide F, álvarez G, et al. Pt-Ru electrocatalysts supported on ordered mesoporouscarbon for direct methanol fuel cell [J]. Journal of Power Sources,2010,195(13):4022-4029.
    [166] Salgado J R C, Quintana J J, Calvillo L, et al. Carbon monoxide and methanol oxidation at platinumcatalysts supported on ordered mesoporous carbon: The influence of functionalization of the support [J].Physical Chemistry Chemical Physics,2008,10(45):6796-6806.
    [167] Zhou J, He J, Zhao G, et al. Ordered mesoporous carbon decorated with rare earth oxide aselectrocatalyst support for Pt nanoparticles [J]. Electrochemistry Communications,2008,10(1):76-79.
    [168] Garcia T, Murillo R, Agouram S, et al. Highly dispersed encapsulated aupd nanoparticles on orderedmesoporous carbons for the direct synthesis of H2O2from molecular oxygen and hydrogen [J]. ChemicalCommunications,2012,48(43):5316-5318.
    [169] Liu S-H, Wu J-R. Synthesis and characterization of platinum supported on surface-modified orderedmesoporous carbons by self-assembly and their electrocatalytic performance towards oxygen reductionreaction [J]. International Journal of Hydrogen Energy,2012,37(22):16994-17001.
    [170] Xiang D, Yin L. Well-dispersed and size-tuned bimetallic ptfex nanoparticle catalysts supported onordered mesoporous carbon for enhanced electrocatalytic activity in direct methanol fuel cells [J]. Journalof Materials Chemistry,2012,22(19):9584-9593.
    [171] Zhao H, Dong J, Xing S, et al. Electrochemical oxidation of small organic molecules onhydrothermal synthesized Pt and PtCo/ordered mesoporous carbon [J]. International Journal of HydrogenEnergy,2011,36(16):9551-9561.
    [172] Liu S-H, Zheng F-S, Wu J-R. Preparation of ordered mesoporous carbons containing well-dispersedand highly alloying Pt–Co bimetallic nanoparticles toward methanol-resistant oxygen reduction reaction [J].Applied Catalysis B: Environmental,2011,108–109(0):81-89.
    [173] Su F, Poh C K, Zeng J, et al. Pt nanoparticles supported on mesoporous carbon nanocompositesincorporated with ni or co nanoparticles for fuel cells [J]. Journal of Power Sources,2012,205(0):136-144.
    [174] Poh C K, Tian Z, Gao J, et al. Nanostructured trimetallic Pt/FeRuC, Pt/NiRuC, and Pt/CoRuCcatalysts for methanol electrooxidation [J]. Journal of Materials Chemistry,2012,22(27):13643-13652.
    [175] Dong X, Shen W, Gu J, et al. MnO2-embedded-in-mesoporous-carbon-wall structure for use aselectrochemical capacitors [J]. The Journal of Physical Chemistry B,2006,110(12):6015-6019.
    [176] Zhu S, Zhou H, Hibino M, et al. Synthesis of MnO2nanoparticles confined in ordered mesoporouscarbon using a sonochemical method [J]. Advanced Functional Materials,2005,15(3):381-386.
    [177] Wang Y-g, Cheng L, Li F, et al. High electrocatalytic performance of Mn3O4/mesoporous carboncomposite for oxygen reduction in alkaline solutions [J]. Chemistry of Materials,2007,19(8):2095-2101.
    [178] Zhang H, Tao H, Jiang Y, et al. Ordered CoO/CMK-3nanocomposites as the anode materials forlithium-ion batteries [J]. Journal of Power Sources,2010,195(9):2950-2955.
    [179] Sun B, Liu H, Munroe P, et al. Nanocomposites of coo and a mesoporous carbon (CMK-3) as a highperformance cathode catalyst for lithium-oxygen batteries [J]. Nano Research,2012,5(7):460-469.
    [180] Wu Z, Li W, Webley P A, et al. General and controllable synthesis of novel mesoporous magneticiron oxide@carbon encapsulates for efficient arsenic removal [J]. Advanced Materials,2012,24(4):485-491.
    [181] Qiao H, Li J, Fu J, et al. Sonochemical synthesis of ordered SnO2/CMK-3nanocomposites and theirlithium storage properties [J]. ACS Applied Materials&Interfaces,2011,3(9):3704-3708.
    [182] Ampoumogli A, Steriotis T, Trikalitis P, et al. Synthesis and characterisation of a mesoporouscarbon/calcium borohydride nanocomposite for hydrogen storage [J]. International Journal of HydrogenEnergy,2012,37(21):16631-16635.
    [183] Yuan D, Zeng J, Kristian N, et al. Bi2O3deposited on highly ordered mesoporous carbon forsupercapacitors [J]. Electrochemistry Communications,2009,11(2):313-317.
    [184] Luo L, Li F, Zhu L, et al. Nonenzymatic glucose sensor based on nickel(ii)oxide/ordered mesoporouscarbon modified glassy carbon electrode [J]. Colloids and Surfaces B: Biointerfaces,2013,102(0):307-311.
    [185] Luo L, Li F, Zhu L, et al. Non-enzymatic hydrogen peroxide sensor based on mno2-orderedmesoporous carbon composite modified electrode [J]. Electrochimica Acta,2012,77(0):179-183.
    [186] Lu B, Bai J, Bo X, et al. A simple hydrothermal synthesis of nickel hydroxide-ordered mesoporouscarbons nanocomposites and its electrocatalytic application [J]. Electrochimica Acta,2010,55(28):8724-8730.
    [187] Zhou M, Guo J, Guo L P, et al. Electrochemical sensing platform based on the highly orderedmesoporous carbon-fullerene system [J]. Analytical Chemistry,2008,80(12):4642-4650.
    [188] Peng Z, Zhang D, Shi L, et al. High performance ordered mesoporous carbon/carbon nanotubecomposite electrodes for capacitive deionization [J]. Journal of Materials Chemistry,2012,22(14):6603-6612.
    [189] Jo Y, Cheon J Y, Yu J, et al. Highly interconnected ordered mesoporous carbon-carbon nanotubenanocomposites: Pt-free, highly efficient, and durable counter electrodes for dye-sensitized solar cells [J].Chemical Communications,2012,48(65):8057-8059.
    [190] Sun X, He J, Tang J, et al. Structural and electrochemical characterization of ordered mesoporouscarbon-reduced graphene oxide nanocomposites [J]. Journal of Materials Chemistry,2012,22(21):10900-10910.
    [191] Zhang D, Wen X, Shi L, et al. Enhanced capacitive deionization of graphene/mesoporous carboncomposites [J]. Nanoscale,2012,4(17):5440-5446.
    [192] Sun Y, Li C, Shi G. Nanoporous nitrogen doped carbon modified graphene as electrocatalyst foroxygen reduction reaction [J]. Journal of Materials Chemistry,2012,22(25):12810-12816.
    [193] Lei Z, Liu Z, Wang H, et al. A high-energy-density supercapacitor with graphene-CMK-5as theelectrode and ionic liquid as the electrolyte [J]. Journal of Materials Chemistry A,2013,1(6):2313-2321.
    [194] Hu J, Sun J, Yan J, et al. A novel efficient electrode material: Activated carbon fibers grafted byordered mesoporous carbon [J]. Electrochemistry Communications,2013,28(0):67-70.
    [195] Zheng D, Ye J, Zhou L, et al. Electrochemical properties of ordered mesoporous carbon filmadsorbed onto a self-assembled alkanethiol monolayer on gold electrode [J]. Electroanalysis,2009,21(2):184-189.
    [196] Feng J J, Xu J J, Chen H Y. Direct electron transfer and electrocatalysis of hemoglobin adsorbed onmesoporous carbon through layer-by-layer assembly [J]. Biosensors and Bioelectronics,2007,22(8):1618-1624.
    [197] Zhu Z, Li X, Zeng Y, et al. Ordered mesoporous carbon modified carbon ionic liquid electrode for theelectrochemical detection of double-stranded DNA [J]. Biosensors and Bioelectronics,2010,25(10):2313-2317.
    [198] Zhu L, Tian C, Zhu D, et al. Ordered mesoporous carbon paste electrodes for electrochemical sensingand biosensing [J]. Electroanalysis,2008,20(10):1128-1134.
    [199] Dong J, Hu Y, Zhu S, et al. A highly selective and sensitive dopamine and uric acid biosensorfabricated with functionalized ordered mesoporous carbon and hydrophobic ionic liquid [J]. Analytical andBioanalytical Chemistry,2010,396(5):1755-1762.
    [200] Bo X, Xie W, Ndamanisha J C, et al. Electrochemical oxidation and detection of morphine at orderedmesoporous carbon modified glassy carbon electrodes [J]. Electroanalysis,2009,21(23):2549-2555.
    [201] Lu H, Dai W, Zheng M, et al. Electrochemical capacitive behaviors of ordered mesoporous carbonswith controllable pore sizes [J]. Journal of Power Sources,2012,209(0):243-250.
    [202] Lang J-W, Yan X-B, Yuan X-Y, et al. Study on the electrochemical properties of cubic orderedmesoporous carbon for supercapacitors [J]. Journal of Power Sources,2011,196(23):10472-10478.
    [203] Bai J, Bo X, Zhu D, et al. A comparison of the electrocatalytic activities of ordered mesoporouscarbons treated with either HNO3or NaOH [J]. Electrochimica Acta,2010,56(2):657-662.
    [204] Zhou M, Guo L P, Hou Y, et al. Immobilization of nafion-ordered mesoporous carbon on a glassycarbon electrode: Application to the detection of epinephrine [J]. Electrochimica Acta,2008,53(12):4176-4184.
    [205] Qi B, Lin F, Bai J, et al. An ordered mesoporous carbon/didodecyldimethylammonium bromidecomposite and its application in the electro-catalytic reduction of nitrobenzene [J]. Materials Letters,2008,62(21–22):3670-3672.
