用户名: 密码: 验证码:
西北太平洋北赤道流分叉处37ka BP以来的高分辨率古海洋记录
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西北太平洋黑潮源区东接北赤道流、南邻西太平洋暖池,是连接低纬暖池—北赤道流和北半球中纬度黑潮主轴—续流区的纽带。该区域的古海洋环境变化研究,不仅能为从机制上探讨黑潮主轴和续流区古海洋环境演化提供依据,还能验证低纬暖池和北赤道流对北半球中纬度地区古海洋环境的影响。本研究选取了位于西北太平洋黑潮源区北赤道流分叉处的MD06-3054孔(14°30.2816’N,124°19.2400’E;水深:2021 m),其高分辨率的古海洋记录不仅能为研究薄弱的黑潮源区的古环境演化提供直接证据,还是低纬地区高分辨率古海洋记录的有力补充。
     在浮游有孔虫混合种Globigerinoides ruber(G. ruber)和Globigerinoides sacculifer(G. sacculifer)进行AMS14C测试,浮游有孔虫G. ruber和Pulleniatina obliquiloculata(P. obliquiloculata)壳体氧碳同位素进行测试,浮游有孔虫G. ruber壳体Mg/Ca比值进行测试,浮游和底栖有孔虫群落组成进行镜下鉴定统计,以及沉积物中总有机碳及其同位素进行测试的基础上,对MD06-3054孔记录的表层海水温度,表层海水盐度,温跃层深度,有机质输入,以及浮游和底栖有孔虫群落结构等的变化进行了恢复和重建。
     结果表明,该孔36.7ka BP以来的高分辨率记录中不仅发现了源自南半球高纬的末次冰消期δ13C宽幅低值事件,还存在可以与北半球高纬的Heinrich事件,Younger Dryas(YD)事件,8.2ka事件以及全新世的Bond事件相当的高频变化。这些事件与黑潮流域的古海洋记录之间有着很好的一致性,说明了低纬黑潮源区的古海洋环境演化对古黑潮以及冲绳海槽等黑潮流域的古海洋环境有着重要的影响。
     另外,该孔36.7ka BP以来的有机碳含量及其同位素变化都表现出对海平面冰期—冰后期变化的明显响应。末次冰期低海平面时,沉积物中有机碳含量高,以碳同位素值低的C3植物产生的有机质输入为主;冰后期高海平面时,沉积物中有机碳整体含量较低,以碳同位素值较高的海洋藻类植物产生的有机质输入为主。该孔全新世输入的陆源有机质类型还反映出邻近的菲律宾大陆7.3—10.8ka BP期间可能相对干旱,植被类型以C4植物为主;而在1.0—2.3ka BP和3.2—7.1ka BP期间可能相对较湿润,植被类型以C3植物为主。
     该孔中的浮游有孔虫群落以G. ruber,Globigerinita glutinata(G. glutinata),G. sacculifer等为代表的典型热带和亚热带组合为特征。各属种的变化反映出影响该孔浮游有孔虫群落结构变化的因素很多,同时也说明北赤道流分叉处36.7ka BP以来的海洋环境复杂多变。该孔中底栖有孔虫堆积速率和U+B含量的变化还显示,过高的有机质输入会抑制底栖有孔虫的生长和繁盛。
The Kuroshio Source Region (KSR) connects the Western Pacific Warm Pool (WPWP)—the North Equatorial Current (NEC) and the Kuroshio Main Course (KMC)—the Kuroshio Extension (KE). It is on the north edge of the WPWP, and the NEC flows into this area from the east. The paleoenvironment changes in the KSR not only provide hints to the mechanism of paleoenvironment in the KMC—KE area, but also offer evidences for the impacts of the tropical on the northern middle latitudes. The core MD06-3054 (14°30.2816’N, 124°19.2400’E; water depth: 2021 m) is selected to investigate the evolution of paleoenvironment in the KSR, located on the bifurcation of NEC in the northwestern Pacific. Its high-resolution records give valuable information in the KSR and important supplement for the low latitudes.
     The variations of sea surface temperature, sea surface salinity, the depth of thermocline, inputs of organic carbon, and the planktonic and benthic foraminiferal faunas are reconstructed with geochemical and micropaleontological methods in core MD06-3054. The tests of planktonic foraminifera mixed species of Globigerinoides ruber (G. ruber) and Globigerinoides sacculifer (G. sacculifer) were subjected to AMS 14C measuring, and the tests of planktonic foraminiferal species of G. ruber and Pulleniatina obliquiloculata (P. obliquiloculata) were subjected to carbon and oxygen isotope measuring, and the tests of planktonic foraminiferal species of G. ruber were subjected to Mg/Ca measuring, and the planktonic and benthic foraminifera faunas were identified under a microscope, and the total organic carbon (TOC) and its carbon isotope were also measured.
     It is found that the high-resolution records from core MD06-3054 agree with the changes of the Kuroshio Current and paleoenvironment in the Kuroshio drainage area, which inferred a robust link between the KSR and the Kuroshio drainage area since 36.7ka BP. The high-frequency variations occurred in the Kuroshio drainage area were also recorded in the KSR, such as the Heinrich events, the Younger Dryas event (YD), the 8.2ka event, and the Holocene events comparable with the Bond events. What is more, the last degalacial broadδ13C minimum event was also recorded, which is originated from the southern high latitudes.
     Moreover, the records of organic carbon show a response to the changes of sea level since the last glacial to the post glacial. The concentration of TOC is high and the isotope of organic carbon indicates that the main source of organic carbon is from the terrigenous C3 plants with negative values in sediment, responsing the low sea level during the last glacial; while a overall low concentration of TOC and organic carbon with much positive isotope in sediment shows that the main source of organic carbon was producted by marine algas, responsing the high sea level during the post glacial. During the Holocene, the kind of terrigenous inputs may suggest that it was droughty and there were much more C4 plants during 7.3—10.8ka BP, while it was humid and there were much more C3 plants during 1.0—2.3ka BP and 3.2—7.1ka BP, in the adjacent Philippines continent.
     The planktonic foraminiferal fauna is characteristic by the tropical and sub-tropical species, representing by G. ruber,Globigerinita glutinata (G. glutinata), and G. sacculifer. The variations of the planktonic foraminifera species indicate there were many factors affecting the planktonic fauna, which also suggest a complex and changeable environment on the bifurcation of the NEC since 36.7ka BP. What is more, the variations of the benthic foraminifera accumulation rate and the abundance of U+B show a inhibiting effect of high organic matter influx on the bloom of benthic foraminifera fauna in core MD06-3054.
引文
[1]冯士榨,李凤岐,李少菁海洋科学导论[M]北京,高等教育出版社1999:1—503
    [2]同济大学海洋地质系古海洋学概论[M]上海,同济大学出版社1989:1—316
    [3]汪品先古海洋学[]地球科学进展,1994,9(4):1—3
    [4]苍树溪,阎军西太平洋特定海域古海洋学M]青岛:青岛海洋大学出版社,1992:1—1 80
    [5]周祖翼,刘传联从oDP到10DP[J]海洋地质动态,2002,1 8(5):10一12+10
    [6]郝诒纯,茅绍智微体古生物教程[M]武汉:中国地质大学出版社,1993:1—326
    [7] Thompson P. Planktonic foraminifera in the western North Pacific during the past 150 000 years:comparison of modern and fossil assemblages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1981,35: 241-279.
    [8] Chen MT, Huang CC, Pflaumann U, et al. Estimating glacial western Pacific sea-surfacetemperature: methodological overview and data compilation of surface sediment planktic foraminiferfaunas[J]. Quaternary Science Reviews, 2005,24(7-9): 1049-1062.
    [9] Andreasen DJ, Ravelo AC. Tropical Pacific Ocean thermocline depth reconstructions for the lastglacial maximum[J]. Pale oceanography, 1997,12(3): 395-413.
