用户名: 密码: 验证码:
鸭脂肪组织EST鉴定、脂肪代谢相关基因多态检测及其与肉鸭脂肪、屠体和生长性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近几十年,肉鸭育种在提高生长速度、降低屠宰日龄等方面取得了令人瞩目的成绩,但在高强度选择提高生长速度的同时,出现了体脂、尤其是皮下脂肪和腹脂沉积过多的问题。随着人们生活水平的不断提高,由于脂肪摄入过多而产生的各种疾病已引起广泛关注;另外,过多的脂肪沉积不仅会影响产品的外观以及肉品质、降低生产效率,同时也会增加加工过程中的损耗从而影响经济效益;这些问题在一定程度上制约了肉鸭业的发展。因此,控制脂肪在鸭体内的过多蓄积,选育低脂肉鸭品种是今后肉鸭育种的奋斗目标之一。肉鸭的脂肪性状属于数量性状,受多基因控制,标记辅助选择是一种简便、有效的性状改良方法,通过与性状关联的分子遗传标记,选择控制相关性的候选基因的基因型,可实现标记辅助选择。但目前利用候选基因法在鸭中筛选分子标记,存在缺乏必要的基因序列信息的问题,本研究一方面利用基因组饱和杂交的原理,通过构建鸭脂肪组织均一化cDNA文库、测序获得在鸭脂肪组织中表达的新序列并借助序列分析寻找与鸭脂肪沉积相关的候选基因,为在鸭中开展新基因鉴定和基因功能研究提供序列基础;另一方面运用PCR-SSCP,DNA测序和PCR-RFLP结合的方法寻找和鉴定鸭脂肪性状候选基因LPL、ADP和GH基因的SNP,并借助SNP分析这些基因与鸭脂肪、屠体和生长体重等性状间的关系,为寻找可用于鸭标记辅助选择育种的分子遗传标记奠定基础,为进行高效的低脂鸭育种提供参考。主要研究结果如下:
     1.鸭脂肪组织EST的鉴定
     (1)首先构建了鸭皮脂和腹脂的两个独立cDNA文库,腹脂独立文库所含克隆数目约为4.8×106,文库重组率约为97%;皮脂独立文库所含克隆数目约为2.48x106,文库重组率约为94%,独立文库质量较好,满足均一化的要求。
     (2)采用基因组DNA饱和杂交法,构建了鸭脂肪组织均一化cDNA文库。均一化后文库插入片段约700bp;在测序所得的234条EST序列中,单一序列有188条,占80%;在NCBI核酸数据库中无同源的新序列有93条,占40%;对测序所得EST序列的BLASTN分析发现共有141条序列在数据库中有同源序列,其中79条序列有同源基因的信息。
     (3)分析与这些EST同源的基因功能发现,它们包括DNA或RNA水平上的相关调节因子、结构蛋白、细胞分化与凋亡因子、转座子、免疫因子、性别决定相关因子、信号转导因子、线粒体基因和原癌基因,以及一些蛋白质代谢、视觉和肌肉发育、脂质代谢相关基因等,还有一些功能未知的同源基因。这些功能基因的表达也暗示脂肪组织并不仅仅只是一个储存和释放能量的组织,而是一个重要而且活跃的器官,广泛地参与了机体的生理活动过程。
     (4)获得了与脂质代谢相关的鸭LPL基因1326bp的cDNA序列(GenBank accessionno.FJ859348),该序列基本包括了鸭LPL基因的CDS区域,可用于下一步的SNP筛选。
     2.鸭脂肪代谢相关候选基因LPL、GH和WADP的多态性检测及关联分析
     运用PCR-SSCP,DNA测序和PCR-RFLP结合的方法,对LPL、GH和ADP等三个基因进行SNP筛选或确认。利用来自武汉精武食品工业园有限公司精武优质肉鸭场的白改鸭×连城白鸭F2群体资料,分析了上述SNP部分位点与鸭脂肪、屠体和生长体重等性状间的关系,主要研究结果如下:
     (1)通过PCR-SSCP和测序方法,在LPL基因(GenBank accession no.FJ859348)中发现了5个新的SNP:外显子2存在一个C150T点突变,该突变造成Eco24Ⅰ酶切位点的改变;外显子5存在三个点突变,分别为C645T,T708C和G726A突变,其中C645T造成Sac Ⅱ酶切位点改变,G726A造成Mva Ⅰ酶切位点改变;外显子8存在一个C1245T点突变。这5个SNP在鸭LPL基因中的分布位置提示外显子5可能是一个突变多发区域。利用PCR-RFLP方法,对C645T和G726A两个SNP位点进行了酶切分型,并将基因型与鸭脂肪、屠体和体重性状进行了关联分析,结果显示:①在公鸭中,CT(AG)基因型的腹脂重、皮脂重均显著或极显著高于CC(GG)基因型(P<0.05或P<0.01);在母鸭中,TT(AA)基因型的皮脂重极显著高于CC(GG)基因型(P<0.01),而且TT(AA)基因型的腹脂重也高于CC(GG)基因型,接近显著水平(P=0.06);②在公鸭中,CT(AG)基因型的屠体性状值均极显著高于CC(GG)基因型(P<0.01);在母鸭中,除头重差异不显著外(P>0.05),TT(AA)基因型的屠体性状值均显著或极显著高于CC(GG)基因型(P<0.05或P<0.01);③在公鸭中,前8周体重在基因型间差异不显著(P>0.05),从第8周到第12周,CT(AG)基因型的体重极显著高于CC(GG)基因型;在母鸭中,前4周体重差异不显著(P>0.05),从第4周到第12周,TT(AA)基因型的体重均显著或极显著高于CC(GG)基因型(P<0.05或P<0.01)。另外,从LPL基因不同基因型在公母鸭的分布发现,该基因可能存在于鸭的Z染色体上。
     (2)利用PCR-RFLP方法,对鸭GH基因(GenBank accession no. AB158760) C3701T突变位点进行了鉴定,发现本实验群中也存在该突变。酶切分型后将基因型与鸭脂肪、屠体和体重性状进行了关联分析,结果显示:①GH基因三种基因型间腹脂重差异显著(P<0.05),皮脂重差异极显著(P<0.01),基因型间腹脂重与皮脂重从大到小均为COCT>TT。②三种基因型间活重、屠体重、半净膛重、全净膛重、腿肌重、胸肌重、头重、脖子重、翅膀重、鸭掌重、心重、肝重和肌胃重等屠体性状均差异极显著(P<0.01),性状值在基因型间从大到小为COCT>TT。③第2周到第4周、第8周到第12周基因型间体重差异显著或极显著(P<0.05或P<0.01)第六周体重在基因型间的差异接近显著水平(P=0.074)。除初生重外,体重性状值在基因型间从大到小依次为COCT>TT。
     (3)利用PCR-RFLP方法,对ADP基因(GenBank accession no. DQ452618.1) C540T和C579T两个突变位点进行了鉴定,发现C579T位点在本实验群中未产生突变,该位点在本实验群中均为CC型;C540T突变位点在本实验群中存在分离。对该突变位点酶切分型后将基因型与鸭脂肪、屠体和体重性状进行了关联分析,结果显示:①基因型间脂肪性状差异不显著(P>0.05);②活重、胸肌重、头重、肌胃重、心重和肝重等在基因型间差异显著(P<0.05)或极显著(P<0.01),屠体重、半净膛重、全净膛重和翅膀重等屠体性状基因型间的差异均接近显著水平(P=0.054-0.073),腿肌重、脖子重和鸭掌重基因型间差异不显著(P>0.05);③后期体重(8-10周)在基因型间差异显著;TT基因型体重值从初生重至第10周均高于其他两种基因型的体重值。