    [206] Jia N, Wang Z, Yang G, et al. Electrochemical properties of ordered mesoporous carbon and itselectroanalytical application for selective determination of dopamine [J]. ElectrochemistryCommunications,2007,9(2):233-238.
    [207] Hou Y, Guo L p, Wang G. Synthesis and electrochemical performance of ordered mesoporous carbonswith different pore characteristics for electrocatalytic oxidation of hydroquinone [J]. Journal ofElectroanalytical Chemistry,2008,617(2):211-217.
    [208] Yu J, Du W, Zhao F, et al. High sensitive simultaneous determination of catechol and hydroquinone atmesoporous carbon CMK-3electrode in comparison with multi-walled carbon nanotubes and VulcanXC-72carbon electrodes [J]. Electrochimica Acta,2009,54(3):984-988.
    [209] Zheng D, Ye J, Zhou L, et al. Simultaneous determination of dopamine, ascorbic acid and uric acidon ordered mesoporous carbon/nafion composite film [J]. Journal of Electroanalytical Chemistry,2009,625(1):82-87.
    [210] Yue Y, Hu G, Zheng M, et al. A mesoporous carbon nanofiber-modified pyrolytic graphite electrodeused for the simultaneous determination of dopamine, uric acid, and ascorbic acid [J]. Carbon,2012,50(1):107-114.
    [211] Wang H, Jiang P, Bo X, et al. Mesoporous carbon nanofibers as advanced electrode materials forelectrocatalytic applications [J]. Electrochimica Acta,2012,65115-121.
    [212] Zang J, Guo C X, Hu F, et al. Electrochemical detection of ultratrace nitroaromatic explosives usingordered mesoporous carbon [J]. Analytica Chimica Acta,2011,683(2):187-191.
    [213] Yan X, Bo X, Guo L. Electrochemical behaviors and determination of isoniazid at orderedmesoporous carbon modified electrode [J]. Sensors and Actuators, B: Chemical,2011,155(2):837-842.
    [214] Hu G, Guo Y, Shao S. Ultrasensitive electrochemical sensing of the anticancer drug tirapazamineusing an ordered mesoporous carbon modified pyrolytic graphite electrode [J]. Biosensors andBioelectronics,2009,24(11):3391-3394.
    [215] Hu G, Ma Y, Guo Y, et al. Selective electrochemical sensing of calcium dobesilate based on anordered mesoporous carbon-modified pyrolytic graphite electrode [J]. Journal of ElectroanalyticalChemistry,2009,633(1):264-267.
    [216] Yang D, Zhu L, Jiang X, et al. Sensitive determination of sudan I at an ordered mesoporous carbonmodified glassy carbon electrode [J]. Sensors and Actuators, B: Chemical,2009,141(1):124-129.
    [217] You C, Xuewu Y, Wang Y, et al. Electrocatalytic oxidation of NADH based on bicontinuous gyroidalmesoporous carbon with low overpotential [J]. Electrochemistry Communications,2009,11(1):227-230.
    [218] Zhou M, Ding J, Guo L P, et al. Electrochemical behavior of l-cysteine and its detection at orderedmesoporous carbon-modified glassy carbon electrode [J]. Analytical Chemistry,2007,79(14):5328-5335.
    [219] Zhu L, Tian C, Yang R, et al. Anodic stripping voltammetric determination of lead in tap water at anordered mesoporous carbon/nafion composite film electrode [J]. Electroanalysis,2008,20(5):527-533.
    [220] Ma Y, Hu G, Shao S, et al. An amperometric sensor for uric acid based on ordered mesoporouscarbon-modified pyrolytic graphite electrode [J]. Chemical Papers,2009,63(6):641-645.
    [221] Song S, Gao Q, Xia K, et al. Selective determination of dopamine in the presence of ascorbic acid atporous-carbon-modified glassy carbon electrodes [J]. Electroanalysis,2008,20(11):1159-1166.
    [222] Bai J, Ndamanisha J, Liu L, et al. Voltammetric detection of riboflavin based on ordered mesoporouscarbon modified electrode [J]. Journal of Solid State Electrochemistry,2010,14(12):2251-2256.
    [223] Ndamanisha J C, Guo L. Nonenzymatic glucose detection at ordered mesoporous carbon modifiedelectrode [J]. Bioelectrochemistry,2009,77(1):60-63.
    [224] Pan D, Ma S, Bo X, et al. Electrochemical behavior of methyl parathion and its sensitivedetermination at a glassy carbon electrode modified with ordered mesoporous carbon [J]. MicrochimicaActa,2011,173(1-2):215-221.
    [225] Ndamanisha J C, Guo L. Electrochemical determination of uric acid at ordered mesoporous carbonfunctionalized with ferrocenecarboxylic acid-modified electrode [J]. Biosensors and Bioelectronics,2008,23(11):1680-1685.
    [226] Liu L, Guo L P, Bo X J, et al. Electrochemical sensors based on binuclear cobaltphthalocyanine/surfactant/ordered mesoporous carbon composite electrode [J]. Analytica Chimica Acta,2010,673(1):88-94.
    [227] Jiang X, Zhu L, Yang D, et al. Amperometric ethanol biosensor based on integration of alcoholdehydrogenase with meldola's blue/ordered mesoporous carbon electrode [J]. Electroanalysis,2009,21(14):1617-1623.
    [228] Ju J, Bai J, Bo X, et al. Non-enzymatic acetylcholine sensor based on Ni-Al layered doublehydroxides/ordered mesoporous carbon [J]. Electrochimica Acta,2012,78(0):569-575.
    [229] Bo X, Bai J, Wang L, et al. In situ growth of copper sulfide nanoparticles on ordered mesoporouscarbon and their application as nonenzymatic amperometric sensor of hydrogen peroxide [J]. Talanta,2010,81(1-2):339-345.
    [230] Jiang X, Wu Y, Mao X, et al. Amperometric glucose biosensor based on integration of glucoseoxidase with platinum nanoparticles/ordered mesoporous carbon nanocomposite [J]. Sensors and Actuators,B: Chemical,2011,153(1):158-163.
    [231] You C, Li X, Zhang S, et al. Electrochemistry and biosensing of glucose oxidase immobilized onPt-dispersed mesoporous carbon [J]. Microchimica Acta,2009,167(1):109-116.
    [232] Yu J, Tu J, Zhao F, et al. Direct electrochemistry and biocatalysis of glucose oxidase immobilized onmagnetic mesoporous carbon [J]. Journal of Solid State Electrochemistry,2010,14(9):1595-1600.
    [233] Zhou M, Shang L, Li B, et al. Highly ordered mesoporous carbons as electrode material for theconstruction of electrochemical dehydrogenase-and oxidase-based biosensors [J]. Biosensors andBioelectronics,2008,24(3):442-447.
    [234] Wang L, Bai J, Bo X, et al. A novel glucose sensor based on ordered mesoporous carbon–aunanoparticles nanocomposites [J]. Talanta,2011,83(5):1386-1391.
    [235] You C, Yan X, Kong J, et al. Bicontinuous gyroidal mesoporous carbon matrix for facilitating proteinelectrochemical and bioelectrocatalytic performances [J]. Talanta,2011,83(5):1507-1514.
    [236] Sun W, Guo C X, Zhu Z, et al. Ionic liquid/mesoporous carbon/protein composite microelectrode andits biosensing application [J]. Electrochemistry Communications,2009,11(11):2105-2108.
    [237] Wang K, Yang H, Zhu L, et al. Direct electron transfer and electrocatalysis of glucose oxidaseimmobilized on glassy carbon electrode modified with nafion and mesoporous carbon fdu-15[J].Electrochimica Acta,2009,54(20):4626-4630.
    [238] Lu X, Xiao Y, Lei Z, et al. A promising electrochemical biosensing platform based on graphitizedordered mesoporous carbon [J]. Journal of Materials Chemistry,2009,19(27):4707-4714.
    [239] Cao H, Sun X, Zhang Y, et al. Electrochemical sensing based on hemin-ordered mesoporous carbonnanocomposites for hydrogen peroxide [J]. Analytical Methods,2012,4(8):2412-2416.
    [240] Xu X, Guo M, Lu P, et al. Development of amperometric laccase biosensor through immobilizingenzyme in copper-containing ordered mesoporous carbon (Cu-OMC)/chitosan matrix [J]. Materials Scienceand Engineering C,2010,30(5):722-729.
    [241] Wu L, Lu X, Zhang H, et al. Amino acid ionic liquid modified mesoporous carbon: A tailor-madenanostructure biosensing platform [J]. ChemSusChem,2012,5(10):1918-1925.
    [242] Zhou M, Guo L p, Lin F y, et al. Electrochemistry and electrocatalysis of polyoxometalate-orderedmesoporous carbon modified electrode [J]. Analytica Chimica Acta,2007,587(1):124-131.
    [243] Bai J, Qi B, Ndamanisha J C, et al. Ordered mesoporous carbon-supported Prussian Blue:Characterization and electrocatalytic properties [J]. Microporous and Mesoporous Materials,2009,119(1-3):193-199.
    [244] Yang H, Lu B, Guo L, et al. Cerium hexacyanoferrate/ordered mesoporous carbon electrode and itsapplication in electrochemical determination of hydrous hydrazine [J]. Journal of ElectroanalyticalChemistry,2011,650(2):171-175.
    [245] Zhu L, Yang R, Jiang X, et al. Amperometric determination of NADH at a nile blue/orderedmesoporous carbon composite electrode [J]. Electrochemistry Communications,2009,11(3):530-533.
    [246] Bai J, Bo X, Qi B, et al. A novel polycatechol/ordered mesoporous carbon composite film modifiedelectrode and its electrocatalytic application [J]. Electroanalysis,2010,22(15):1750-1756.