    [10]李建如有孔虫壳体的Mg/ca比值在古环境研究中的应用[J]地球科学进展,2005,20(8):815—822
    [11]李丽,王慧,李建如等南海西部晚更新世以来表层海水剩余氧同位素及盐度变化[J]第四纪研究,2008,(3):399—406
    [12] Sanyal A, Bijma J, Spero H, et al. Empirical relationship between pH and the boron isotopiccomposition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy [J].Paleoceanography, 2001,16(5): 515-519.
    [13] Rostek F, Ruhlandt G, Bassinot FC, et al. Reconstructing sea surface temperature and salinityusing 518O and alkenone records[J]. Nature, 1993,364(6435): 319-321.
    [14] Lisiecki LE, Raymo ME. A Pliocene-Pleistocene stack of 57 globally distributed benthic S18Orecords[J]. Paleoceanography, 2005, 20, PA1003, doi:10.1029/2004PA001071.
    [15] Hughen K, Bailie M, Bard E, et al. MarineO4 Marine radiocarbon age calibration, 26—0 ka BP[J].Radiocarbon, 2004,46(3): 1059-1086.
    [16] Fairbanks RG, Mortlock RA, Chiu TC, et al. Radiocarbon calibration curve spanning 0 to 50,000years BP based on paired 23OTh/234U/238U and 14C dates on pristine corals[J]. Quaternary ScienceReviews, 2005,24(16-17): 1781-1796.
    [17] Reimer PJ, Baillie MGL, Bard E, et al. IntCalO9 and MarineO9 radiocarbon age calibration curves,0-50,000 years cal BP[J]. Radiocarbon, 2009,51(4): 1111-1150.
    [18] Li T, Liu Z, Hall MA, et al. The planktonic foraminiferal S13C broad minimum event during thelast deglacial in Okinawa Trough (in Chinese)[J]. Chinese Science Bulletin, 2002,47(4): 298-301.
    [19] Spero HJ, Lea DW. The Cause of Carbon Isotope Minimum Events on Glacial Terminations[J].Science, 2002,296(5567): 522-525.
    [20] Loubere P, Bennett S. Southern Ocean biogeochemical impact on the tropical ocean: Stableisotope records from the Pacific for the past 25,000 years[J]. Global and Planetary Change, 2008,63(4):333-340.
    [21] Toledo FAL, Cach o M, Costa KB, et al. Planktonic foraminifera, calcareous nannoplankton and ascidian variations during the last 25 kyr in the Southwestern Atlantic: A paleoproductivity signature?[J]. Marine Micropaleontology, 2007,64(1-2): 67-79.
    [22] Muzuka ANN, Macko SA. Late Pliocene to Early Pleistocene productivity in the Arabian Sea[J]. Journal of African Earth Sciences, 1995,20(3-4): 245-252.
    [23]南青云,李铁刚,陈金霞等南冲绳海槽’7000bP以来基于长链不饱和烯酮指标的古海洋生产力变化及其与气候的关系[J]第四纪研究,2008,28(3):482—490
    [24] Holmes M, Muller P, Schneider R, et al. Spatial variations in euphotic zone nitrate utilization based on S15N in surface sediments[J]. Geo-Marine Letters, 1998,18(1): 58-65.
    [25] Robinson RS, Meyers PA, Murray RW. Geochemical evidence for variations in delivery and deposition of sediment in Pleistocene light-dark color cycles under the Benguela Current Upwelling System[J]. Marine Geology, 2002,180(1-4): 249-270.
    [26]陈萍,方念乔,胡超涌有孔虫壳体644ca的古海洋学意义[J]安徽理工大学学报(自然科学版),2006,26(4):11—16
    [27] Kisakurek B, Eisenhauer A, Bohm F, et al. Controls on shell Mg/Ca and Sr/Ca in culturedplanktonic foraminiferan, Globigerinoides ruber (white)[J]. Earth and Planetary Science Letters,2008,273(3-4): 260-269.
    [28] Beck JW, Edwards RL, Ito E, et al. Sea-Surface Temperature from Coral SkeletalStrontium/Calcium Ratios[J]. Science, 1992,257(5070): 644-647.
    [29] Elderfield H, Rickaby REM. Oceanic Cd/P ratio and nutrient utilization in the glacial SouthernOcean[J]. Nature, 2000,405(6784): 305-310.
    [30]张俊,孟宪伟,夏鹏深海沉积物早期成岩过程中的Ba循环及其古海洋环境意义[J]海洋科学进展,2009,27(2):275—280
    [31]田正隆,陈绍勇,龙爱民以Ba为指标反演海洋古生产力的研究进展[J]热带海洋学报,2004,23(3):78—86
    [32] Dymond J, Suess E, Lyle M. Barium in deep-sea sediment: a geochemical proxy forpaleoproductivity[J]. Paleoceanography, 1992,7(2): 163-181.
    [33] Schmitz B. Barium, equatorial high productivity, and the northward wandering of the Indiancontinent[J]. Paleoceanography, 1987,2(1): 63-77.
    [34] Ivanochko TS, Calvert SE, Southon JR, et al. Determining the post-glacial evolution of anortheast Pacific coastal fjord using a multiproxy geochemical approach[J]. Canadian Journal of EarthSciences, 2008,45(11): 1331-1344.
    [35] Agnihotri R, Altabet MA, Herbert TD, et al. Subdecadally resolved paleoceanography of the Perumargin during the last two millennia[J]. Geochem. Geophys. Geosyst, 9, Q05013,doi: 10.1029/2007GC001744.
    [36] Sen AK, Filippelli GM, Flores JA. An application of wavelet analysis to paleoproductivity recordsfrom the Southern Ocean[J]. Computers & Geosciences, 2009,35(7): 1445-1450.
    [37]李小艳,石学法,程振波等表层海水古温度再造方法的研究进展[J]海洋科学进展,2008,26(4):512—521
    [38]龚庆杰,吴时国,罗又郎uk37海水表层温度[J]地球科学进展,1997,12(3):284—289
    [39] Prahl FG, Wakeham SG Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment[J]. Nature, 1987,330(6146): 367-369.
    [40] Meyers PA. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997,27(5-6): 213-250.
    [41] Goldman JC, Caron DA, Dennett MR. Regulation of gross growth efficiency and ammoniumregeneration in bacteria by substrate C: N ratio[J]. Limnology and Oceanography, 1987,32(6):1239-1252.
    [42] Leinen M, Cwienk D, Heath GR, et al. Distribution of biogenic silica and quartz in recentdeep-sea sediments[J]. Geology, 1986,14(3): 199-203.
    [43] Wan S, Li A, Clift PD, et al. Development of the East Asian summer monsoon: Evidence from thesediment record in the South China Sea since 8.5 Ma[J]. Palaeogeography, Palaeoclimatology,Palaeoecology, 2006,241(1): 139-159.
    [44] Boulay S, Colin C, Trentesaux A, et al. Sediment sources and East Asian monsoon intensity overthe last 450 ky. Mineralogical and geochemical investigations on South China Sea sediments[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2005,228(3-4): 260-277.
    [45] Murray R, Knowlton C, Leinen M, et al. Export production and carbonate dissolution in thecentral equatorial Pacific Ocean over the past 1 Myr[J]. Paleoceanography, 2000,15(6): 570-592.
    [46]叶曦雯,刘素美,张经生物硅的测定及其生物地球化学意义l Jl地球科学进展,2003,1 8(3):420一426
    [47]王汝建,李建南海0DP 1143站第四纪高分辨率的蛋白石记录及其古生产力意义[J]科学诵报.2003.48(1):74—77
    [48] Filippelli GM, Latimer JC, Murray RW, et al. Productivity records from the Southern Ocean and the equatorial Pacific Ocean: Testing the glacial She If-Nutrient Hypothesis[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007,54(21-22): 2443-2452.