Duck breeding for the harvesting of meat has advanced considerably in recent decades, resulting in reduced slaughter age and greatly increased feed efficiency, meat production, and growth rate. The intensive selection for growth rate, however, has led to increased body fat deposition, which has become one of the main problems facing the duck breeding industry. Excessive fat deposition affects duck carcass appearance and meat quality, and it also causes low feeding efficiency, environmental pollution. To reduce fat deposition and select low-fat meat-type duck is the one of important aims in duck breeding in the future. Fatness traits belongs to quantitative traits and is controlled by ploygenes, they are hard and inefficient to be improved by regular breeding approaches. The molecular marker-assisted selection (MAS) promises a high efficient improvement of quantitative traits in simple and effective way by using reliable molecular makers which obtained by candidate gene approach; anyhow, very limited gene sequence information of duck is currently accumulated in the public database, and it causes that candidate gene approach is difficult to carry out in duck for molecular marker investigation. Therefore, one aim of this research is to identify some express sequence tag (EST) by constructing a normalized cDNA library using duck adipose tissues (abdominal fat and subcutaneous fat). Furthermore, single nucleotide polymorphism (SNP) in genes related with fat metabolism, including LPL, ADP and GH, were investigated or identified by PCR-SSCP, DNA sequencing and PCR-RFLP method, and also, the associations of these genes with body weight, carcass, and fatness traits was studied. Following are the main results:
     1. Identification of EST from duck adipose tissue (1) Two ordinary cDNA libraries were first constructed for each of duck abdominal fat and subcutaneous fat. These two cDNA library contained4.8×106and2.48×106clones, respectively; and the recombinant efficiency were97%and94%, respectively, the cDNA library met the requirement of normalization.
     (2) A normalized cNDA library of duck adipose tissue was constructed based on the strategy of saturation hybridization with genomic DNA; the average size of inserts was700bp.234EST were obtained by randomly cloning and sequencing from the normalized cDNA library, sequence analysis results showed that:80%EST were unique, include188EST;40%EST were new that have no homologues sequences in NCBI database, include93EST; BLASTN analysis revealed that141EST have homologues sequences in NCBI database which79EST have homologues gene information.
     (3) The function of homologues genes including gene expression regulation, structural proteins, cell differentiation and apoptosis, transposition, immunity, sex determination and differentiation, signal transport, cancer related, mitochondria related, muscle development, protein and fat metabolism, etc; some homologues gene's function were unknown. So many genes expressed in duck adipose tissue hinted that duck adipose tissue not only for storage and provide energy, but an important and active organ involved in lots of physiological and biochemical process.