    [247] Wang H, Bo X, Bai J, et al. Electrochemical applications of platinum–palladium alloynanoparticles/large mesoporous carbon [J]. Journal of Electroanalytical Chemistry,2011,662(2):281-287.
    [248] Bo X, Bai J, Ju J, et al. A sensitive amperometric sensor for hydrazine and hydrogen peroxide basedon palladium nanoparticles/onion-like mesoporous carbon vesicle [J]. Analytica Chimica Acta,2010,675(1):29-35.
    [249] Bian X, Guo K, Liao L, et al. Nanocomposites of palladium nanoparticle-loaded mesoporous carbonnanospheres for the electrochemical determination of hydrogen peroxide [J]. Talanta,2012,99(0):256-261.
    [250] Zhang Y, Bo X, Luhana C, et al. Preparation and electrocatalytic application of high dispersed Ptnanoparticles/ordered mesoporous carbon composites [J]. Electrochimica Acta,2011,56(17):5849-5854.
    [251] Su C, Zhang C, Lu G, et al. Nonenzymatic electrochemical glucose sensor based on Ptnanoparticles/mesoporous carbon matrix [J]. Electroanalysis,2010,22(16):1901-1905.
    [252] Bo X, Bai J, Yang L, et al. The nanocomposite of PtPd nanoparticles/onion-like mesoporous carbonvesicle for nonenzymatic amperometric sensing of glucose [J]. Sensors and Actuators, B: Chemical,2011,157(2):662-668.
    [253] Wang L, Bo X, Bai J, et al. Gold nanoparticles electrodeposited on ordered mesoporous carbon as anenhanced material for nonenzymatic hydrogen peroxide sensor [J]. Electroanalysis,2010,22(21):2536-2542.
    [254] Hou Y, Ndamanisha J C, Guo L p, et al. Synthesis of ordered mesoporous carbon/cobalt oxidenanocomposite for determination of glutathione [J]. Electrochimica Acta,2009,54(26):6166-6171.
    [255] Ndamanisha J C, Hou Y, Bai J, et al. Effects of ferrocene derivative on the physico-chemical andelectrocatalytic properties of ordered mesoporous carbon [J]. Electrochimica Acta,2009,54(15):3935-3942.
    [256] Guo Y, He J, Wang T, et al. Enhanced electrocatalytic activity of platinum supported on nitrogenmodified ordered mesoporous carbon [J]. Journal of Power Sources,2011,196(22):9299-9307.
    [257] Liu S-H, Wu M-T, Lai Y-H, et al. Fabrication and electrocatalytic performance of highly stable andactive platinum nanoparticles supported on nitrogen-doped ordered mesoporous carbons for oxygenreduction reaction [J]. Journal of Materials Chemistry,2011,21(33):12489-12496.
    [258] Lei Z, An L, Dang L, et al. Highly dispersed platinum supported on nitrogen-containing orderedmesoporous carbon for methanol electrochemical oxidation [J]. Microporous and Mesoporous Materials,2009,119(1-3):30-38.
    [259] Wang Y, He C, Brouzgou A, et al. A facile soft-template synthesis of ordered mesoporouscarbon/tungsten carbide composites with high surface area for methanol electrooxidation [J]. Journal ofPower Sources,2012,200(0):8-13.
    [260] Lang J-w, Yan X-b, Liu W-w, et al. Influence of nitric acid modification of ordered mesoporouscarbon materials on their capacitive performances in different aqueous electrolytes [J]. Journal of PowerSources,2012,204(0):220-229.
    [261] Lv Y, Zhang F, Dou Y, et al. A comprehensive study on KOH activation of ordered mesoporouscarbons and their supercapacitor application [J]. Journal of Materials Chemistry,2012,22(1):93-99.
    [262] Wang X, Lee J S, Tsouris C, et al. Preparation of activated mesoporous carbons for electrosorption ofions from aqueous solutions [J]. Journal of Materials Chemistry,2010,20(22):4602-4608.
    [263] Wang D W, Li F, Liu M, et al.3D aperiodic hierarchical porous graphitic carbon material for high‐rate electrochemical capacitive energy storage [J]. Angewandte Chemie,2007,120(2):379-382.
    [264] Yu L, Zhao C, Long X, et al. Ultrasonic synthesis and electrochemical characterization ofv2o5/mesoporous carbon composites [J]. Microporous and Mesoporous Materials,2009,126(1–2):58-64.
    [265] Liu H J, Wang J, Wang C X, et al. Ordered hierarchical mesoporous/microporous carbon derivedfrom mesoporous titanium-carbide/carbon composites and its electrochemical performance insupercapacitor [J]. Advanced Energy Materials,2011,1(6):1101-1108.
    [266] Shen L, Uchaker E, Yuan C, et al. Three-dimensional coherent titania-mesoporous carbonnanocomposite and its lithium-ion storage properties [J]. ACS Applied Materials and Interfaces,2012,4(6):2985-2992.
    [267] Chang P Y, Huang C H, Doong R A. Ordered mesoporous carbon-TiO2materials for improvedelectrochemical performance of lithium ion battery [J]. Carbon,2012,50(11):4259-4268.
    [268] Zhou Y, Kim Y, Jo C, et al. A novel mesoporous carbon-silica-titania nanocomposite as a highperformance anode material in lithium ion batteries [J]. Chemical Communications,2011,47(17):4944-4946.
    [269] Yang M, Gao Q. Copper oxide and ordered mesoporous carbon composite with high performanceusing as anode material for lithium-ion battery [J]. Microporous and Mesoporous Materials,2011,143(1):230-235.
    [270] Cheng M Y, Hwang B J. Mesoporous carbon-encapsulated nio nanocomposite negative electrodematerials for high-rate li-ion battery [J]. Journal of Power Sources,2010,195(15):4977-4983.
    [271] Ji X, Subramanya Herle P, Rho Y, et al. Carbon/MoO2composite based on porous semi-graphitizednanorod assemblies from in situ reaction of tri-block polymers [J]. Chemistry of Materials,2007,19(3):374-383.
    [272] Chae C, Kim J H, Kim J M, et al. Highly reversible conversion-capacity of mno x-loaded orderedmesoporous carbon nanorods for lithium-ion battery anodes [J]. Journal of Materials Chemistry,2012,22(34):17870-17877.
    [273] Li Z, Liu N, Wang X, et al. Three-dimensional nanohybrids of Mn3O4/ordered mesoporous carbonsfor high performance anode materials for lithium-ion batteries [J]. Journal of Materials Chemistry,2012,22(32):16640-16648.
    [274] Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode forlithium–sulphur batteries [J]. Nature Materials,2009,8(6):500-506.
    [275] Li X, Cao Y, Qi W, et al. Optimization of mesoporous carbon structures for lithium-sulfur batteryapplications [J]. Journal of Materials Chemistry,2011,21(41):16603-16610.
    [276] Chen S R, Zhai Y P, Xu G L, et al. Ordered mesoporous carbon/sulfur nanocomposite of highperformances as cathode for lithium-sulfur battery [J]. Electrochimica Acta,2011,56(26):9549-9555.
    [277] Liang X, Wen Z, Liu Y, et al. Highly dispersed sulfur in ordered mesoporous carbon sphere as acomposite cathode for rechargeable polymer Li/S battery [J]. Journal of Power Sources,2011,196(7):3655-3658.
    [278] Wang Y, Li B, Zhang C, et al. Simple synthesis of metallic Sn nanocrystals embedded in graphiticordered mesoporous carbon walls as superior anode materials for lithium ion batteries [J]. Journal of PowerSources,2012,21989-93.
    [279] Chen J, Yang L, Fang S, et al. Ordered mesoporous Sn–C composite as an anode material for lithiumion batteries [J]. Electrochemistry Communications,2011,13(8):848-851.
    [280] Park J, Kim G P, Nam I, et al. One-pot synthesis of silicon nanoparticles trapped in orderedmesoporous carbon for use as an anode material in lithium-ion batteries [J]. Nanotechnology,2013,24(2):025602.
    [281] Kim H, Cho J. Superior lithium electroactive mesoporous Si@carbon core-shell nanowires forlithium battery anode material [J]. Nano Letters,2008,8(11):3688-3691.
    [282] Ding S, Wang Z, Madhavi S, et al. SBA-15derived carbon-supported SnO2nanowire arrays withimproved lithium storage capabilities [J]. Journal of Materials Chemistry,2011,21(36):13860-13864.
    [1] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediatedstructural transformation [J]. Journal of Physical Chemistry B,1999,103(37):7743-7746.
    [2] Zhou M, Ding J, Guo L P, et al. Electrochemical behavior of l-cysteine and its detection at orderedmesoporous carbon-modified glassy carbon electrode [J]. Analytical Chemistry,2007,79(14):5328-5335.
    [3] Ndamanisha J C, Bai J, Qi B, et al. Application of electrochemical properties of ordered mesoporouscarbon to the determination of glutathione and cysteine [J]. Analytical Biochemistry,2009,386(1):79-84.
    [4] Hu G, Guo Y, Shao S. Ultrasensitive electrochemical sensing of the anticancer drug tirapazamine usingan ordered mesoporous carbon modified pyrolytic graphite electrode [J]. Biosensors and Bioelectronics,2009,24(11):3391-3394.
    [5] Zhu L, Tian C, Yang D, et al. Bioanalytical application of the ordered mesoporous carbon modifiedelectrodes [J]. Electroanalysis,2008,20(23):2518-2525.
    [6] Zhou M, Shang L, Li B, et al. The characteristics of highly ordered mesoporous carbons as electrodematerial for electrochemical sensing as compared with carbon nanotubes [J]. ElectrochemistryCommunications,2008,10(6):859-863.