    [49] Brumsack H-J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006,232(2-4): 344-361.
    [50]章伟艳,殷汝广,张富元等深海柱样粒度分维特征及其古海洋学意义[J]海洋通报,2005,24(1):41—46+55
    [51]万世明,李安春,wstuut J—B,et al南海北部0DPIl46站粒度揭示的近20Ma以来东亚季风演化[J]中国科学(D辑:地球科学),2007,37(6):761—770
    [52]徐方建,李安春,万世明等东海内陆架泥质区中全新世环境敏感粒度组分的地质意义[J]海洋学报(中文版),2009,31(3):95—102
    [53]党皓文,翦知滔,Framk B西菲律宾海末次冰期以来的浊流沉积及其古环境意义[J]第四纪研究,2009,29(6):1078—1085
    [54]袁耀初,苏纪兰1995年以来我国对黑潮及琉球海流的研究[J]科学通报,2000,(22):2353-2356
    [55] Kim YY, Qu T, Jensen T, et al. Seasonal and interannual variations of the North Equatorial Current bifurcation in a high-resolution OGCM[J]. Journal of Geophysical Research-Oceans, 2004, 109, C03040, doi:10.1029/2003JC002013.
    [56] Qiu B, Lukas R. Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary[J]. Journal of Geophysical Research-Oceans, 1996,101(C5): 12315-12330.
    [57] Qu TD, Lukas R The bifurcation of the North Equatorial Current in the Pacific[J]. Journal of Physical Oceanography, 2003,33(1): 5-18.
    [58] Yaremchuk M, Qu TD. Seasonal variability of the large-scale currents near the coast of the Philippmes[J]. Journal of Physical Oceanography, 2004,34(4): 844-855.
    [59]国家海洋局科技司黑潮调查研究综合报告[M]北京,海洋出版社1995:1—62
    [60]苏纪兰等海洋水文中国海洋地理[M]北京,科学出版社1996:93—129
    [61] Hickox R, Belkin I, Cornillon P, et al. Climatology and seasonal variability of ocean fronts in theEast China, Yellow and Bohai seas from satellite SST data[J]. Geophysical Research Letters,2000,27(18): 2945-2948.
    [62] QU T, MTSUDERA H, QIU B. A climatological view of the Kuroshio/Oyashio system east ofJapan[J]. Journal of Physical Oceanography, 2001,31(9): 2575-2589.
    [63] Heinrich H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean duringthe past 130,000 years[J]. Quaternary Research, 1988,29(2): 142-152.
    [64] Bond G, Broecker W, Johnsen S, et al. Correlations between climate records from North Atlanticsediments and Greenland ice[J]. Nature, 1993,365(6442): 143-147.
    [65] Broecker WS. Massive iceberg discharges as triggers for global climate change[J]. Nature,1994,372(6505): 421-424.
    [66] Li TG, Liu ZX, Hall MA, et al. Heinrich event imprints in the Okinawa Trough: evidence fromoxygen isotope and planktonic foraminifera[J]. Palaeogeography Palaeoclimatology Palaeoecology,2001,176(1-4): 133-146.
    [67]孟宪伟,杜德文,刘振夏等东海近3 5万年来古海洋环境变化的分子生物标志物记录[J]中国科学(D辑:地球科学),2001,31(8):691—696
    [68]刘嘉麒,倪云燕,储国强第四纪的主要气候事件[J]第四纪研究,2001,21(3):239—248
    [69] Peteet DM. Younger Dryas[M] in GORNITZ V. Encyclopedia of Paleoclimatology and AncientEnvironments; Springer Netherlands. 2009: 993-996.
    [70] Alley RB, Marotzke J, Nordhaus WD, et al. Abrupt Climate Change[J]. Science, 2003,299(5615):2005-2010.
    [71]汪品先,卞云华,李保华等西太平洋边缘海的“新仙女木”事件[J]中国科学(D辑:地球科学),1996,26(5):452—460
    [72] Li B, Jian Z, Wang P. Pulleniatina obliquiloculata as a paleoceanographic indicator in the southernOkinawa trough during the last 20,000 years[J]. Marine Micropaleontology, 1997,32(1-2): 59-69.
    [73] Alley RB, Mayewski PA, Sowers T, et al. Holocene climatic instability: A prominent, widespreadevent 8200 yr ago[J]. Geology, 1997,25(6): 483-486.
    [74] Alley RB, Agustsdottir AM. The 8k event: cause and consequences of a major Holocene abruptclimate change[J]. Quaternary Science Reviews, 2005,24(10-11): 1123-1149.
    [75] Rohling EJ, P like H. Centennial-scale climate cooling with a sudden cold event around 8,200years ago[J]. Nature, 2005,434(7036): 975-979.
    [76] Bond G, Kromer B, Beer J, et al. Persistent Solar Influence on North Atlantic Climate During theHolocene[J]. Science, 2001,294(5549): 2130-2136.
    [77] Bond G, Showers W, Cheseby M, et al. A Pervasive Millennial-Scale Cycle in North AtlanticHolocene and Glacial Climates[J]. Science, 1997,278(5341): 1257-1266.
    [78] Jian Z, Wang P, Saito Y, et al. Holocene variability of the Kuroshio Current in the OkinawaTrough, northwestern Pacific Ocean[J]. Earth and Planetary Science Letters, 2000,184(1): 305-319.
    [79] Chang FM, Li TG, Zhuang LH, et al. A Holocene paleotemperature record based on radiolariafrom the northern Okinawa Trough (East China Sea)[J]. Quaternary International, 2008,183: 115-122.
    [80] Isono D, Yamamoto M, Irino T, et al. The 1500-year climate oscillation in the midlatitude NorthPacific during the Holocene[J]. Geology, 2009,37(7): 591-594.
    [81] Anderson RF, Ali S, Bradtmiller LI, et al. Wind-Driven Upwelling in the Southern Ocean and theDeglacial Rise in Atmospheric CO2[J]. Science, 2009,323(5920): 1443-1448.
    [82] Skinner LC, Fallon S, Waelbroeck C, et al. Ventilation of the Deep Southern Ocean and Deglacial CO2Rise[J]. Science, 2010,328(5982): 1147-1151.
    [83]翦知滔,汪品先,李保华等西太平洋晚全新世变冷事件[J]中国科学(D辑:地球科学),1996,26(5):461—466
    [84] Lin Y-S, Wei K-Y, Lin I-T, et al. The Holocene Pulleniatina Minimum Event revisited: Geochemical and faunal evidence from the Okinawa Trough and upper reaches of the Kuroshio current[J]. Marine Micropaleontology, 2006,59(3-4): 153-170.
    [85]李铁刚,常凤鸣冲绳海槽古海洋学M]北京:海洋出版社,2009:204—220[86] Ujiie H, Tanaka Y, Ono T. Late Quarternary paleoceanographic record from the middle RyukyuTrench slope, northwest Pacific[J]. Marine Micropaleontology, 1991,18(1-2): 115-128.
    [87] Ujiie H, Ujiie Y Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arcregion, northwestern Pacific Ocean[J]. Marine Micropaleontology, 1999,37(1): 23-40.
    [88] Xin S, Kuo-Yen W. Calcareous Nannofossils and Variation of the Kuroshio Current in theOkinawa Trough During the Last 14000 Years[J]. TAO: Terrestrial, atmospheric, and oceanic sciences,2005,16(1): 95-111.
    [89] Diekmann B, Hofmann J, Henrich R, et al. Detrital sediment supply in the southern OkinawaTrough and its relation to sea-level and Kuroshio dynamics during the late Quaternary[J]. MarineGeology, 2008,255(1-2): 83-95.