     (4) A1326bp cDNA sequence of duck LPL gene which related to fat metabolism was obtained. This sequence contained almost LPL gene CDS domain and can be used to further research for SNP detection.2. SNP dectecting of duck LPL, GH and ADP gene and their association with fatness, carcass and bodyweight traits
     PCR-SSCP, PCR-RFLP and sequencing methods were used to investigate or confirm SNP in the duck LPL, GH and ADP. A White Kaiya×White Liancheng F2population from Jingwu Food Industrial Garden Ltd.(Wuhan, China) was used to study the association between these genes and duck fatness, carcass and bodyweight traits in the present study. The results were as follows:(1) PCR-SSCP and sequencing methods were used to investigate SNP in the duck LPL gene (GenBank accession no.FJ859348). Five new SNPs were discovered in LPL gene: C150T in exon2caused an Eco24Ⅰ restriction enzyme site change; three SNP, C645T, T708C and G726A, were detected in exon5, C645T caused a Sac Ⅱ restriction enzyme site change, G726A caused a Mva Ⅰ restriction enzyme site change; and one SNP, C1245T, was detected in exon8. The locations of these five SNP indicated that exon5of duck LPL gene might be a variable area. C645T and G726A were genotyped using the PCR-RFLP in the population describled above. The association analysis results showed that:①In males, the abdominal fat Weight and subcutaneous fat plus skin weight of genotype CT (AG) were significantly higher than those of CC (GG)(P<0.05or P<0.01); In females, subcutaneous fat plus skin weight of genotype TT (AA) was significantly higher than those of CC (GG)(P<0.01), abdominal fat Weight of genotype TT (AA) was higher than those of CC (GG)(P=0.06);②In males, the carcass traits of genotype CT (AG) were significantly higher than those of CC (GG)(P<0.01); In females, the carcass traits of genotype TT (AA) were significantly higher than those of CC (GG)(P<0.05or P<0.01), except for head weight (P>0.05);③In males, the body weight of genotype CT (AG) was significantly higher than that of CC (GG) from week8to week12(P<0.01); In females, the body weight of genotype TT (AA) was significantly higher than that of CC (GG) from week4to week12(P<0.05or P<0.01). In addition, the distribution of genotypes differed between males and females indicated that the duck LPL gene might be located on Z chromosome.
     (2) PCR-RFLP method was used to confirm the SNP site C3701T in the duck GH gene (GenBank accession no. AB158760), the result showed that the SNP site C3701T was also segregated in our experimental population. C3701T was genotyped using the PCR-RFLP and the association analysis showed that:①The abdominal fat weight and subcutaneous fat plus skin weight were significantly different among genotypes (P<0.05or P<0.01), and the individuals with genotype CC were significantly higher than genotype CT and TT;②The body weight (before slaughter), carcass weight, eviscerated with giblet weight, eviscerated weight, breast muscle weight (right side), leg muscle weight (right side), head weight, neck weight, wing weight (right side), shank plus palma weight, heart weight, liver weight, and muscular stomach weight were all significantly different among genotypes (P<0.01), and the individuals with genotype CC were significantly higher than genotype CT and TT;③the body weight were significantly different among genotypes from2nd to4th and8th to12th weeks (P<0.05or P<0.01), the body weight of6th week was close to significantly different among genotypes (P=0.074), and the individuals with genotype CC were significantly higher than genotype CT and TT except birth weight.
     (3) PCR-RFLP method was used to confirm the SNP sites C540T and C579T in the duck ADP gene (GenBank accession no. DQ452618.1), it showed that the C579T was fixed with CC genotype and the C540T was segregated in the experimental population. Genotyping of C540T using the PCR-RFLP method and the association analysis showed that:①there were no significant differences in fatness traits among genotypes (P>0.05);②The body weight (before slaughter), breast muscle weight (right side), head weight, heart weight, muscular stomach weight and liver weight were significantly different among genotypes (P<0.05or P<0.01); the carcass weight, eviscerated with giblet weight, eviscerated weight and wing weight (right side) were close to significantly different among genotypes (P=0.054-0.073); and there were no significant differences in leg muscle weight (right side), neck weight and shank plus palma weight among genotypes (P>0.05);③The body weight were significantly different among genotypes from8th to10th weeks (P<0.05or P<0.01), and the individuals with genotype TT were higher than genotype CT and TT from birth to10th week.