    [7] Zhou M, Guo L P, Hou Y, et al. Immobilization of nafion-ordered mesoporous carbon on a glassycarbon electrode: Application to the detection of epinephrine [J]. Electrochimica Acta,2008,53(12):4176-4184.
    [8] Hou Y, Guo L p, Wang G. Synthesis and electrochemical performance of ordered mesoporous carbonswith different pore characteristics for electrocatalytic oxidation of hydroquinone [J]. Journal ofElectroanalytical Chemistry,2008,617(2):211-217.
    [9] Zheng D, Ye J, Zhou L, et al. Simultaneous determination of dopamine, ascorbic acid and uric acid onordered mesoporous carbon/nafion composite film [J]. Journal of Electroanalytical Chemistry,2009,625(1):82-87.
    [10] Jia N, Wang Z, Yang G, et al. Electrochemical properties of ordered mesoporous carbon and itselectroanalytical application for selective determination of dopamine [J]. ElectrochemistryCommunications,2007,9(2):233-238.
    [11] Hu G, Ma Y, Guo Y, et al. Selective electrochemical sensing of calcium dobesilate based on an orderedmesoporous carbon-modified pyrolytic graphite electrode [J]. Journal of Electroanalytical Chemistry,2009,633(1):264-267.
    [12] Stein A, Wang Z, Fierke M A. Functionalization of porous carbon materials with designed porearchitecture [J]. Advanced Materials,2009,21(3):265-293.
    [13] Liang C, Li Z, Dai S. Mesoporous carbon materials: Synthesis and modification [J]. AngewandteChemie International Edition,2008,47(20):3696-3717.
    [14] S. Zhu, H. Zhou, M. Hibino, et al. Synthesis of MnO2nanoparticles confined in ordered mesoporouscarbon using a sonochemical method [J]. Advanced Functional Materials,2005,15(3):381-386.
    [15] Wang Y-g, Cheng L, Li F, et al. High electrocatalytic performance of Mn3O4/mesoporous carboncomposite for oxygen reduction in alkaline solutions [J]. Chemistry of Materials,2007,19(8):2095-2101.
    [16] Hou Y, Ndamanisha J C, Guo L p, et al. Synthesis of ordered mesoporous carbon/cobalt oxidenanocomposite for determination of glutathione [J]. Electrochimica Acta,2009,54(26):6166-6171.
    [17] Sun Y, Zhuang L, Lu J, et al. Collapse in crystalline structure and decline in catalytic activity of Ptnanoparticles on reducing particle size to1nm [J]. Journal of the American Chemical Society,2007,129(50):15465-15467.
    [18] W. C. Choi, S. I. Woo, M. K. Jeon, et al. Platinum nanoclusters studded in the microporous nanowallsof ordered mesoporous carbon [J]. Advanced Materials,2005,17(4):446-451.
    [19] Lee H, Yoon S W, Kim E J, et al. In-situ growth of copper sulfide nanocrystals on multiwalled carbonnanotubes and their application as novel solar cell and amperometric glucose sensor materials [J]. NanoLetters,2007,7(3):778-784.
    [20] Chen J, Deng S Z, Xu N S, et al. Field emission from crystalline copper sulphide nanowire arrays [J].Applied Physics Letters,2002,80(19):3620-3622.
    [21] Myung Y, Jang D M, Cho Y J, et al. Nonenzymatic amperometric glucose sensing of platinum, coppersulfide, and tin oxide nanoparticle-carbon nanotube hybrid nanostructures [J]. Journal of PhysicalChemistry C,2009,113(4):1251-1259.
    [22] Chen L, Xia Y, Liang X, et al. Nonvolatile memory devices with Cu2S and Cu-Pc bilayered films [J].Applied Physics Letters,2007,91(7):073511-073513.
    [23] Gao F, Lu Q, Zhao D. In situ adsorption method for synthesis of binary semiconductor cdsnanocrystals inside mesoporous SBA-15[J]. Chemical Physics Letters,2002,360(5-6):585-591.
    [24] W.-H. Zhang, X.-B. Lu, J.-H. Xiu, et al. Synthesis and characterization of bifunctionalized orderedmesoporous materials [J]. Advanced Functional Materials,2004,14(6):544-552.
    [25] Xu W, Liao Y, Akins D L. Formation of cds nanoparticles within modified MCM-41and SBA-15[J].Journal of Physical Chemistry B,2002,106(43):11127-11131.
    [26] Zhang Z, Dai S, Fan X, et al. Controlled synthesis of cds nanoparticles inside ordered mesoporoussilica using ion-exchange reaction [J]. Journal of Physical Chemistry B,2001,105(29):6755-6758.
    [27] Shan Y, Gao L. Synthesis, characterization and optical properties of cds nanoparticles confined inSBA-15[J]. Materials Chemistry and Physics,2005,89(2-3):412-416.
    [28] Zhang W H, Shi J L, Chen H R, et al. Synthesis and characterization of nanosized zns confined inordered mesoporous silica [J]. Chemistry of Materials,2001,13(2):648-654.
    [29] Dimos K, Koutselas I B, Karakassides M A. Synthesis and characterization of zns nanosizedsemiconductor particles within mesoporous solids [J]. Journal of Physical Chemistry B,2006,110(45):22339-22345.
    [30] Gao F, Lu Q, Liu X, et al. Controlled synthesis of semiconductor pbs nanocrystals and nanowiresinside mesoporous silica SBA-15phase [J]. Nano Letters,2001,1(12):743-748.
    [31] Hanaoka S, Lin J M, Yamada M. Chemiluminescent flow sensor for H2O2based on the decompositionof H2O2catalyzed by cobalt(ii)-ethanolamine complex immobilized on resin [J]. Analytica Chimica Acta,2001,426(1):57-64.
    [32] Yang X, Guo Y, Mei Z. Chemiluminescent determination of H2O2using4-(1,2,4-triazol-1-yl)phenol asan enhancer based on the immobilization of horseradish peroxidase onto magnetic beads [J]. AnalyticalBiochemistry,2009,393(1):56-61.
    [33] Jie N, Yang J, Huang X, et al. Fluorimetric determination of hydrogen peroxide in water usingacetaminophen [J]. Talanta,1995,42(11):1575-1579.
    [34] Matsubara C, Kawamoto N, Takamura K. Oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium(iv):An ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide [J]. The Analyst,1992,117(11):1781-1784.
    [35] Zhao H Y, Zheng W, Meng Z X, et al. Bioelectrochemistry of hemoglobin immobilized on a sodiumalginate-multiwall carbon nanotubes composite film [J]. Biosensors and Bioelectronics,2009,24(8):2352-2357.
    [36] Shie J W, Yogeswaran U, Chen S M. Haemoglobin immobilized on nafion modified multi-walledcarbon nanotubes for o2, h2o2and ccl3cooh sensors [J]. Talanta,2009,78(3):896-902.
    [37] Upadhyay A K, Ting T W, Chen S M. Amperometric biosensor for hydrogen peroxide based oncoimmobilized horseradish peroxidase and methylene green in ormosils matrix with multiwalled carbonnanotubes [J]. Talanta,2009,79(1):38-45.
    [38] Xi F, Liu L, Chen Z, et al. One-step construction of reagentless biosensor based on chitosan-carbonnanotubes-nile blue-horseradish peroxidase biocomposite formed by electrodeposition [J]. Talanta,2009,78(3):1077-1082.
    [39] Liu Y, Xu Q, Feng X, et al. Immobilization of hemoglobin on SBA-15applied to the electrocatalyticreduction of h2o2[J]. Analytical and Bioanalytical Chemistry,2007,387(4):1553-1559.
    [40] Dai Z, Liu S, Ju H, et al. Direct electron transfer and enzymatic activity of hemoglobin in a hexagonalmesoporous silica matrix [J]. Biosensors and Bioelectronics,2004,19(8):861-867.
    [41] Feng J J, Xu J J, Chen H Y. Direct electron transfer and electrocatalysis of hemoglobin adsorbed onmesoporous carbon through layer-by-layer assembly [J]. Biosensors and Bioelectronics,2007,22(8):1618-1624.
    [42] Jia N, Wen Y, Yang G, et al. Direct electrochemistry and enzymatic activity of hemoglobinimmobilized in ordered mesoporous titanium oxide matrix [J]. Electrochemistry Communications,2008,10(5):774-777.
    [43] You C, Yan X, Kong J, et al. Direct electrochemistry of myoglobin based on bicontinuous gyroidalmesoporous carbon matrix [J]. Electrochemistry Communications,2008,10(12):1864-1867.
    [44] Tan X, Zhang J, Tan S, et al. Amperometric hydrogen peroxide biosensor based on horseradishperoxidase immobilized on Fe3O4/chitosan modified glassy carbon electrode [J]. Electroanalysis,2009,21(13):1514-1520.
    [45] Liu M, Zhao G, Zhao K, et al. Direct electrochemistry of hemoglobin at vertically-aligned self-dopingTiO2nanotubes: A mediator-free and biomolecule-substantive electrochemical interface [J].Electrochemistry Communications,2009,11(7):1397-1400.
    [46] Gu B X, Xu C X, Zhu G P, et al. Layer by layer immobilized horseradish peroxidase on zinc oxidenanorods for biosensing [J]. Journal of Physical Chemistry B,2009,113(18):6553-6557.
    [47] Zhang L, Zhai Y, Gao N, et al. Sensing H2O2with layer-by-layer assembled Fe3O4-PDDAnanocomposite film [J]. Electrochemistry Communications,2008,10(10):1524-1526.
    [48] Zhao B, Liu Z, Liu Z, et al. Silver microspheres for application as hydrogen peroxide sensor [J].Electrochemistry Communications,2009,11(8):1707-1710.