    [90]阎军,苍树溪,Healy—wL1ams N末次间冰期以来古黑潮演化及其对气候变化的作用[J]海洋地质与第四纪地质,1995,15(1):25—40
    [91] Xu X, Oda M. Surface-water evolution of the eastern East China Sea during the last 36,000years[J]. Marine Geology, 1999,156(1-4): 285-304.
    [92] Ijiri A, Wang L, Oba T, et al. Paleoenvironmental changes in the northern area of the East ChinaSea during the past 42,000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,219(3-4): 239-261.
    [93]李铁刚,孙荣涛,张德玉等晚第四纪对马暖流的演化和变动:浮游有孔虫和氧碳同位素证据[Jl中国科学(D辑:地球科学),2007,3(f5):660一669
    [94] Kawahata H, Ohshima H. Vegetation and environmental record in the northern East China Sea during the late Pleistocene[J]. Global andPlanetary Change, 2004,41(3-4): 251-273.f4f:j£^ 2009,(20): 3117-3126.
    [95]徐红艳,常凤鸣,罗运利等冲绳海槽北部Pc一1岩芯24ka BP以来孢粉记录的古环境信息[J]科学通报.2009.(20):3117—3126
    [96] Li T, Zhao J, Sun R, et al. The variation of upper ocean structure and paleoproductivity in theKuroshio source region during the last 200 kyr[J]. Marine Micropaleontology, 2010,75(1-4): 50-61.
    [97] Yamagata T, Shibao Y, Umatanit S. Interannual variability of the Kuroshio Extension and itsrelation to the Southern Oscillation/El Nino[J]. Journal of Oceanography, 1985,41(4): 274-281.
    [98] Sawada K, Handa N. Variability of the path of the Kuroshio ocean current over the past 25,000years[J]. Nature, 1998,392(6676): 592-595.
    [99]袁耀初,刘勇刚,苏纪兰1997 1998年El—Ninor至La_Nma期间东海黑潮的变异[J]地球物理学报,2001,44(2):199—210
    [100] Patrick A, Thunell RC. Tropical Pacific Sea Surface Temperatures and Upper Water Column Thermal Structure During the Last Glacial Maximum [J]. Paleoceanography, 1997,12(5): 649-657.
    [101] QuT. Mixed layer heat balance in the western North Pacific[J]. Journal of Geophysical Research-Oceans, 2003, 108(C7), 3242,doi:10.1029/2002JC001536, 2003.
    [102] Lea DW, Pak DK, Spero HJ. Climate Impact of Late Quaternary Equatorial Pacific Sea SurfaceTemperatre Variations[J]Science,2000,289(5485):1719—1724
    [103]Visser K,Thunell R Stott L Magnitude and timing of temperature change in the Indo—Pacificwarm pool during deglaciation[J]NaCre,2003,421(6919):152—155
    [104]汪品先低纬过程的轨道驱动[J]第四纪研究,2006,26(5):694—701
    [105]汪品先,田军,成鑫荣等探索大洋碳储库的演变周期[J]科学通报,2003,48(21):2216—2227
    [106]汪品先,翦知滔,刘志飞地球圈层相互作用中的深海过程和深海记录(II):气候变化的热带驱动与碳循环l Jl地球科学进展,2006,24(4):338—345
    [107]汪品先全球季风的地质演变J]科学通报,2009,54(5):535—556
    [108]翦知滔,金海燕大洋碳循环与气候演变的热带驱动[J]地球科学进展,2008,159(3):221—227
    [109]Mitchell JM An overview of climatic variability and its causal mechanisms[J]QuaternaryResearch,1976,6(4):481—493
    [110]汪品先,翦知滔寻求高分辨率的古环境记录[J]第四纪研究,1999,1(1):1-17
    [111]翦知滔,黄维快速气候变化与高分辨率的深海沉积记录[J]地球科学进展,2003,1 8(5):673—680
    [112]Wiersma AP,Roche DM,Renssen H Fingerprinting the 8 2 ka event climate response in acoupled climate model[J]Journal ofQuaternary Science,2011,26(1):11 8-127
    [113]李常珍,李乃胜,林美华菲律宾海的地势特|正『J]海洋科学,2000,24(6):47—51
    [114]林美华,李乃胜菲律宾海周边的深海沟地貌[J]海洋科学,1998,(6):29—31
    [115]林美华,李乃胜琉球海沟构造地貌[J]青岛海洋大学学报(自然科学版),1998,28(3):497—501
    [116]林美华,李乃胜西菲律宾海中央断裂带地貌学研究[J]海洋地质与第四纪地质,1999,19(1):39—44
    [117]Hilde TWC,Chao—Shing L Origin and evolution of the West Philippine Basin:a newinterpretation[J]Tectonophysics,1984,102(1—4):85—104[11 8]孙守勋,滕军菲律宾海的气候特|正『J]海洋预报,2003,20(3):31—39
    [119]张弦,俞慕耕,江伟等菲律宾海及其邻近海区的水文特|正『J]海洋通报,2004,23(1):8-14
    [120]Qu TD,Lindstrom EJ Northward intrusion of Antarctic intermediate water in the westernPacific[J]Journal ofPhysical Oceanography,2004,34(9):2104—211 8
    [121]Sarmiento几,Gruber N,Brzezinski MA,et al High—latitude controls of thermocline nutrientsand low latitude biological productivity[J]Nature,2004,427:56—60
    [122]Toggweiler Jk,Dixon K,Broecker WS The Peru Upwelling and the Ventilation of the SouthPacific Thermocline[J]J Geophys Res,1991,96(c11):20,467—420,497
    [123]于非,蒲书箴,赵新等热带西太平洋主要流系的季节变化和年际变化[J]热带海洋,2000,19(1):30—37
    [124]汪品先,章纪军,赵泉鸿等东海地质中的有孔虫和介形虫[M]北京:海洋出版社,1988:1—1 80
    [125]Saito T,Thompson E Breger D Systematic index of Recent and Pleistocene planktonicforaminifera[M]Tokyo:University ofTokyoPress,1981:1-175
    [126]路波25万年来西太平洋暖池核心区古海洋学研究[D]青岛:中国科学院研究生院,2010:21—36
    [127]Barker S,Greaves M Elderfield H A study of cleaning procedures used for foraminiferal Mg/Capaleothermometry[J] Geochemistry Geophysics Geosystems,2003,4(9),8407,oi: 10.1029/2003GC000559.
    [128] Hedges JI, Stern JH. Carbon and nitrogen determinations of carbonate-containing solids[J].Limnology and Oceanography, 1984,29(3): 657-663.
    [129] Schulz M, Mudelsee M. REDFIT: estimating red-noise spectra directly from unevenly spacedpaleoclimatic time series[J]. Computers & Geosciences, 2002,28(3): 421-426.
    [130] Hasselmann K. Stochastic climate models Parti. Theory[J]. Tellus, 1976,28(6): 473-485.
    [131] Members NGICP. High-resolution record of Northern Hemisphere climate extending into the lastinterglacialpenod[J]. Nature, 2004,431(7005): 147-151.
    [132] Morimoto M, Abe O, Kayanne H, et al. Salinity records for the 1997-98 El Nino from WesternPacific corals[J]. Geophysical Research Letters, 2002,29(11), 1540, doi:10.1029/2001GL013521.
    [133] Iijima H, Kayanne H, Morimoto M, et al. Interannual sea surface salinity changes in the westernPacific from 1954 to 2000 based on coral isotope analysis[J]. Geophysical Research Letters, 2005,32(4):L04608, doi: 10.1029/2004GL022026.
    [134] Le Bee N, Julliet, Leclerc A, et al. A coral S18O record of ENSO driven sea surface salinityvariability in Fiji (south-western tropical Pacific)[J]. Geophysical Research Letters, 2000,27(23):3897-3900.
    [135] Schiller A, Mikolajewicz U, Voss R. The stability of the North Atlantic thermohaline circulationin a coupled ocean-atmosphere general circulation model[J]. Climate Dynamics, 1997,13(5): 325-347.