引文
1.陈红歌,贾新成.表达序列标签及其应用.生物技术通讯,2003,1(1):82-84
    2.储昭晖,彭开蔓,张利达等.水稻全生育期均一化cDNA文库的构建和鉴定.科学通报,2002,47(21):1656-1662
    3.储昭晖.水稻白叶枯病隐性抗病基因xal3的分离与鉴定.[博士学位论文].武汉:华中农业大学图书馆,2005
    4.崔东辉.强优势玉米杂交种豫玉22雌穗均一化cDNA文库的构建与鉴定.[硕士学位论文].北京:中国农业大学图书馆,2005
    5.戴汉川,龙良启.鸭肥胖基因的分子克隆、序列分析及原核表达.畜牧兽医学报,2005,36(7):641-644
    6.董飚,龚道清,孟和等.鸭脂联素基因单核苷酸多态性检测及群体遗传分析.遗传,2007,29(8):995-1000
    7.董飚.鸭脂联素及其受体基因的克隆、表达和功能的研究.[硕士学位论文].扬州:扬州大学图书馆,2007
    8.顾志良,赵建国,李辉等.鸡瘦蛋白受体(OBR)基因外显子9单核苷酸多态性分析.遗传,2002,24(3):259-262
    9.顾志良.肉鸡腹脂体脂遗传标记的研究进展.国外畜牧科技,1994,1:4-7
    10.侯水生.我国水禽产业发展趋势与技术需求.中国家禽,2009,31(17):1-5
    11.吉文林,许盛海,徐琪等.6个中国地方鸭品种生长激素(GH)基因编码区多态性分析.畜牧与兽医,2008,40(12):45-47
    12.李春雨,李辉.鸡PPARy基因SNPs与脂肪性状相关的研究.中国动物遗传育种研究进展,2005,453-457
    13.李辉,杨山.控制鸡体内脂肪沉积的研究进展.中国畜牧兽医学会第十届全国会员代表大会暨学术年会论文集(畜牧卷),1996,168-173
    14.李慧芳,朱文奇,宋卫涛等.催乳素(PRL)和生长激素(GH)基因对高邮鸭产蛋性能的遗传效应分析.农业生物技术学报,2009,17(2):263-268
    15.李秀钧.脂肪组织是又一个新的内分泌器官.国外医学(内分泌学分册),2002,22(3):129-131
    16.李桢,曹红鹤,储明星等.中外11个猪种H-FABP基因PCR-RFLP的研究.畜牧兽医学报,2003,34(4):313-317
    17.刘剑锋,王立贤,张贵香等.H-FABP基因型对中畜黑猪Ⅰ系生长性能的影响.畜牧兽医学报,2005,36(6):555-558
    18.刘伟,邵菁,庞宏等.大规模筛选表达序列标签(ESTs)方法的改进.安徽农业科学,2007,35(24):7410-7411
    19.罗建学,李春风,初晓辉等.脂肪酸合成酶基因的研究进展.中国畜牧兽医,2011,38(6):118-123
    20.孟和,王桂华,王启贵等.鸡PPAR基因单核苷酸多态与脂肪性状相关的研究.遗传学报,2002,29(2):119-123
    21.牟彦双,王宇祥,王启贵等.鸡脂蛋白脂酶(LPL)基因单核苷酸多态性与体脂性状的相关研究.中国农业科学技术出版社—第十三次全国动物遗传育种学术讨论会论文集,2005,447-449
    22.穆云翔.脂蛋白脂肪酶基因突变研究进展.中国动脉硬化杂志,2002,10(4):358-362
    23.邱祥聘,杨山.家禽学(第三版).成都:四川科学技术出版社,1993
    24.萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯T.分子克隆实验指南(第二版).北京:科学出版社,1993
    25.孙乃恩,孙东旭,朱德煦.分子遗传学.南京大学出版社,1990,253-256
    26.孙逊,朱尚权.生长激素的结构与功能.国外医学(生理、病理科学与临床分册),1999,19(1):6-9
    27.汪俊.产业化—我国鸭产业的发展走向(从河南华英公司的生产经营模式浅析我国鸭产业的发展趋势).中国特产报,2011,7月27日第C04版
    28.王建刚,刘芳宁,雷初朝.单核苷酸多态性及其应用.黄牛杂志,2002,28(5):24-27
    29.王启贵,李宁,邓学梅等.鸡细胞外脂肪酸结合蛋白基因单核苷酸多态性与腹脂性状的相关研究.中国科学(C辑),2001,31(3):266-270
    30.王启贵,李宁,邓学梅等.鸡脂肪酸结合蛋白基因的克隆和测序分析.遗传学报,2002,29(2):115-118
    31.王启贵.鸡fabp基因克隆、表达特性及功能研究.[博士学位论文].哈尔滨:东北农业大学图书馆,2004
    32.王颖,李辉,顾志良等.鸡瘦蛋白受体(OBR)基因内含子8单核苷酸多态性与体脂性状的相关研究.遗传学报,2004,31(3):265-269
    33.王宇祥,牟彦双,王启贵等.鸡脂肪酸合成酶基因单核苷酸多态性与体脂性状的相关研究.中国动物遗传育种研究进展—第十三次全国动物遗传育种学术讨论会论文集,2005,424-427
    34.吴艳.肉鸭脂肪性状相关候选基因的克隆、表达及其与胴体和脂肪性状的关联分析.[博士学位论文].杨陵:西北农林科技大学图书馆,2008
    35.熊文中,杨凤,周安国.猪重组生长激素对不同杂交肥育猪脂肪代谢调控的研究.畜牧兽医学报,2001,32(1):1-4
    36.徐日福,孙宪如.肉鸡血浆生长激素含量与屠体性状的相关.山东家禽,1998,(2):12-13
    37.许盛海.8个鸭品种生长激素基因遗传多样性研究.[硕士学位论文].扬州:扬州大学图书馆,2007
    38.薛茂云,董飚,张营等.鸭脂联素基因全长cDNA的克隆和原核表达的研究.畜牧兽医学报,2010,41(10):1232-1239
    39.颜炳学,邓学梅,费菁等.鸡生长激素基因单核苷酸多态与生长及屠体性状的相关性.科学通报,2003,48(12):1304-1307
    40.颜新春,汪以真,许梓荣.动物脂肪酸合成酶(FAS)基因表达的调控.动物营养学报,2002,14(2):12-14
    41.杨军,罗家琴,唐登华等.荆江麻鸭GH基凶第4外显子SNP及其与屠体性状的关联研究.中国家禽,2011,33(14):32-35
    42.叶满红,曹红鹤,文杰等.北京油鸡和矮脚鸡心脏型、脂肪型脂肪酸结合蛋白基因多态性的研究.畜牧兽医学报,2003,34(5):422-426
    43.尹长军.脂联素介导的脂肪积累调控研究.[硕士学位论文].武汉:华中农业大学图书馆,2009
    44.于建兴.鹅脂蛋白脂酶基因外显子4、5和6克隆及其序列分析研究.[硕士学位论文].合肥:安徽农业大学图书馆,2006
    45.张桂香,曹红鹤,王立贤等.9个猪种H-FABP基因5’上游区和第二内含子的遗传变异.畜牧兽医学报,2002,33(4):340-343
    46.张红.鸭A-FABP基因和H-FABP基因的克隆、表达及其功能研究.[硕士学位论文].扬州:扬州大学图书馆,2006
    47.张军,赵万里,周勤宣.高邮鸭腹脂与皮下脂肪、肌脂率、肝脂率的关系.第九次全国家禽学术讨论会论文集,1999:55-56
    48.张曼夫,刘芃芃.注射生长激素对猪脂肪组织中脂肪合成酶的影响.中国畜牧杂志,1990,26(3):6-9
    49.张祖新.玉米CMS-S核恢复基因及玉米对淹水胁迫响应基因的功能分析.[博士学位论文].武汉:华中农业大学图书馆,2005
    50.赵建国,李辉,孟和等.解偶联蛋白基因(UCP)作为影响鸡脂肪性状候选基因的研究.遗传学报,2002,29(6):481-486
    51.赵志辉,李宁.EST序列测定时cDNA文库的构建和参数评估.农业生物技术学报,2003,11(4):422-425
    52.中国社会科学院考古研究所安阳工作队.1969-1977年殷墟西区墓葬发掘报告.考古学报,1979
    53.朱文奇.高邮鸭PRL和GH基因多态性检测及其与生产性能关系的研究.硕士学位论文].扬州:扬州大学图书馆,2007
    54. Adams M D, Kelly J M, Gocayne, et al. Complementary DNA sequencing:expressed sequence tags and human genome project. Science,1991,252:1651
    55. Altshuler D. A haplotype map of the human genome. Nature,2005,437:1299-1320
    56. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun,1999,257:79-83
    57. Authony B. SNP attack on complex traits. Nat Genet,1998,20:217-221
    58. Bachl J, Olsson C, Chitkara N, et al. The Ig mutator is dependent on the presence, position, and orientation of the large intron enhancer. Proc Natl Acad Sci,1998,95: 2396-2399
    59. Balakirev E S, Chechetkin V R, Lobzin V V, et al. DNA polymorphism in the beta-Esterase gene cluster of Drosophila melanogaster. Genetics 2003,164:533-544
    60. Berg A H, Combs T P, Scherer P E. ACRP30/adiponectin:an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab,2002,13:84-89