    [49] Guascito M R, Filippo E, Malitesta C, et al. A new amperometric nanostructured sensor for theanalytical determination of hydrogen peroxide [J]. Biosensors and Bioelectronics,2008,24(4):1057-1063.
    [50] Zhang L, Li H, Ni Y, et al. Porous cuprous oxide microcubes for non-enzymatic amperometrichydrogen peroxide and glucose sensing [J]. Electrochemistry Communications,2009,11(4):812-815.
    [51] Ndamanisha J C, Hou Y, Bai J, et al. Effects of ferrocene derivative on the physico-chemical andelectrocatalytic properties of ordered mesoporous carbon [J]. Electrochimica Acta,2009,54(15):3935-3942.
    [52] Bai J, Qi B, Ndamanisha J C, et al. Ordered mesoporous carbon-supported prussian blue:Characterization and electrocatalytic properties [J]. Microporous and Mesoporous Materials,2009,119(1-3):193-199.
    [53] Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic50to300angstrom pores [J]. Science,1998,279(5350):548-552.
    [54] Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally orderedmesostructure [J]. Journal of the American Chemical Society,2000,122(43):10712-10713.
    [55] Marler B, Oberhagemann U, Vortmann S, et al. Influence of the sorbate type on the XRD peakintensities of loaded mcm-41[J]. Microporous Materials,1996,6(5-6):375-383.
    [56] Teng Y J, Zuo S H, Lan M B. Direct electron transfer of horseradish peroxidase on porous structure ofscreen-printed electrode [J]. Biosens Bioelectron,2009,24(5):1353-1357.
    [57] Xiang C, Zou Y, Sun L X, et al. Direct electrochemistry and enhanced electrocatalysis of horseradishperoxidase based on flowerlike Zno-gold nanoparticle-nafion nanocomposite [J]. Sensors and Actuators, B:Chemical,2009,136(1):158-162.
    [1] Chen L Y, Fujita T, Ding Y, et al. A three-dimensional gold-decorated nanoporous copper core–shellcomposite for electrocatalysis and nonenzymatic biosensing [J]. Advanced Functional Materials,2010,20(14):2279-2285.
    [2] Bai H, Han M, Du Y, et al. Facile synthesis of porous tubular palladium nanostructures and theirapplication in a nonenzymatic glucose sensor [J]. Chemical Communications,2010,46(10):1739-1741.
    [3] Bai Y, Yang W, Sun Y, et al. Enzyme-free glucose sensor based on a three-dimensional gold filmelectrode [J]. Sensors and Actuators B: Chemical,2008,134(2):471-476.
    [4] Zhu H, Lu X, Li M, et al. Nonenzymatic glucose voltammetric sensor based on goldnanoparticles/carbon nanotubes/ionic liquid nanocomposite [J]. Talanta,2009,79(5):1446-1453.
    [5] Zhou Y-G, Yang S, Qian Q-Y, et al. Gold nanoparticles integrated in a nanotube array forelectrochemical detection of glucose [J]. Electrochemistry Communications,2009,11(1):216-219.
    [6] Zhang Y, Xu F, Sun Y, et al. Seed-mediated synthesis of Au nanocages and their electrocatalytic activitytowards glucose oxidation [J]. Chemistry-A European Journal,2010,16(30):9248-9256.
    [7] Xu F, Cui K, Sun Y, et al. Facile synthesis of urchin-like gold submicrostructures for nonenzymaticglucose sensing [J]. Talanta,2010,82(5):1845-1852.
    [8] Jiang L-C, Zhang W-D. A highly sensitive nonenzymatic glucose sensor based on CuOnanoparticles-modified carbon nanotube electrode [J]. Biosensors and Bioelectronics,2010,25(6):1402-1407.
    [9] Li C, Su Y, Zhang S, et al. An improved sensitivity nonenzymatic glucose biosensor based on a CuxOmodified electrode [J]. Biosensors and Bioelectronics,2010,26(2):903-907.
    [10] Yang J, Zhang W-D, Gunasekaran S. An amperometric non-enzymatic glucose sensor byelectrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays [J].Biosensors and Bioelectronics,2010,26(1):279-284.
    [11] Chen J, Zhang W D, Ye J S. Nonenzymatic electrochemical glucose sensor based on mno2/mwntsnanocomposite [J]. Electrochemistry Communications,2008,10(9):1268-1271.
    [12] Liu Y, Teng H, Hou H, et al. Nonenzymatic glucose sensor based on renewable electrospun Ninanoparticle-loaded carbon nanofiber paste electrode [J]. Biosensors and Bioelectronics,2009,24(11):3329-3334.
    [13] Cherevko S, Chung C-H. The porous cuo electrode fabricated by hydrogen bubble evolution and itsapplication to highly sensitive non-enzymatic glucose detection [J]. Talanta,2010,80(3):1371-1377.
    [14] Shamsipur M, Najafi M, Hosseini M-R M. Highly improved electrooxidation of glucose at a nickel(ii)oxide/multi-walled carbon nanotube modified glassy carbon electrode [J]. Bioelectrochemistry,2010,77(2):120-124.
    [15] Yuan J, Wang K, Xia X. Highly ordered platinum-nanotubule arrays for amperometric glucose sensing[J]. Advanced Functional Materials,2005,15(5):803-809.
    [16] Park S, Chung T D, Kim H C. Nonenzymatic glucose detection using mesoporous platinum [J].Analytical Chemistry,2003,75(13):3046-3049.
    [17] Wang J, Thomas D F, Chen A. Nonenzymatic electrochemical glucose sensor based on nanoporousptpb networks [J]. Analytical Chemistry,2008,80(4):997-1004.
    [18] Ryu J, Kim K, Kim H-S, et al. Intense pulsed light induced platinum-gold alloy formation on carbonnanotubes for non-enzymatic glucose detection [J]. Biosensors and Bioelectronics,2010,26(2):602-607.
    [19] Xiao F, Zhao F, Mei D, et al. Nonenzymatic glucose sensor based on ultrasonic-electrodeposition ofbimetallic PtM (m=Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film [J].Biosensors and Bioelectronics,2009,24(12):3481-3486.
    [20] Holt-Hindle P, Nigro S, Asmussen M, et al. Amperometric glucose sensor based on platinum-iridiumnanomaterials [J]. Electrochemistry Communications,2008,10(10):1438-1441.
    [21] Zhao F, Xiao F, Zeng B. Electrodeposition of PtCo alloy nanoparticles on inclusion complex film offunctionalized cyclodextrin-ionic liquid and their application in glucose sensing [J]. ElectrochemistryCommunications,2010,12(1):168-171.
    [22] Bo X, Ndamanisha J C, Bai J, et al. Nonenzymatic amperometric sensor of hydrogen peroxide andglucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite [J]. Talanta,2010,82(1):85-91.
    [23] Song Y-Y, Zhang D, Gao W, et al. Nonenzymatic glucose detection by using a three-dimensionallyordered, macroporous platinum template [J]. Chemistry–A European Journal,2005,11(7):2177-2182.
    [24] Bai Y, Sun Y, Sun C. Pt-Pb nanowire array electrode for enzyme-free glucose detection [J]. Biosensorsand Bioelectronics,2008,24(4):579-585.
    [25] Ryoo R, Joo S H, Kruk M, et al. Ordered mesoporous carbons [J]. Advanced Materials,2001,13(9):677-681.
    [26] Ji X, Lee K T, Holden R, et al. Nanocrystalline intermetallics on mesoporous carbon for direct formicacid fuel cell anodes [J]. Nature Chemistry,2010,2(4):286-293.
    [27] Cui H-F, Ye J-S, Zhang W-D, et al. Selective and sensitive electrochemical detection of glucose inneutral solution using Platinum-Lead alloy nanoparticle/carbon nanotube nanocomposites [J]. AnalyticaChimica Acta,2007,594(2):175-183.
    [28] Li L H, Zhang W D. Preparation of carbon nanotubes supported platinum nanoparticles by an organiccolloidal process for nonenzymatic glucose sensing [J]. Microchimica Acta,2008,163(3-4):305-311.
    [29] Rathod D, Dickinson C, Egan D, et al. Platinum nanoparticle decoration of carbon materials withapplications in non-enzymatic glucose sensing [J]. Sensors and Actuators B: Chemical,2010,143(2):547-554.
    [30] Rong L Q, Yang C, Qian Q Y, et al. Study of the nonenzymatic glucose sensor based on highlydispersed Pt nanoparticles supported on carbon nanotubes [J]. Talanta,2007,72(2):819-824.
    [31] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediatedstructural transformation [J]. Journal of Physical Chemistry B,1999,103(37):7743-7746.
    [32] Zhou M, Ding J, Guo L P, et al. Electrochemical behavior of l-cysteine and its detection at orderedmesoporous carbon-modified glassy carbon electrode [J]. Analytical Chemistry,2007,79(14):5328-5335.
    [33] Hu G, Guo Y, Shao S. Ultrasensitive electrochemical sensing of the anticancer drug tirapazamine usingan ordered mesoporous carbon modified pyrolytic graphite electrode [J]. Biosensors and Bioelectronics,2009,24(11):3391-3394.
    [34] Bo X, Xie W, Ndamanisha J C, et al. Electrochemical oxidation and detection of morphine at orderedmesoporous carbon modified glassy carbon electrodes [J]. Electroanalysis,2009,21(23):2549-2555.
    [35] Zhu L, Tian C, Yang D, et al. Bioanalytical application of the ordered mesoporous carbon modifiedelectrodes [J]. Electroanalysis,2008,20(23):2518-2525.
    [36] Jia N, Wang Z, Yang G, et al. Electrochemical properties of ordered mesoporous carbon and itselectroanalytical application for selective determination of dopamine [J]. ElectrochemistryCommunications,2007,9(2):233-238.