    [136] Delcroix T, Henin C, Porte V, et al. Precipitation and sea-surface salinity in the tropical PacificOcean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1996,43(7): 1123-1141.
    [137] Haug GH, Hughen KA, Sigman DM, et al. Southward Migration of the IntertropicalConvergence Zone Through the Holocene[J]. Science, 2001,293(5533): 1304-1308.
    [138] Hastenrath S, Greischar L. Circulation mechanisms related to northeast Brazil rainfallanomalies[J]. Journal of Geophysical Research, 1993,98(D3): 5093-5102.
    [139]杨彩福,焦新龙、彭灿。热带辐合带与南海气候[J ].海洋通报2003,22(6): 83-87.
    [140] Cane MA. ARole for the Tropical Pacific[J]. Science, 1998,282(5386): 59-61.
    [141] Cane MA. The evolution of El Nino, past and future[J]. Earth and Planetary Science Letters,2005,230(3-4): 227-240.
    [142] Webster PJ. The role of hydrological processes in ocean-atmosphere interactions[J]. Reviews ofGeophysics, 1994,32(4): 427-476.
    [143] Lea DW. The Glacial Tropical Pacific-Not Just a West Side Story[J]. Science, 2002,297(5579):202-203.
    [144] Partin JW, Cobb KM, Adkins JF, et al. Millennial-scale trends in west Pacific warm poolhydrology since the Last Glacial Maximum[J]. Nature, 2007,449(7161): 452-455.
    [145] Stott L, Poulsen C, Lund S, et al. Super ENSO and Global Climate Oscillations at MillennialTime Scales[J]. Science, 2002,297(5579): 222-226.
    [146] Stott L, Cannariato K, Thunell R, et al. Decline of surface temperature and salinity in the westerntropical Pacific Ocean mthe Holocene epoch[J]. Nature, 2004,431(7004): 56-59.
    [147] Members CP Seasonal reconstruction of the earth's surface at the last glacial maximum[J].Geological Society of America Map and Chart Series, 1981,MC-36: 1-18.
    [148] Members CP. The Surface of the Ice-Age Earth[J]. Science, 1976,191(4232): 1131-1137.
    [149] Stott L, Timmermann A, Thunell R. Southern Hemisphere and Deep-Sea Warming Led DeglacialAtmospheric CO2 Rise and Tropical Warmmg[J]. Science, 2007,318(5849): 435-438.
    [150] de Garidel-Thoron T, Rosenthal Y, Beaufort L, et al. A multiproxy assessment of the westernequatorial Pacific hydrography during the last 30 kyr[J]. Pale oceanography, 2007,22(3), PA3204,doi: 10.1029/2006PA001269.
    [151] Trend-Staid M, Prell WL. Sea surface temperature at the Last Glacial Maximum: Areconstruction using the modern analog technique[J]. Paleoceanography, 2002, 17(4), 1065,doi: 10.1029/2000PA000506.
    [152] Rind D, Peteet D. Terrestrial conditions at the Last Glacial Maximum and CLIMAP sea-surfacetemperature estimates: Are they consistent?[J]. Quaternary Research, 1985,24(1): 1-22.
    [153]路波,李铁刚,于心科等末次冰期最盛期热带西太平洋的海洋表层温度[J]海洋地质与第四纪地质,2010,30(4):31—38
    [154]王晓燕,李保华浅谈浮游有孔虫群落海水古温度估算『J]微体古生物学报,2006,23(2):1 82—190
    [155] HUTSON WH. The Agulhas Current During the Late Pleistocene: Analysis of Modern FaunalAnalogs[J]. Science, 1980,207(4426): 64-66.
    [156] Howard WR, Prell WL. Late Quaternary Surface Circulation of the Southern Indian Ocean andits Relationship to Orbital Variations[J]. Paleoceanography, 1992,7(1): 79-117.
    [157] Lea DW, Mashiotta TA, Spero HJ. Controls on magnesium and strontium uptake in planktonicforaminifera determined by live culturing[J]. Geochimica Et Cosmochimica Acta, 1999,63(16):2369-2379.
    [158] Niirnberg D, Bijma J, Hemleben C. Assessing the reliability of magnesium in foraminiferalcalcite as a proxy for water mass temperatures[J]. Geochimica Et Cosmochimica Acta, 1996,60(5):803-814.
    [159] Whitko AN, Hastings DW, Flower BP Past sea surface temperatures in the tropical South ChinaSea based on anew foraminiferal Mg cahbration[J]. MarSci, 2002,l,doi:MARSci.2002.01.020101.
    [160] Le J. Palaeotemperature estimation methods: Sensitivity test on two western equatorial pacificcores[J]. Quaternary Science Reviews, 1992,11(7-8): 801-820.[161徐学东,宇田理重,土桥正也等西北太平洋黑潮主轴区浮游有孔虫的垂直分布及其古海洋学意义l Jl第四纪研究,1999,(6):502—510
    [162]万随,翦知滔,成鑫荣等南沙海区浮游有孔虫通量及其壳体化学性质的季节变化l Jl中国科学:地球科学,2010,40(7):881—892
    [163]徐建壳体大小对浮游有孔虫生物地球化学记录的影响[J]矿物岩石地球化学通报,2010.29(2):109—11 8
    [164] Zhang JY, Wang Pa, Li QY, et al. Western equatorial Pacitic productivity and carbonatedissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A[J].Marine Micropaleontology, 2007,64(3-4): 121-140.
    [165] Henderson GM. New oceanic proxies for paleoclimate[J]. Earth and Planetary Science Letters,2002,203(1): 1-13.
    [166] Ferguson JE, Henderson GM, Kucera M, et al. Systematic change of foraminiferal Mg/Ca ratiosacross a strong salinity gradient[J]. Earth and Planetary Science Letters, 2008,265(1-2): 153-166.
    [167] Dueiias-Bohorquez A, da Rocha RE, Kuroyanagi A, et al. Effect of salinity and seawater calcitesaturation state on Mg and Sr incorporation in cultured planktonic foraminifera[J]. MarineMicropaleontology, 2009,73(3-4): 178-189.
    [168] Mathien-Blard E, Bassinot F. Salinity bias on the foraminifera Mg/Ca thermometry: Correctionprocedure and implications for past ocean hydrographic reconstructions[J]. Geochemistry GeophysicsGeosystems, 2009,10, Q12011, doi:10.1029/2008GC002353.
    [169] Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changesderived from benthic foraminifera isotopic records[J]. Quaternary Science Reviews, 2002,21(1-3):295-305.
    [170] Spero HJ, Mielke KM, Kalve EM, et al. Multispecies approach to reconstructing easternequatorial Pacific thermocline hydrography during the past 360 kyr[J]. Paleoceanography, 2003,18(1):1022, doi:10.1029/2002PA000814, 2003.
    [171] Koutavas A, Lynch-Stieglitz J, Marchitto Jr TM, et al. El Nino-like pattern in ice age tropicalPacific sea surface temperature[J]. Science, 2002,297(5579): 226-230.
    [172] Stewart RH. Introduction To Physical Oceanography [M]. Department of Oceanography Texas A& M University. 2008: 73-102.
    [173] Turk D, McPhaden MJ, Busalacchi AJ, et al. Remotely Sensed Biological Production in theEquatorialPacific[J]. Science, 2001,293(5529): 471-474.
    [174] QiuB, Miao W. Kuroshio Path Variations South of Japan: Bimodality as a Self-Sustained InternalOscillation[J]. Journal of Physical Oceanography, 2000,30(8): 2124-2137.