    61. Bishop J O, Morton J G., Rosbash M, et al. Three abundance classes in HeLa cell messenger RNA. Nature,1974,250:199-204
    62. Bonaldo M F, Lennon G, Soares M B. Normalization and subtraction:two approaches to facilitate gene discovery. Genome Res,1996,6:791-806
    63. Bonneau M. Regulation of pig growth by somatotropic hormones:I Secretion and mode of action. Pig News and Information,1991,12:29-37
    64. Braissant O, Foufelle F, Scotto C, Dau a M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs):tissue distribution of PPAR-alpha,-beta, and-gamma in the adult rat. Endocrinology,1996,137:354
    65. Brenner E D, Stevenson D W, McCombie R W, et al. Expressed sequence tag analysis in Cycas, the most primitive living seed plant. Genome Biol,2003,4:R78
    66. Brent R. Genomic biology. Cell,2000,100:169-183
    67. Brook C G, Hindmarsh P C, Stanhope R. Growth and growth hormone secretion. J Endocrinol,1988,119:179-184
    68. Brookes A J. The essence of SNPs. Gene,1999,234:177-186
    69. Bryne P, McMullen M. Defining genes for agricultural traits:QTL analysis and the candidate gene approach. Probe,1996,7:24-27
    70. Campfield L A, Smith F J, Guisez Y, et al. Recombinant mouse OB protein:evidence for a peripheral signal linking adiposity and central neural networks. Science,1995, 269:546-549
    71. Casas-Carrillo E, Prill-Adams A, Price S G, et al. Relationship of growth hormone and insulin-like growth factor-1 genotypes with growth and carcass traits in swine. Anim Genet,1997,28:88-93
    72. Chappel R, Dunkin A. Relation of concentration of growth hormone in blood plasma to growth rate and carcass characteristics in the pig. Anim Prod,1975,20:1-61
    73. Chen E Y, Liao Y C, Smith D H, et al. The human growth hormone locus:nucleotide sequence, biology, and evolution. Genomics,1989,4:479-497
    74. Chen H T, Pan F M, Chang W C. Purification of duck growth hormone and cloning of the complementary DNA. Biochim Biophys Acta,1988,949:247-251
    75. Chevreux B, Pfisterer T, Drescher B, et al. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced EST. Genome Res,2004,14:1147-1159
    76. Chim S S, Cheung S S, Tsui S K. Differential gene expression of rat neonatal heart analyzed by suppression subtractive hybridization and expressed sequence tag sequencing. J Cell Biochem,2000,80:24-36
    77. Chu Z, Peng K, Zhang L, et al. Construction and characterization of a normalized whole-life-cycle cDNA library of rice. Chin Sci Bull,2003,48:229-235
    78. Cook K S, Min H Y, Johnson D, et al. Adipsin:a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science,1987,237:402-405
    79. Cooper D A, Lu S C, Viswanath R, et al. The structure and complete nucleotide sequence of the avian lipoprotein lipase gene. Biochim Biophys Acta,1992,1129: 166-171
    80. Cooper D N, Smith B A, Cooke H J, et al. An estimate of unique DNA sequence heterozygosity in the human genome. Hum Genet,1985,69:201-205
    81. Dai R, Li L, Wu C. Partial characterization of porcine obesity gene (Ob) and leptin receptor gene (OBR). In:Proceedings of International Conference on Animal Biotechnology,1997,96-100
    82. Davidson E H, Britten R J. Regulation of gene expression:possible role of repetitive sequences. Science,1979,204:1052-1059
    83. Dreyer C, Keller H, Mahfoudi A, et al. Positive regulation of the peroxisomal [beta]-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). Biol Cell,1993,77:67-76
    84. Dunn I, Boswell T, Friedman-Einat M, et al. Mapping of the leptin receptor gene (LEPR) to chicken chromosome 8. Anim Genet,2000,31:290
    85. Dybus A, Grzesiak W. GHRH/HaeⅢ gene polymorphism and its associations with milk production traits in Polish Black-and-White cattle. Arch Tierz Dummerstorf, 2006,49:434-438
    86. Ellegren H:Evolutionary stasis:the stable chromosomes of birds. Trends Ecol Evol, 2010,25:283-291
    87. Emara M G, Kim H. Genetic markers and their application in poultry breeding. Poult Sci,2003,82:952-957
    88. Etherton T D, Bauman D E. Biology of somatotropin in growth and lactation of domestic animals. Physiol Rev,1998,78:745-761
    89. Etherton T. The mechanisms by which porcine growth hormone improves pig growth performance. RB Heap, CG hosser, and GE Lamming (Ed.) Biotechnology in Growth Regulation,1989,97-105