    [37] Zhou M, Guo L P, Hou Y, et al. Immobilization of nafion-ordered mesoporous carbon on a glassycarbon electrode: Application to the detection of epinephrine [J]. Electrochimica Acta,2008,53(12):4176-4184.
    [38] Zheng D, Ye J, Zhou L, et al. Simultaneous determination of dopamine, ascorbic acid and uric acid onordered mesoporous carbon/nafion composite film [J]. Journal of Electroanalytical Chemistry,2009,625(1):82-87.
    [39] Stein A, Wang Z, Fierke M A. Functionalization of porous carbon materials with designed porearchitecture [J]. Advanced Materials,2009,21(3):265-293.
    [40] Liang C, Li Z, Dai S. Mesoporous carbon materials: Synthesis and modification [J]. AngewandteChemie International Edition,2008,47(20):3696-3717.
    [41] Saha D, Deng S. Hydrogen adsorption on ordered mesoporous carbons doped with Pd, Pt, Ni, and Ru[J]. Langmuir,2009,25(21):12550-12560.
    [42] W. C. Choi, S. I. Woo, M. K. Jeon, et al. Platinum nanoclusters studded in the microporous nanowallsof ordered mesoporous carbon [J]. Advanced Materials,2005,17(4):446-451.
    [43] Su C, Zhang C, Lu G, et al. Nonenzymatic electrochemical glucose sensor based on Ptnanoparticles/mesoporous carbon matrix [J]. Electroanalysis,2010,22(16):1901-1905.
    [44] Guascito M R, Chirizzi D, Picca R A, et al. Ag nanoparticles capped by a nontoxic polymer:Electrochemical and spectroscopic characterization of a novel nanomaterial for glucose detection [J].Materials Science and Engineering: C,2011,31(3):606-611.
    [45] Gu D, Bongard H, Deng Y, et al. An aqueous emulsion route to synthesize mesoporous carbon vesiclesand their nanocomposites [J]. Advanced Materials,2010,22(7):833-837.
    [46] Bo X, Bai J, Ju J, et al. A sensitive amperometric sensor for hydrazine and hydrogen peroxide based onpalladium nanoparticles/onion-like mesoporous carbon vesicle [J]. Analytica Chimica Acta,2010,675(1):29-35.
    [47] Vinu A, Hossian K Z, Srinivasu P, et al. Carboxy-mesoporous carbon and its excellent adsorptioncapability for proteins [J]. Journal of Materials Chemistry,2007,17(18):1819-1825.
    [48] Ernst S, Heitbaum J, Hamann C H. The electrooxidation of glucose in phosphate buffer solutions: Parti. Reactivity and kinetics below350mv/RHE [J]. Journal of Electroanalytical Chemistry,1979,100(1-2):173-183.
    [49] Singh B, Laffir F, McCormac T, et al. PtAu/c based bimetallic nanocomposites for non-enzymaticelectrochemical glucose detection [J]. Sensors and Actuators B: Chemical,2010,150(1):80-92.
    [1] Franceschini E A, Planes G A, Williams F J, et al. Mesoporous Pt and Pt/Ru alloy electrocatalysts formethanol oxidation [J]. Journal of Power Sources,2011,196(4):1723-1729.
    [2] Soszko M, Lukaszewski M, Mianowska Z, et al. Electrochemical characterization of the surface andmethanol electrooxidation on Pt-Rh-Pd ternary alloys [J]. Journal of Power Sources,2011,196(7):3513-3522.
    [3] Xu D, Liu Z, Yang H, et al. Solution-based evolution and enhanced methanol oxidation activity ofmonodisperse platinum-copper nanocubes [J]. Angewandte Chemie International Edition,2009,48(23):4217-4221.
    [4] Schaefer Z L, Gross M L, Hickner M A, et al. Uniform hollow carbon shells: Nanostructured graphiticsupports for improved oxygen-reduction catalysis [J]. Angewandte Chemie International Edition,2010,49(39):7045-7048.
    [5] Teng S J, Wang X X, Xia B Y, et al. Preparation of hollow carbon nanocages by iodine-assisted heattreatment [J]. Journal of Power Sources,2010,195(4):1065-1070.
    [6] Niu J J, Wang J N. Gas flow dependence on hollow carbon nano-cages as catalyst support in fuel cells[J]. Journal of Materials Chemistry,2008,18(48):5921-5926.
    [7] Kim J H, Yu J S. Erythrocyte-like hollow carbon capsules and their application in proton exchangemembrane fuel cells [J]. Physical Chemistry Chemical Physics,2010,12(46):15301-15308.
    [8] Fu J, Xu Q, Chen J, et al. Controlled fabrication of uniform hollow core porous shell carbon spheres bythe pyrolysis of core/shell polystyrene/cross-linked polyphosphazene composites [J]. ChemicalCommunications,2010,46(35):6563-6565.
    [9] Guo L, Zhang L, Zhang J, et al. Hollow mesoporous carbon spheres-An excellent bilirubin adsorbent [J].Chemical Communications,2009,(40):6071-6073.
    [10] White R J, Tauer K, Antonietti M, et al. Functional hollow carbon nanospheres by latex templating [J].Journal of the American Chemical Society,2010,132(49):17360-17363.
    [11] Wu B, Hu D, Kuang Y, et al. Functionalization of carbon nanotubes by an ionic-liquid polymer:Dispersion of Pt and ptru nanoparticles on carbon nanotubes and their electrocatalytic oxidation ofmethanol [J]. Angewandte Chemie-International Edition,2009,48(26):4751-4754.
    [12] Liu Y, Wang D, Huang J, et al. Highly sensitive composite electrode based on electrospun carbonnanofibers and ionic liquid [J]. Electrochemistry Communications,2010,12(8):1108-1111.
    [13] Guo D-J. Novel synthesis of ptru/multi-walled carbon nanotube catalyst via a microwave-assistedimidazolium ionic liquid method for methanol oxidation [J]. Journal of Power Sources,2010,195(21):7234-7237.
    [14] Appetecchi G B, Kim G T, Montanino M, et al. Ternary polymer electrolytes containingpyrrolidinium-based polymeric ionic liquids for lithium batteries [J]. Journal of Power Sources,2010,195(11):3668-3675.
    [15] Lee J S, Wang X, Luo H, et al. Facile ionothermal synthesis of microporous and mesoporous carbonsfrom task specific ionic liquids [J]. Journal of the American Chemical Society,2009,131(13):4596-4597.
    [16] Lee J S, Wang X, Luo H, et al. Fluidic carbon precursors for formation of functional carbon underambient pressure based on ionic liquids [J]. Advanced Materials,2010,22(9):1004-1007.
    [17] Wang X, Dai S. Ionic liquids as versatile precursors for functionalized porous carbon and carbon-oxidecomposite materials by confined carbonization [J]. Angewandte Chemie-International Edition,2010,49(37):6664-6668.
    [18] Yang W, Fellinger T-P, Antonietti M. Efficient metal-free oxygen reduction in alkaline medium onhigh-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases [J]. Journalof the American Chemical Society,2010,133(2):206-209.
    [19] Paraknowitsch B J P, Zhang J, Su D, et al. Ionic liquids as precursors for nitrogen-doped graphiticcarbon [J]. Advanced Materials,2010,22(1):87-92.
    [20] Yuan J, Giordano C, Antonietti M. Ionic liquid monomers and polymers as precursors of highlyconductive, mesoporous, graphitic carbon nanostructures [J]. Chemistry of Materials,2010,22(17):5003-5012.
    [21] Antonietti M, Kuang D, Smarsly B, et al. Ionic liquids for the convenient synthesis of functionalnanoparticles and other inorganic nanostructures [J]. Angewandte-Chemie International Edition,2004,43(38):4988-4992.
    [22] St ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science,1968,26(1):62-69.
    [23] Wen Z, Wang Q, Zhang Q, et al. Hollow carbon spheres with wide size distribution as anode catalystsupport for direct methanol fuel cells [J]. Electrochemistry Communications,2007,9(8):1867-1872.
    [24] Sun S, Zhang G, Geng D, et al. Direct growth of single-crystal Pt nanowires on Sn@CNT nanocable:3d electrodes for highly active electrocatalysts [J]. Chemistry-A European Journal,2010,16(3):829-835.
    [1] Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonallyordered mesostructure [J]. Journal of the American Chemical Society,2000,122(43):10712-10713.
    [2] Ryoo R, Joo S H, Jun S. Synthesis of Highly Ordered Carbon Molecular Sieves viaTemplate-Mediated Structural Transformation [J]. Journal of Physical Chemistry B,1999,103(37):7743-7746.
    [3] Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica: Synthesis and replicationto platinum nanowires, carbon nanorods and carbon nanotubes [J]. Chemical Communications,2003,9(17):2136-2137.
    [4] Choi W C, Woo S I, Jeon M K, et al. Platinum nanoclusters studded in the microporousnanowalls of ordered mesoporous carbon [J]. Advanced Materials,2005,17(4):446-451.
    [5] Liu S H, Yu W Y, Chen C H, et al. Fabrication and characterization of well-dispersed andhighly stable PtRu nanoparticles on carbon mesoporous material for applications in directmethanol fuel cell [J]. Chemistry of Materials,2008,20(4):1622-1628.
    [6] Wen Z, Liu J, Li J. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as amethanol-tolerant cathode catalyst in direct methanol fuel cells [J]. Advanced Materials,2008,20(4):743-747.
    [7] Orilall M C, Matsumoto F, Zhou Q, et al. One-pot synthesis of platinum-basednanoparticles incorporated into mesoporous niobium oxide-carbon composites for fuel cellelectrodes [J]. Journal of the American Chemical Society,2009,131(26):9389-9395.
    [8] Ji X, Lee K T, Holden R, et al. Nanocrystalline intermetallics on mesoporous carbon fordirect formic acid fuel cell anodes [J]. Nature Chemistry,2010,2(4):286-293.