    [175]王吉良,斋藤文纪,大场忠道等近万年来冲绳海槽温跃层的高分辨率记录[J]中国科学(D辑:地球科学),2000,30(3):233—238
    [176] Xu J, Holbourn A, Kuhnt W, et al. Changes in the thermocline structure of the Indonesianoutflow during Terminations I andII[J]. Earth andPlanetary Science Letters, 2008,273(1-2): 152-162.
    [177] Steinke S, Mohtadi M, Groeneveld J, et al. Reconstructing the southern South China Sea upperwater column structure since the Last Glacial Maximum: Implications for the East Asian wintermonsoon development^]. Paleoceanography, 2010,25(2): PA2219, doi:10.1029/2009PA001850.
    [178] Ravelo AC, Fairbanks RG. Oxygen Isotopic Composition of Multiple Species of PlanktonicForaminifera: Recorders of the Modern Photic Zone Temperature Gradient[J]. Paleoceanography,1992,7(6): 815-831.
    [179] Mulitza S, Durkoop A, Hale W, et al. Planktonic foraminifera as recorders of past surface-waterstratification[J]. Geology, 1997,25(4): 335-338.
    [180] FAIRBANKS RG, WIEBE PH, BE AWH. Vertical Distribution and Isotopic Composition ofLiving Planktonic Foraminifera in the WesternNorthAtlantic[J]. Science, 1980,207(4426): 61-63.
    [181] ChenM-T, Prell WL. Faunal distribution patterns of planktonic foraminifers in surface sedimentsof the low-latitude Pacific[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998,137(1-2):55-77.
    [182]成鑫荣,汪品先运用超微化石探索晚第四纪冲绳海槽上层海水垂向结构的变化[J]中国科学(D辑:地球科学),1998,28(2):137—141
    [183] Beaufort L, Lancelot Y, Camberlin P, et al. Insolation Cycles as a Major Control of EquatorialIndian Ocean Primary Production[J]. Science, 1997,278(5342): 1451-1454.
    [184] Cleroux C, Cortijo E, Duplessy J-C, et al. Deep-dwelling foraminifera as thermoclinetemperature recorders[ J]. Geochem Geophys Geosyst, 2007,8(4): Q04N11,doi: 10.1029/2006GC001474.
    [185] Farmer EC, Kaplan A, de Menocal PB, et al. Corroborating ecological depth preferences ofplanktonic foraminifera in the tropical Atlantic with the stable oxygen isotope ratios of core topspecimens[J]. Paleoceanography, 2007,22(3): PA3205, doi:10.1029/2006PA001361.
    [186] Beaufort L, de Garidel-Thoron T, Mix AC, et al. ENSO-like Forcing on Oceanic PrimaryProduction During the Late Pleistocene[J]. Science, 2001,293(5539): 2440-2444.
    [187] Wang Y, Cheng H, Edwards RL, et al. The Holocene Asian Monsoon: Links to Solar Changesand North Atlantic Climate[J]. Science, 2005,308(5723): 854-857.
    [188] Stuiver M, Braziunas TF. Sun, ocean, climate and atmospheric 14CO2 : an evaluation of causaland spectral relationships[J]. The Holocene, 1993,3(4): 289-305.
    [189] Dykoski CA, Edwards RL, Cheng H, et al. A high-resolution, absolute-dated Holocene anddeglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters,2005,233(1-2): 71-86.
    [190] Ruddiman WF. Orbital changes and climate[J]. Quaternary Science Reviews, 2006,25(23-24):3092-3112.
    [191] Berger A, Loutre M. Intertropical latitudes and precessional and half-precessional cycles[J].Science, 1997,278(5342): 1476.
    [192] Short DA, Mengel JG, Crowley TJ, et al. Filtering of Milankovitch cycles by Earth'sgeography[J]. Quaternary Research, 1991,35(2): 157-173.
    [193] GODDARD L, DILLEY M. El Nino: Catastrophe or Opportunity[J]. Journal of Climate, 2005,18(5): 651-665.
    [194] Zhang Y, Wallace JM, Battisti DS. ENSO-like interdecadal variability: 1900-93[J]. Journal ofClimate, 1997,10(5): 1004-1020.
    [195] Mantua NJ, Hare SR, Zhang Y, et al. A Pacific interdecadal climate oscillation with impacts onsalmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1069-1079.
    [196] Bond G Millennial Climate Vanabihty[M] in GORNITZ V. Encyclopedia of Paleochmatologyand Ancient Environments; Springer Netherlands. 2009: 568-573.
    [197] Betzer PR, Showers WJ, Laws EA, et al. Primary productivity and particle fluxes on a transect ofthe equator at 153 W in the Pacific Ocean[J]. Deep Sea Research Part A Oceanographic ResearchPapers, 1984,31(1): 1-11.
    [198]黄永建,王成善,汪云亮古海洋生产力指标研究进展[J]地学前缘,2005,12(2):163—170
    [199]倪建宇,姚旭莹古海洋生产力的研究方法[J]海洋地质动态,2004,20(3):30一39+32
    [200] Suess E. Particulate organic carbon flux in the oceans—surface productivity and oxygenutilization^]. Nature, 1980,288(5788): 260-263.
    [201] Herguera JC, Berger WH. Paleoproductivity from benthic foraminifera abundance: Glacial topostglacial change in the west-equatorial Pacific[J]. Geology, 1991,19(12): 1173-1176.
    [202]陈建芳古海洋研究中的地球化学新指标[J]地球科学进展,2002,17(3):402—410
    [203] Hayes J. Factors controlling 13C contents of sedimentary organic compounds: Principles andevidence[J]. Marine Geology, 1993,113(1-2): 111-125.
    [204] Cerling TE, Wang Y, Quade J. Expansion of C4 ecosystems as an indicator of global ecologicalchange in the late Miocene[J]. Nature, 1993,361(6410): 344-345.
    [205] Gearing P, Plucker FE, Parker PL. Organic carbon stable isotope ratios of continental marginsediments[J]. Marine Chemistry, 1977,5(3): 251-266.
    [206] Meyers PA, Teranes JL. Sediment organic matter [J]. Developments in PaleoenvironmentalResearch, 2002,Volume 2: 239-269.
    [207] O'Leary MH. Carbon isotopes in photosynthesis[J]. Bioscience, 1988,38(5): 328-336.
    [208] Bender MM. Variations in the 13C/12C ratios of plants in relation to the pathway of photosyntheticcarbon dioxide fixation[J]. Phytochemistry, 1971,10(6): 1239-1244.
    [209]唐珉,杨守业,李保华等长江三角洲冰后期沉积物的有机碳氮和有机碳同位素组成与古环境指示[J]海洋地质与第四纪地质,2006,26(5):1—10
    [210] Johnsen SJ, Dahl-Jensen D, Gundestrup N, et al. Oxygen isotope and palaeotemperature recordsfrom six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP[J].Journal of Quaternary Science, 2001,16(4): 299-307.
    [211] Dahl-Jensen D, MosegaardK, GundestrupN, etal. Past temperatures directly from the Greenlandice sheet[J]. Science, 1998,282(5387): 268-271.
    [212] Lamb AL, Leng MJ, Umer Mohammed M, et al. Holocene climate and vegetation change in theMain Ethiopian Rift Valley, inferred from the composition (C/N and S13C) of lacustrine organic matter[J]. Quaternary Science Reviews, 2004,23(7-8): 881-891.
    [213]牛书丽,蒋高明,李永庚C3与c植物的环境调控[J]生态学报,2004,24(2):.308—314
    [214]龚春梅,宁蓬勃,王根轩等c3和c4植物光合途径的适应性变化和进化[J]植物生态学报,2009,33(1):206—2212009,33(1): 206-221.
    [215] Dowsett HJ. Planktic Foraminifera [M] in Elias SA. Encyclopedia of Quaternary Science;Elsevier. 2007: 1678-1682.
    [216] Corliss BH, Chen C. Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera andecological imphcations[J]. Geology, 1988,16(8): 716-719.