    90. Ewing B, Green P. Analysis of expressed sequence tags indicates 35,000 human genes. Nat Genet,2000,25:232-234
    91. Falaki M, Gengler N, Sneyers M, et al. Relationships of polymorphisms for growth hormone and growth hormone receptor genes with milk production traits for Italian Holstein-Friesian bulls. J Dairy Sci,1996,79:1446-1453
    92. Fizsimmons C J, Savolainen P, Amini G, et al. Detection of sequence polymorphisms in red junglefowl and white leghorn EST. Anim Genet,2004,35:391-396
    93. Fotouhi N, Karatzas C, Kuhnlein U, et al. Identification of growth hormone DNA polymorphisms which respond to divergent selection for abdominal fat content in chickens. Theor Appl Genet,1993,85:931-936
    94. Fruebis J, Tsao T S, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A,2001,98:2005-2010
    95. Gavin A J, Scheetz T E, Roberts C A, et al. Pooled library tissue tags for EST-based gene discovery. Bioinformatics,2002,18:1162-1166
    96. Gerbens F, De Koning D J, Harders F L, et al. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J Anim Sci,2000,78:552
    97. Gerbens F, Jansen A, van Erp A J, et al. The adipocyte fatty acid-binding protein locus:characterization and association with intramuscular fat content in pigs. Mamm Genome,1998,9:1022-1026
    98. Ginzinger D, Clee S, Dallongeville J, et al. Lipid and lipoprotein analysis of cats with lipoprotein lipase deficiency. Eur J Clin Invest,1999,29:17-26
    99. Griffin H D, Whitehead C C, Broadbent L A. The relationship between plasma triglyceride concentrations and body fat content in male and female broilers-a basis for selection? Br Poult Sci,1982,23:15-23
    100.Guo J, Cooper L. Influence of an LRP5 cytoplasmic SNP on Wnt signaling and osteoblastic differentiation. Bone,2007,40:57-67
    101.Halaas J L, Gajiwala K S, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science,1995,269:543
    102.Harbitz I, Kristensen T, Kran S, et al. Isolation and sequencing of porcine lipoprotein lipase cDNA and its use in multiallelic restriction fragment length polymorphism detection. Anim Genet,1992,23:517-522
    103.Hata A, Ridinger D, Sutherland S, et al. Missense mutations in exon 5 of the human lipoprotein lipase gene. Inactivation correlates with loss of dimerization. J Biol Chem, 1992,267:20132-20139
    104.Horev G, Einat P, Aharoni T, et al. Molecular cloning and properties of the chicken leptin-receptor (CLEPR) gene. Mol Cell Endocrinol,2000,162:95-106
    105.Hotta K, Funahashi T, Bodkin N L, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes,2001,50:1126-1133
    106.Hu E, Liang P, Spiegelman B M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem,1996,271:10697-10703
    107.Jedrzejczak M, Szatkowska I, et al. Evaluation of associations of the polymorphism in the placenta-specific promoter 1.1 of the CYP19 gene in Black-and-White and Jersey cattle with milk production traits. Arch Tierz Dummerstorf,2006,49:311-314
    108.Johnson R. Growth physiology and biotechnology:potential to improve broiler production. World's Poultry Science Journal,1989,46:228-240
    109.Kansaku N, Zadworny D, Guemene D. Genomic cloning of duck Growth hormone. NCBI,GENEBANK,2004
    110.Kershaw E E, Flier J S. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab,2004,89:2548-2556
    111.Kim H, Schmidt C J, Decker K S, et al A double-screening method to identify reliable candidate non-synonymous SNPs from chicken EST data. Anim Genet,2003,34: 249-254
    112.Kimchi-Sarfaty C, Oh J M, Kim I W, et al. A" silent" polymorphism in the MDR1 gene changes substrate specificity. Science,2007,315:525-528
    113.Ko M S. An'equalized cDNA library'by the reassociation of short double-stranded cDNAs. Nucleic Acids Res,1990,18:5705-5711
    114.Komar A A. SNPs, silent but not invisible. Science,2007,315:466-467
    115.Kubo M, Hata J, Ninomiya T, et al. A nonsynonymous SNP in PRKCH (protein kinase C n) increases the risk of cerebral infarction. Nat Genet,2007,39:212-217
    116.Lamb I C, Galehouse D M, Foster D N. Chicken growth hormone cDNA sequence. Nucleic Acids Res,1988,16:9339
    117.Landegren U, Nilsson M, Kwok P Y. Reading bits of genetic information:methods for single-nucleotide polymorphism analysis. Genome Res,1998,8:769-776
    118.Lei M, Xiong Y, Deng C, et al. Sequence variation in the porcine lipoprotein lipase gene. Anim Genet,2004,35:422-423