    [9] Lee H I, Joo S H, Kim J H, et al. Ultrastable Pt nanoparticles supported onsulfur-containing ordered mesoporous carbon via strong metal-support interaction [J]. Journalof Materials Chemistry,2009,19(33):5934-5939.
    [10] Salgado J R C, Quintana J J, Calvillo L, et al. Carbon monoxide and methanol oxidationat platinum catalysts supported on ordered mesoporous carbon: The influence offunctionalization of the support [J]. Physical Chemistry Chemical Physics,2008,10(45):6796-6806.
    [11] Choi Y S, Joo S H, Lee S-A, et al. Surface Selective Polymerization of Polypyrrole onOrdered Mesoporous Carbon: Enhancing Interfacial Conductivity for Direct Methanol FuelCell Application [J]. Macromolecules,2006,39(9):3275-3282.
    [12] Shiddiky M J A, Torriero A A J. Application of ionic liquids in electrochemical sensingsystems [J]. Biosens. Bioelectron.,2011,26(5):1775-1787.
    [13] Kachoosangi R T, Musameh M M, Abu-Yousef I, et al. Carbon Nanotube Ionic LiquidComposite Sensors and Biosensors [J]. Analytical Chemistry,2008,81(1):435-442.
    [14] Xiao C, Chu X, Wu B, et al. Polymerized ionic liquid-wrapped carbon nanotubes: Thepromising composites for direct electrochemistry and biosensing of redox protein [J]. Talanta,2010,80(5):1719-1724.
    [15] Zhang Q, Wu S, Zhang L, et al. Fabrication of polymeric ionic liquid/graphenenanocomposite for glucose oxidase immobilization and direct electrochemistry [J]. Biosensorsand Bioelectronics,2011,26(5):2632-2637.
    [16] Shan C, Yang H, Song J, et al. Direct electrochemistry of glucose oxidase and biosensingfor glucose based on graphene [J]. Analytical Chemistry,2009,81(6):2378-2382.
    [17] Li F, Chai J, Yang H, et al. Synthesis of Pt/ionic liquid/graphene nanocomposite and itssimultaneous determination of ascorbic acid and dopamine [J]. Talanta,2010,81(3):1063-1068.
    [18] Guo S, Dong S, Wang E. Constructing carbon nanotube/Pt nanoparticle hybrids using animidazolium-salt-based ionic liquid as a linker [J]. Advanced Materials,2010,22(11):1269-1272.
    [19] Wang Z, Zhang Q, Kuehner D, et al. The synthesis of ionic-liquid-functionalizedmultiwalled carbon nanotubes decorated with highly dispersed Au nanoparticles and their usein oxygen reduction by electrocatalysis [J]. Carbon,2008,46(13):1687-1692.
    [20] Qiu L, Liu B, Peng Y, et al. Fabrication of ionic liquid-functionalized polypyrrolenanotubes decorated with platinum nanoparticles and their electrocatalytic oxidation ofmethanol [J]. Chemical Communications,2011,47(10):2934-2936.
    [21] Wu B, Hu D, Kuang Y, et al. Functionalization of carbon nanotubes by an ionic-liquidpolymer: Dispersion of Pt and PtRu nanoparticles on carbon nanotubes and theirelectrocatalytic oxidation of methanol [J]. Angewandte Chemie-International Edition,2009,48(26):4751-4754.
    [22] Zhu Z, Li X, Zeng Y, et al. Ordered mesoporous carbon modified carbon ionic liquidelectrode for the electrochemical detection of double-stranded DNA [J]. Biosensors andBioelectronics,2010,25(10):2313-2317.
    [23] Sun W, Guo C X, Zhu Z, et al. Ionic liquid/mesoporous carbon/protein compositemicroelectrode and its biosensing application [J]. Electrochemistry Communications,2009,11(11):2105-2108.
    [24] Dong J, Hu Y, Zhu S, et al. A highly selective and sensitive dopamine and uric acidbiosensor fabricated with functionalized ordered mesoporous carbon and hydrophobic ionicliquid [J]. Analytical and Bioanalytical Chemistry,2010,396(5):1755-1762.
    [25] You J M, Jeong Y N, Ahmed M S, et al. Reductive determination of hydrogen peroxidewith MWCNTs-Pd nanoparticles on a modified glassy carbon electrode [J]. Biosensors andBioelectronics,2011,26(5):2287-2291.
    [26] Fang Y, Guo S, Zhu C, et al. One-dimensional carbon nanotube/SnO2/noble metalnanoparticle hybrid nanostructure: Synthesis, characterization, and electrochemical sensing[J]. Chem. Asian J.,2010,5(8):1838-1845.
    [27] Li Y, Zhang J J, Xuan J, et al. Fabrication of a novel nonenzymatic hydrogen peroxidesensor based on Se/Pt nanocomposites [J]. Electrochemistry Communications,2010,12(6):777-780.
    [28] Kong L, Lu X, Bian X, et al. Accurately tuning the dispersity and size of palladiumparticles on carbon spheres and using carbon spheres/palladium composite as support forpolyaniline in H2O2electrochemical sensing [J]. Langmuir,2010,26(8):5985-5990.
    [29] Huang J, Wang D, Hou H, et al. Electrospun palladium nanoparticle-loaded carbonnanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH [J].Advanced Functional Materials,2008,18(3):441-448.
    [30] Bian X, Lu X, Jin E, et al. Fabrication of Pt/polypyrrole hybrid hollow microspheres andtheir application in electrochemical biosensing towards hydrogen peroxide [J]. Talanta,2010,81(3):813-818.
    [31] Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica withperiodic50to300angstrom pores [J]. Science,1998,279(5350):548-552.
    [32] Vinu A, Hossian K Z, Srinivasu P, et al. Carboxy-mesoporous carbon and its excellentadsorption capability for proteins [J]. Journal of Materials Chemistry,2007,17(18):1819-1825.
    [33] Nazemi Z, Shams E, Amini M K. Covalent modification of glassy carbon electrode byNile blue: Preparation, electrochemistry and electrocatalysis [J]. Electrochimica Acta,2010,55(24):7246-7253.
    [34] Li L, Du Z, Liu S, et al. A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite [J]. Talanta,2010,82(5):1637-1641.
    [35] Jin E, Lu X, Cui L, et al. Fabrication of graphene/prussian blue composite nanosheetsand their electrocatalytic reduction of H2O2[J]. Electrochimica Acta,2010,55(24):7230-7234.
    [36] Cui L, Yin H, Dong J, et al. A mimic peroxidase biosensor based on calcined layereddouble hydroxide for detection of H2O2[J]. Biosensors and Bioelectronics,2011,26(7):3278-3283.
    [1] Wu B, Hu D, Kuang Y, et al. Functionalization of carbon nanotubes by an ionic-liquid polymer:Dispersion of pt and ptru nanoparticles on carbon nanotubes and their electrocatalytic oxidation ofmethanol [J]. Angewandte Chemie International Edition,2009,48(26):4751-4754.
    [2] Chu H, Shen Y, Lin L, et al. Ionic-liquid-assisted preparation of carbon nanotube-supported uniformnoble metal nanoparticles and their enhanced catalytic performance [J]. Advanced Functional Materials,2010,20(21):3747-3752.
    [3] Fang B, Kim M-S, Kim J H, et al. High Pt loading on functionalized multiwall carbon nanotubes as ahighly efficient cathode electrocatalyst for proton exchange membrane fuel cells [J]. Journal of MaterialsChemistry,2011,21(22):8066-8073.
    [4] Zhao Y, Yang X, Zhan L, et al. High electrocatalytic activity of PtRu nanoparticles supported onstarch-functionalized multi-walled carbon nanotubes for ethanol oxidation [J]. Journal of MaterialsChemistry,2011,21(12):4257-4263.
    [5] Bai J, Ndamanisha J, Liu L, et al. Voltammetric detection of riboflavin based on ordered mesoporouscarbon modified electrode [J]. Journal of Solid State Electrochemistry,2010,14(12):2251-2256.
    [6] Guo S, Dong S, Wang E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphenenanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation [J]. ACSNano,2009,4(1):547-555.
    [7] Guo S, Wen D, Zhai Y, et al. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: One-pot,rapid synthesis, and used as new electrode material for electrochemical sensing [J]. ACS Nano,2010,4(7):3959-3968.
    [8] Yang J, Tian C, Wang L, et al. An effective strategy for small-sized and highly-dispersed palladiumnanoparticles supported on graphene with excellent performance for formic acid oxidation [J]. Journal ofMaterials Chemistry,2011,21(10):3384-3390.
    [9] Qiu J-D, Wang G-C, Liang R-P, et al. Controllable deposition of platinum nanoparticles on graphene asan electrocatalyst for direct methanol fuel cells [J]. Journal of Physical Chemistry C,2011,115(31):15639-15645.
    [10] Kundu P, Nethravathi C, Deshpande P A, et al. Ultrafast microwave-assisted route to surfactant-freeultrafine Pt nanoparticles on graphene: Synergistic co-reduction mechanism and high catalytic activity [J].Chemistry of Materials,2011,23(11):2772-2780.
    [11] Huang J, Wang D, Hou H, et al. Electrospun palladium nanoparticle-loaded carbon nanofibers andtheir electrocatalytic activities towards hydrogen peroxide and NADH [J]. Advanced Functional Materials,2008,18(3):441-448.
    [12] Liu Y, Wang D, Xu L, et al. A novel and simple route to prepare a pt nanoparticle-loaded carbonnanofiber electrode for hydrogen peroxide sensing [J]. Biosensors and Bioelectronics,2011,26(11):4585-4590.
    [13] Wen Z, Liu J, Li J. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as amethanol-tolerant cathode catalyst in direct methanol fuel cells [J]. Advanced Materials,2008,20(4):743-747.