    [217] Fairbanks RG, Sverdlove M, Free R, et al. Vertical distribution and isotopic fractionation of livingplanktomc foraminifera from the Panama Basm[J]. Nature, 1982,298(5877): 841-844.
    [218] Jorissen F. Benthic Foraminiferal microhabitats below the sediment-water interface [M] inGUPTAB S. Modern Foraminifera. Dordrecht; Kluwer. 1999: 161-180.
    [219] Jorissen FJ, Rohling EJ. Faunal perspectives on paleoproductivity[J]. Marine Micropaleontology,2000,40(3): 131-134.
    [220]翦知滔,陈荣华,李保华冲绳海槽南部20ka来深水底栖有孔虫的古海洋学记录l Jl中国科学(D辑:地球科学),1996,26(:5):467—473
    [221]向荣,李铁刚,杨作升等冲绳海槽南部表层沉积中底栖有孔虫分布:水团和食物供应的共同制约l Jl海洋学报(中文版),2003,25(、2):141—148
    [222]丁旋,方念乔,万晓樵孟加拉湾晚第四纪冰期和间冰期古生产力演变研究l Jl海洋地质与第四纪地质,1…999,19f3):49—58
    [223]李铁刚,赵京涛,孙荣涛等250kbP以来西太平洋暖池中心区——0mon坚Java海台古生产力演化l Jl第四纪研究,2008,28(3):447—457
    [224]李铁刚,向荣,孙荣涛等冲绳海槽中南部1 8ka以来的底栖有孔虫与底层水演化l Jl中国科学D辑:地球科学,2004,34f02]:163—170
    [226]卞云华,王律江,汪品先底栖有孔虫指示含氧量与古生产力…一南海北部陆坡晚第四纪的实例[J]南海晚第四纪古海洋学研究,1992:227—233
    [227]张江勇,汪品先深海研究中的底栖有孔虫:回顾与展望l Jl地球科学进展,2004,19(4):545—551
    [228] Jorissen FJ, de Stigter HC, Widmark JGV A conceptual model explaining benthic foraminiferalmicrohabitats[J]. Marine Micropaleontology, 1995,26(1-4): 3-15.
    [229] Gooday A, Rathburn A. Temporal variability in living deep-sea benthic foraminifera: a review [J].Earth Science Reviews, 1999,46(1): 187-212.
    [230] Naidu PD, Malmgren BA. Do benthic foraminifer records represent a productivity index inoxygen minimum zone areas? An evaluation from the Oman Margin, Arabian Sea[J]. MarineMicropaleontology, 1995,26(1-4): 49-55.
    [231] McCave IN, Carter L, Hall IR. Glacial-interglacial changes in water mass structure and flow inthe SW Pacific Ocean[J]. Quaternary Science Reviews, 2008,27(19-20): 1886-1908.
    [232] Schmiedl G, de Bovee F, Buscail R, et al. Trophic control of benthic foraminiferal abundance andmicrohabitat in the bathyal Gulf of Lions, western Mediterranean Sea[J]. Marine Micropaleontology,2000,40(3): 167-188.
    [233] Gooday A, Turley C. Responses by Benthic Organisms to Inputs of Organic Material to theOcean Floor: A Review[J]. Royal Society of London Philosophical Transactions Series A, 1990,331:119-138.
    [234] Wollenburg JE, Kuhnt W. The response of benthic foraminifers to carbon flux and primaryproduction in the Arctic Ocean[J]. Marine Micropaleontology, 2000,40(3): 189-231.
    [235] Drazen J, Baldwin R, Smith K. Sediment community response to a temporally varying foodsupply at an abyssal station in the NE Pacific [J]. Deep-Sea Research Part II, 1998,45(4-5): 893-913.
    [236] Gooday AJ. A response by benthic Foraminifera to the deposition of phytodetritus in the deepsea[J]. Nature, 1988,332: 70-73.
    [237] Loubere P, Richaud M. Some reconciliation of glacial-interglacial calcite flux reconstructions forthe eastern equatorial Pacific [J]. Geochemistry Geophysics Geosystems, 2007, 8, Q03008,doi: 10.1029/2006GC001367.
    [238] Witte U, Wenzh fer F, Sommer S, et al. In situ experimental evidence of the fate of aphytodetritus pulse at the abyssal sea floor[J]. Nature, 2003,424: 763-766.
    [239] Schmiedl G, Mackensen A, Miller P. Recent benthic foraminifera from the eastern South AtlanticOcean: Dependence on food supply and water masses[J]. Marine Micropaleontology, 1997,32(3-4):249-287.
    [240] Gooday A. Biological responses to seasonally varying fluxes of organic matter to the ocean floor:areview[J]. Journal of Oceanography, 2002,58(2): 305-332.
    [241]江波,李铁刚,孙荣涛等末次冰期Heinrich事件研究进展[J]海洋科学,2007,(11):73—77
    [242] Dansgaard W, Johnsen SJ, Clausen HB, et al. Evidence for general instability of past climatefrom a 250-kyr ice-core record[J]. Nature, 1993,364(6434): 218-220.
    [243] Hughen KA, Southon JR, Lehman SJ, et al. Synchronous radiocarbon and climate shifts duringthe last deglaciation[J]. Science, 2000,290(5498): 1951-1954.
    [244] Dansgaard W, White JWC, Johnsen SJ. The abrupt termination of the Younger Dryas climateevent[J]. Nature, 1989,339(6225): 532-534.
    [245] Thomas ER, Wolff EW, Mulvaney R, et al. The 8.2 Ka event from Greenland ice cores[J].Quaternary Science Reviews, 2007,26(1-2): 70-81.
    [246] Oppo DW, Fairbanks RG Carbon Isotope Composition of Tropical Surface Water during the Past22,000 Years[J]. Paleoceanography, 1989,4(4): 333-351.
    [247] Ujiie Y, Ujiie H, Taira A, et al. Spatial and temporal variability of surface water in the Kuroshiosource region, Pacific Ocean, over the past 21,000 years: evidence from planktonic foraminifera[J].Marine Micropaleontology, 2003,49(4): 335-364.
    [248] Anderson DE. Younger Dryas research and its implications for understanding abrupt climaticchange[J]. Progress in Physical Geography, 1997,21(2): 230-249.
    [249] Stmver M, Grootes PM. GISP2 Oxygen Isotope Ratios[J]. Quaternary Research, 2000,53(3):277-284.
    [250] Martinson D, Pisias N, Hays J, et al. Age dating and the orbital theory of the ice ages:Development of a high-resolution 0 to 300,000-year chronostratigraphy^J]. Quaternary Research,1987,27(1): 1-29.
    [251] Linsley BK, Dunbar RB. The Late Pleistocene History of Surface Water S13C in the Sulu Sea:Possible Relationship to Pacific Deepwater S13C Changes[J]. Paleoceanography, 1994,9(2): 317-340.
    [252] Sigman DM, Hain MP, Haug GH. The polar ocean and glacial cycles in atmospheric CO2concentration^]. Nature, 2010,466(7302): 47-55.
    [253] Denton GH, Anderson RF, Toggweiler JR, et al. The Last Glacial Termination[J]. Science,2010,328(5986): 1652-1656.
    [254] Curry WB, Crowley TJ. The S13C of Equatorial Atlantic Surface Waters: Implications for Ice AgepCO2Levels[J]. Paleoceanography, 1987,2(5): 489-517.
    [255] Ninnemann US, Charles CD. Regional Differences in Quaternary Subantarctic Nutrient Cycling:Link to Intermediate and Deep Water Ventilation[J]. Paleoceanography, 1997,12(4): 560-567.
    [256] Lynch-Stieglitz J, Fairbanks RG, Charles CD. Glacial-interglacial History of AntarcticIntermediate Water: Relative Strengths of Antarctic Versus Indian Ocean Sources[J]. Paleoceanography,1994,9(1): 7-29.