    119.Lemberger T, Braissant O, Juge-Aubry C, et al. PPAR tissue distribution and interactions with other hormone-signaling pathways. Ann N Y Acad Sci,1996,804: 231-251
    120.Lemberger T, Staels B, Saladin R, et al. Regulation of the peroxisome proliferator-activated receptor alpha gene by glucocorticoids. J Biol Chem,1994,269: 24527-24530
    121.Li N, Zhao Y, Xiao L, et al. Candidate gene approach for identification of genetic loci controlling litter size in swine, In:Proc 6th World Congr Genet Appl Livest Prod, Armidale, Australia,1998,26:183-186
    122.Li W H, Sadler LA. Low nucleotide diversity in man. Genetics,1991,129:513-523
    123.Lisitsyn N, Lisitsyn N, Wigler M. Cloning the differences between two complex genomes. Science,1993,259:946-951
    124.Liu R, Wang Y, Sun D, et al. Association between polymorphisms of lipoprotein lipase gene and chicken fat deposition. Asian Austral J Anim,2006,19:1409-1414
    125.Maeda K, Okubo K, Shimomura I, et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun,1996,221:286-289
    126.Nakano Y, Tobe T, Choi-Miura N H, et al. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem,1996,120: 803-812
    127.Nanda I, Haaf T, Schartl M, et al. Comparative mapping of Z-orthologous genes in vertebrates:implications for the evolution of avian sex chromosomes. Cytogenet Genome Res,2002,99:178-184
    128.Nickerson D A, Taylor S L, Weiss K M, et al. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet,1998,19:233-240
    129.Nobuyoshi M, Lin X H, Takimoto Y, et al. Transcription regulation of the PDGF A-chain gene by first intron elements. Biochem Biophy Res Commun,1997,230: 569-572
    130.Nyberg F, Burman P. Growth hormone and its receptors in the central nervous system-location and functional significance. Horm Res,1996,45:18-22
    131.Ockner R K, Manning J A, Poppenhausen R B, et al. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science,1972, 177:56-58
    132.Okamoto Y, Kihara S, Funahashi T, et al. Adiponectin:a key adipocytokine in metabolic syndrome. Clin Sci,2006,110:267-278
    133.Ottosson M, Vikman-Adolfsson K, Enerback S, et al. Growth hormone inhibits lipoprotein lipase activity in human adipose tissue. J Clin Endocrinol Metab,1995, 80:936-941
    134.Patanjali S R, Parimoo S, Weissman S M. Construction of a uniform-abundance (normalized) cDNA library. Proc Natl Acad Sci U S A,1991,88:1943-1947
    135.Peters J M, Hennuyer N, Staels B, et al. Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor a-deficient mice. J Biol Chem,1997,272: 27307-27312
    136.Peterson J, Ayyobi A F, Ma Y, et al. Structural and functional consequences of missense mutations in exon 5 of the lipoprotein lipase gene. J Lipid Res,2002,43: 398-406
    137.Peterson L A, Brown M R, Carlisle A J, et al. An improved method for construction of directionally cloned cDNA libraries from microdissected cells. Cancer Res,1998, 58:5326-5328
    138.Qi Y, Takahashi N, Hileman S M, et al. Adiponectin acts in the brain to decrease body weight. Nat Med,2004,10:524-529
    139.Reymer P W, Gagne E, Groenemeyer B E, et al. A lipoprotein lipase mutation (Asn291Ser) is associated with reduced HDL cholesterol levels in premature atherosclerosis. Nat Genet,1995,10:28-34
    140.Ricquier D, Bouillaud F. The uncoupling protein homologues:UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J,2000,345 Pt2:161-179
    141.Rocha J, Baker J F, Womack J E, et al. Statistical associations between restriction fragment length polymorphisms and quantitative traits in beef cattle. J Anim Sci, 1992,70:3360-3370
    142.Roncari D. Abnormalities of adipose cells in massive obesity. Int J Obes,1990,14: 187-192
    143.Sakai J, Hoshino A, Takahashi S, et al. Structure, chromosome location, and expression of the human very low density lipoprotein receptor gene. J Biol Chem, 1994,269:2173-2182
    144.Saltiel A R. You are what you secrete. Nat Med,2001,7:887-888
    145.Sasaki Y F, Ayusawa D, Oishi M. Construction of a normalized cDNA library by introduction of a semi-solid mRNA-cDNA hybridization system. Nucleic Acids Res, 1994,22:987-992
    146.Sato K, Akiba Y, Chida Y, et al. Lipoprotein hydrolysis and fat accumulation in chicken adipose tissues are reduced by chronic administration of lipoprotein lipase monoclonal antibodies. Poult Sci,1999,78:1286-1291