    [14] Ji X, Lee K T, Holden R, et al. Nanocrystalline intermetallics on mesoporous carbon for direct formicacid fuel cell anodes [J]. Nature Chemistry,2010,2(4):286-293.
    [15] Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions ofplatinum nanoparticles [J]. Nature,2001,412(6843):169-172.
    [16] Gupta G, Slanac D A, Kumar P, et al. Highly stable Pt/ordered graphitic mesoporous carbonelectrocatalysts for oxygen reduction [J]. Journal of Physical Chemistry C,2010,114(24):10796-10805.
    [17] Liu S-H, Wu M-T, Lai Y-H, et al. Fabrication and electrocatalytic performance of highly stable andactive platinum nanoparticles supported on nitrogen-doped ordered mesoporous carbons for oxygenreduction reaction [J]. Journal of Materials Chemistry,2011,21(33):12489-12496.
    [18] He C, Liang Y, Fu R, et al. Nanopores array of ordered mesoporous carbons determine pt's activitytowards alcohol electrooxidation [J]. Journal of Materials Chemistry,2011,21(41):16357-16364.
    [19] Liu S H, Yu W Y, Chen C H, et al. Fabrication and characterization of well-dispersed and highly stableptru nanoparticles on carbon mesoporous material for applications in direct methanol fuel cell [J].Chemistry of Materials,2008,20(4):1622-1628.
    [20] Joo S H, Kwon K, You D J, et al. Preparation of high loading Pt nanoparticles on ordered mesoporouscarbon with a controlled pt size and its effects on oxygen reduction and methanol oxidation reactions [J].Electrochimica Acta,2009,54(24):5746-5753.
    [21] Su F, Zeng J, Bai P, et al. Template synthesis of mesoporous carbon microfibers as a catalyst supportfor methanol electrooxidation [J]. Industrial and Engineering Chemistry Research,2007,46(26):9097-9102.
    [22] Liu H-J, Wang X-M, Cui W-J, et al. Highly ordered mesoporous carbon nanofiber arrays from a crabshell biological template and its application in supercapacitors and fuel cells [J]. Journal of MaterialsChemistry,2010,20(20):4223-4230.
    [23] Zhao G, He J, Zhang C, et al. Highly dispersed Pt nanoparticles on mesoporous carbon nanofibersprepared by two templates [J]. Journal of Physical Chemistry C,2008,112(4):1028-1033.
    [24] Calvillo L, Lázaro M J, García-Bordejé E, et al. Platinum supported on functionalized orderedmesoporous carbon as electrocatalyst for direct methanol fuel cells [J]. Journal of Power Sources,2007,169(1):59-64.
    [25] Salgado J R C, Alcaide F, álvarez G, et al. Pt-Ru electrocatalysts supported on ordered mesoporouscarbon for direct methanol fuel cell [J]. Journal of Power Sources,2010,195(13):4022-4029.
    [26] Choi Y S, Joo S H, Lee S-A, et al. Surface selective polymerization of polypyrrole on orderedmesoporous carbon: Enhancing interfacial conductivity for direct methanol fuel cell application [J].Macromolecules,2006,39(9):3275-3282.
    [27] Fang B, Kim M, Fan S-Q, et al. Facile synthesis of open mesoporous carbon nanofibers with tailorednanostructure as a highly efficient counter electrode in cdse quantum-dot-sensitized solar cells [J]. Journalof Materials Chemistry,2011,21(24):8742-8748.
    [28] Wang K, Wang Y, Wang Y, et al. Mesoporous carbon nanofibers for supercapacitor application [J]. TheJournal of Physical Chemistry C,2008,113(3):1093-1097.
    [29] Liu J, Bai P, Zhao X S. Ruthenium nanoparticles embedded in mesoporous carbon microfibers:Preparation, characterization and catalytic properties in the hydrogenation of d-glucose [J]. PhysicalChemistry Chemical Physics,2011,13(9):3758-3763.
    [30] Feng D, Lv Y, Wu Z, et al. Free-standing mesoporous carbon thin films with highly ordered porearchitectures for nanodevices [J]. Journal of the American Chemical Society,2011,133(38):15148-15156.
    [31] Liu J, Qiao S Z, Liu H, et al. Extension of the st ber method to the preparation of monodisperseresorcinol–formaldehyde resin polymer and carbon spheres [J]. Angewandte Chemie International Edition,2011,50(26):5947-5951.
    [32] Fang Y, Gu D, Zou Y, et al. A low-concentration hydrothermal synthesis of biocompatible orderedmesoporous carbon nanospheres with tunable and uniform size [J]. Angewandte Chemie InternationalEdition,2010,49(43):7987-7991.
    [33] Wang Y, Song H, Zhang H, et al. Direct synthesis of flat cake-type ordered mesoporous carbon in adouble surfactant system of P123/CTAB [J]. Journal of Materials Chemistry,2011,21(15):5576-5579.
    [34] Gu D, Bongard H, Deng Y, et al. An aqueous emulsion route to synthesize mesoporous carbon vesiclesand their nanocomposites [J]. Advanced Materials,2010,22(7):833-837.
    [35] Song S, Zhang Y, Xing Y, et al. Rectangular AgIn(WO4)2nanotubes: A promising photoelectricmaterial [J]. Advanced Functional Materials,2008,18(16):2328-2334.
    [36] Yoon S M, Lee J, Je J H, et al. Optical waveguiding and lasing action in porphyrin rectangularmicrotube with subwavelength wall thicknesses [J]. ACS Nano,2011,5(4):2923-2929.
    [37] Xia H, Tao X. In situ crystals as templates to fabricate rectangular shaped hollow polyaniline tubes andtheir application in drug release [J]. Journal of Materials Chemistry,2011,21(8):2463-2465.
    [38] Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally orderedmesostructure [J]. Journal of the American Chemical Society,2000,122(43):10712-10713.
    [39] Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinumnanowires, carbon nanorods and carbon nanotubes [J]. Chemical Communications,2003,9(17):2136-2137.
    [40] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediatedstructural transformation [J]. Journal of Physical Chemistry B,1999,103(37):7743-7746.
    [41] Liu R, Shi Y, Wan Y, et al. Triconstituent co-assembly to ordered mesostructured polymer silica andcarbon silica nanocomposites and large-pore mesoporous carbons with high surface areas [J]. Journal ofthe American Chemical Society,2006,128(35):11652-11662.
    [42] Li W, Zhang F, Dou Y, et al. A self-template strategy for the synthesis of mesoporous carbonnanofibers as advanced supercapacitor electrodes [J]. Advanced Energy Materials,2011,1(3):382-386.
    [43] Feng X, Liang Y, Zhi L, et al. Synthesis of microporous carbon nanofibers and nanotubes fromconjugated polymer network and evaluation in electrochemical capacitor [J]. Advanced FunctionalMaterials,2009,19(13):2125-2129.
    [44] Zeng Q, Wu D, Zou C, et al. Template-free fabrication of hierarchical porous carbon based onintra-/inter-sphere crosslinking of monodisperse styrene-divinylbenzene copolymer nanospheres [J].Chemical Communications,2010,46(32):5927-5929.
    [45] Zou C, Wu D, Li M, et al. Template-free fabrication of hierarchical porous carbon by constructingcarbonyl crosslinking bridges between polystyrene chains [J]. Journal of Materials Chemistry,2010,20(4):731-735.
    [46] Zheng R, Meng X, Tang F, et al. A general, one-step and template-free route to rattle-type hollowcarbon spheres and their application in lithium battery anodes [J]. The Journal of Physical Chemistry C,2009,113(30):13065-13069.
    [47] Dakhel A A. Dc conduction processes in nickel-dimethylglyoxime films [J]. Crystal Research andTechnology,2006,41(1):68-71.
    [48] Cardoso W, Dias V, Costa W, et al. Nickel-dimethylglyoxime complex modified graphite and carbonpaste electrodes: Preparation and catalytic activity towards methanol/ethanol oxidation [J]. Journal ofApplied Electrochemistry,2009,39(1):55-64.
    [49] Sun S, Zhang G, Geng D, et al. Direct growth of single-crystal pt nanowires on Sn@CNT nanocable:3d electrodes for highly active electrocatalysts [J]. Chemistry–A European Journal,2010,16(3):829-835.
    [50] Yang J, Qiu L, Liu B, et al. Synthesis of polymeric ionic liquid microsphere/pt nanoparticle hybrids forelectrocatalytic oxidation of methanol and catalytic oxidation of benzyl alcohol [J]. Journal of PolymerScience Part A: Polymer Chemistry,2011,49(21):4531-4538.
    [51] Zhang X, Zan X, Su Z. Polyelectrolyte multilayer supported Pt nanoparticles as catalysts for methanoloxidation [J]. Journal of Materials Chemistry,2011,21(44):17783-17789.
    [52] Huang T, Jiang R, Liu J, et al. Synthesis of well-dispersed PtRuSnOxby ultrasonic-assisted chemicalreduction and its property for methanol electrooxidation [J]. Electrochimica Acta,2009,54(18):4436-4440.
    [53] Wen Z, Wang Q, Zhang Q, et al. Hollow carbon spheres with wide size distribution as anode catalystsupport for direct methanol fuel cells [J]. Electrochemistry Communications,2007,9(8):1867-1872.
    [54] Li M, Chang Y, Han G, et al. Platinum nanoparticles supported on electrospinning-derived carbonfibrous mats by using formaldehyde vapor as reducer for methanol electrooxidation [J]. Journal of PowerSources,2011,196(19):7973-7978.
    [55] Han J H, Lee E, Park S, et al. Effect of nanoporous structure on enhanced electrochemical reaction [J].Journal of Physical Chemistry C,2010,114(21):9546-9553

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700