    [257] Bostock HC, Opdyke BN, Gagan MK, et al. Carbon isotope evidence for changes in AntarcticIntermediate Water circulation and ocean ventilation in the southwest Pacific during the lastdeglaciation[J]. Paleoceanography, 2004,19(4): PA4013, doi:10.1029/2004PA001047.
    [258] Grootes PM, Stuiver M, White JWC, et al. Comparison of oxygen isotope records from theGISP2 and GRIP Greenland ice cores[J]. Nature, 1993,366(6455): 552-554.
    [259] Shackleton NJ, Hall MA, Line J, et al. Carbon isotope data in core VI9-30 confirm reducedcarbon dioxide concentration in the ice age atmosphere[J]. Nature, 1983,306(5941): 319-322.
    [260] Thunell RC, Qingmin M, Calvert SE, et al. Glacial-Holocene Biogenic Sedimentation Patterns inthe South China Sea: Productivity Variations and Surface Water pCO2[J]. Paleoceanography, 1992,7(2):143-162.
    [261] Hughen K, Lehman S, Southon J, et al. 14C activity and global carbon cycle changes over the past50,000 years[J]. Science, 2004,303: 202-207.
    [262] Kohler P, Fischer H, Munhoven G, et al. Quantitative interpretation of atmospheric carbonrecords over the last glacial termination[J]. Global Biogeochemical Cycles, 2005,19(4): GB4020,doi: 10.1029/2004GB002345.
    [263] Smith HJ, Fischer H, Wahlen M, et al. Dual modes of the carbon cycle since the Last GlacialMaximum[J]. Nature, 1999,400(6741): 248-250.
    [264] Monnin E, Indermuhle A, Dallenbach A, et al. Atmospheric CO2 Concentrations over the LastGlacial Termination^]. Science, 2001,291(5501): 112-114.
    [265] Alley RB. The Younger Dryas cold interval as viewed from central Greenland[J]. QuaternaryScience Reviews, 2000,19(1-5): 213-226.
    [266] Brauer A, Endres C, Giinter C, et al. High resolution sediment and vegetation responses toYounger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany[J].Quaternary Science Reviews, 1999,18(3): 321-329.
    [267] Wang YJ, Cheng H, Edwards RL, et al. A High-Resolution Absolute-Dated Late PleistoceneMonsoon Record from Hulu Cave, China[J]. Science, 2001,294(5550): 2345-2348.
    [268] Zhou W, Head MJ, An Z, et al. Terrestrial evidence for a spatial structure of tropical-polarinterconnections during the Younger Dryas episode[J]. Earth and Planetary Science Letters,2001,191(3-4): 231-239.
    [269] Madsen DB, Jingzen L, Elston RG, et al. The Loess/Paleosol Record and the Nature of theYounger Dryas Climate in Central China[J]. Geoarchaeology: An International Journal, 1998,13(8):847-869.
    [270] Barrows TT, Lehman SJ, Fifield LK, et al. Absence of Cooling in New Zealand and the AdjacentOcean During the Younger Dryas Chronozone[J]. Science, 2007,318(5847): 86-89.
    [271] Bennett KD, Haberle SG, Lumley SH. The Last Glacial-Holocene Transition in Southern Chile[J].Science, 2000,290(5490): 325-328.
    [272]李铁刚,常凤鸣,于心科Younger Dryas事件与北黄海泥炭层的形成[J]地学前缘,2010,17(1):322—329
    [273] Marshall JD, Lang B, Crowley SF, et al. Terrestrial impact of abrupt changes in the NorthAtlantic thermohaline circulation: Early Holocene, UK[J]. Geology, 2007,35(7): 639-642.
    [274] Hu FS, Slawinski D, Wright HE, et al. Abrupt changes in North American climate during earlyHolocene times[J]. Nature, 1999,400(6743): 437-440.
    [275] Ellison CRW, Chapman MR, Hall IR. Surface and Deep Ocean Interactions During the ColdClimate Event 8200 Years Ago[J]. Science, 2006,312(5782): 1929-1932.
    [276] Came RE, Oppo DW, McManus JF. Amplitude and timing of temperature and salinity variabilityin the subpolar North Atlantic over the past 10 k.y [J]. Geology, 2007,35(4): 315-318.
    [277] Jackson MG, Oskarsson N, Tronnes RG, et al. Holocene loess deposition in Iceland: Evidence formillennial-scale atmosphere-ocean coupling in the North Atlantic [J]. Geology, 2005,33(6): 509-512.
    [278]郭正堂,NPeti~Make,刘东生全新世期间亚洲和非洲干旱区环境的短尺度变化[J]古地理学报,1999,1(1):68—74
    [279] Neff U, Burns SJ, Mangini A, et al. Strong coherence between solar variability and the monsoonin Oman between 9 and 6 kyr ago[J]. Nature, 2001,411(6835): 290-293.
    [280]金章东,Yu J,吴艳宏等8 2ka BP冷气候事件确实在中国发生过吗’[J]地质论评,2007,(05):616-623
    [281] Muscheler R, Beer J, Vonmoos M. Causes and timing of the 8200 yr BP event inferred from thecomparison of the GRIP 10Be and the tree ring A14C record[J]. Quaternary Science Reviews,2004,23(20-22): 2101-2111.
    [282] Hemming SR. Heinrich events: Massive late pleistocene detritus layers of the North Atlantic andtheir global climate imprmt[J]. Reviews of Geophysics, 2004,42(RG1005): 1-43.
    [283] Broecker WS, Peteet DM, Rind D. Does the ocean-atmosphere system have more than one stablemode of operation?[J]. Nature, 1985,315(6014): 21-26.
    [284] Overpeck J, Hughen K, Hardy D, et al. Arctic Environmental Change of the Last FourCenturies[J]. Science, 1997,278(5341): 1251-1256.
    [285] Ganopolski A, Rahmstorf S. Abrupt glacial climate changes due to stochastic resonance[J].Physical Review Letters, 2002,88(3), doi:10.1103/PhysRevLett.88.038501.
    [286] Hemming S. Heinrich Events[M] in GORNITZ V. Encyclopedia of Paleoclimatology andAncient Environments; Springer Netherlands. 2009: 409-414.
    [287] LeGrande AN. The 8,200-Year BP Event[M] in GORNITZ V. Encyclopedia of Paleoclimatologyand Ancient Environments; Springer Netherlands. 2009: 938-943.
    [288] Bond GC, Lotti R Iceberg Discharges into the North Atlantic on Millennial Time Scales Duringthe Last Glaciation[J]. Science, 1995,267(5200): 1005-1010.
    [289] Braun H, Christl M, Rahmstorf S, et al. Possible solar origin of the 1,470-year glacial climatecycle demonstrated in a coupled model[J]. Nature, 2005,438(70695): 208-211.
    [290] Schaefer JM, Denton GH, Kaplan M, et al. High-Frequency Holocene Glacier Fluctuations inNew Zealand Differ from the Northern Signature[J]. Science, 2009,324(5927): 622-625.
    [291] Clement AC, Cane MA, Seager R. An Orbitally Driven Tropical Source for Abrupt ClimateChange[J]. Journal of Climate, 2001,44(11): 2365-2379.
    [292] Peterson LC, Haug GH, Hughen KA, et al. Rapid Changes in the Hydrologic Cycle of theTropical Atlantic During the Last Glacial[J]. Science, 2000,290(5498): 1947-1951.
    [293] Turney CSM, Kershaw AP, Clemens SC, et al. Millennial and orbital variations of ElNino/Southern Oscillation and high-latitude climate in the last glacial period[J]. Nature,2004,428(6980): 306-310.
    [294]陈锦年,何宜军,许兰英等西太平洋次表层海温异常与北赤道流异常海温西传[J]水科学进展,2002,13(2):133—140

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700