    147.Scherer P E, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem,1995,270:26746-26749
    148.Seki S, Kawaguchi Y, Chiba K, et al. A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet,2005,37:607-612
    149.Semenkovich C F. Regulation of fatty acid synthase (FAS). Prog Lipid Res.1997,36: 43-53
    150.Shen L X, Basilion J P, Stanton V P. Single-nucleotide polymorphisms can cause different structural folds of mRNA. Proc Natl Acad of Sci,1999,96:7871-7876
    151.Smith S, Witkowski A, Joshi A K. Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res,2003,42:289-317
    152.Soares M B, Bonaldo M F, Jelene P, et al. Construction and characterization of a normalized cDNA library. Proc Natl Acad Sci USA,1994,91:9228-9232
    153.Spiegelman B M, Flier J S. Obesity and the regulation of energy balance. Cell,2001, 104:531-543
    154.Strobl J S, Thomas M. Human growth hormone. Pharmacol Rev,1994,46:1-34
    155.Svaren J, Chalkley R. The structure and assembly of active chromatin. Trends Genet, 1990,6:52-56
    156.Syvanen A C. Accessing genetic variation:genotyping single nucleotide polymorphisms. Nat Rev Genet,2001,2:930-942
    157.Tanaka M, Hosokawa Y, Watahiki M, et al. Structure of the chicken growth hormone-encoding gene and its promoter region. Gene,1992,112:235-239
    158.Taouis M, Chen J W, Daviaud C, et al. Cloning the chicken leptin gene. Gene,1998, 208:239-242
    159.Tartaglia L A, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor, OBR. Cell,1995,83:1263-1271
    160.Thi Tran H T, Takeshima Y, Surono A, et al. A G-to-A transition at the fifth position of intron-32 of the dystrophin gene inactivates a splice-donor site both in vivo and in vitro. Mol Genet Metab,2005,85:213-219
    161.Tian W, Dong Y, Quan H. The Dependence of Fat Level of Hen on Activity of Fatty Acid Synthase in Liver on Different Ages. Chin Biochem J,1996,12:234-236
    162.Van Heek M, Compton D S, France C F, et al. Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Invest,1997,99:385-390
    163.Van Laere A S, Nguyen M, Braunschweig M, et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature,2003,425:832-836
    164.Veerkamp J H, Maatman R. Cytoplasmic fatty acid-binding proteins:their structure and genes. Prog Lipid Res,1995,34:17-52
    165.Verstegen M W, van der Hel W, Brandsma H, et al. Effects of recombinant porcine somatotropin on metabolic rate in growing pigs. J Anim Sci,1991,69:2961-2970
    166.Wang D G, Fan J B, Siao C J, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science,1998, 280:1077-1082
    167.Weissman S M. Molecular genetic techniques for mapping the human genome. Mol Biol Med,1987,4:133-143
    168.Wu Y, Zhang H, Wang J, et al. Discovery of a SNP in exon 7 of the lipoprotein lipase gene and its association with fatness traits in native and Cherry Valley Peking ducks. Anim Genet,2008,39:564-566
    169.Xiong M, Li S, Peng X, et al. Adipogenesis in ducks interfered by small interfering ribonucleic acids of peroxisome proliferator-activated receptor gamma gene. Poult Sci,2010,89:88-95
    170.Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med,2002, 8:1288-1295
    171.Yang W S, Lee W J, Funahashi T, et al. Plasma adiponectin levels in overweight and obese Asians. Obes Res,2002,10:1104-1110
    172.Yuan J, Liu W, Liu Z L, et al. cDNA cloning, genomic structure, chromosomal mapping and expression analysis of ADIPOQ (adiponectin) in chicken. Cytogenet Genome Res,2006,112:148-151
    173.Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature,1994,372:425-432
    174.Zhang Z X, Zhang F D, Tang W H, et al. Construction and characterization of normalized cDNA library of maize inbred Mo 17 from multiple tissues and developmental stages. Mol Biol,2005,39:198-206
    175.Zhou Y T, Shimabukuro M, Koyama K, et al. Induction by Leptin of uncoupling protein-2 and enzymes of fatty acid oxidation. Proc Natl Acad Sci USA,1997,94: 6386-6390
    176.Zhu Y, Kan L, Qi C, et al. Isolation and characterization of peroxisome proliferator-activated receptor (PPAR) interacting protein (PRIP) as a coactivator for PPAR. J Biol Chem,2000,275:13510-13516
    177.Zhulidov P A, Bogdanova E A, Shcheglov A S, et al. Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Res,2004,32:e37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700