用户名: 密码: 验证码:
含异步化汽轮发电机的电力系统低频振荡稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于以传统同步发电机作为主要发电设备的现代电力系统,随着快速励磁系统的引入,削弱了机电振荡模式的阻尼,使机电振荡模式呈现弱阻尼甚至负阻尼,导致电力系统振荡失稳问题变得日益突出。异步化汽轮发电机作为一种新型发电机,其转子结构和励磁控制的特点,使其具有超越传统同步发电机的优良运行性能和阻尼特性。论文主要针对电力系统的低频振荡问题,从异步化汽轮发电机的阻尼特性出发,通过在电力系统中引入异步化汽轮发电机部分取代传统同步发电机后,对电力系统低频振荡的抑制作用进行了深入研究。
     论文首先对异步化汽轮发电机在单机无穷大系统下的稳态和暂态运行性能进行了研究,指出采用双通道励磁控制策略的异步化汽轮发电机具有独立的有功和无功调节、深度吸无功进相运行以及无功(电压)调节的快速响应性等超越传统同步发电机的优良稳态运行性能,以及在暂态过程中实现励磁磁场最佳定向,维持较大电磁转矩和电压稳定的良好暂态运行性能,指出异步化汽轮发电机为解决超高压和长距离输电系统的稳定问题以及由无功过剩所引起的持续工频过电压问题提供了新的途径。
     论文从阻尼角度对现代电力系统产生低频振荡的原因进行了分析,指出传统同步发电机采用以机端电压作为反馈的快速励磁控制系统可能削弱系统的机电模式阻尼,使系统的机电振荡模式呈现弱阻尼甚至负阻尼,从而导致电力系统出现低频振荡现象;同时指出抑制电力系统低频振荡最根本的措施就是增强系统的机电模式阻尼,抵消由快速励磁系统引起的负阻尼效应。
     论文详细分析了异步化汽轮发电机的阻尼特性,尤其对双通道励磁控制策略下异步化汽轮发电机的闭环阻尼特性进行了深入的研究,并与传统同步发电机的阻尼特性进行了对比分析,结果表明异步化汽轮发电机的阻尼特性要明显优于传统同步发电机,单机无穷大系统下异步化汽轮发电机的同步转矩系数和阻尼转矩系数与发电机的运行状态无关,而仅与励磁控制系数、发电机参数和输电线路参数有关,通过励磁控制的调节可对同步转矩系数和阻尼转矩系数进行改善,使系统具有良好的稳定性和足够的阻尼。
     论文建立了含异步化汽轮发电机并考虑阻尼绕组作用的多机电力系统线性化数学模型,在分析异步化汽轮发电机阻尼特性的基础上,提出了在电力系统中利用异步化汽轮发电机部分取代传统同步发电机来有效抑制低频振荡的理论和方法,并对含异步化汽轮发电机的电力系统进行了关于低频振荡问题的仿真研究和验证,从仿真角度论证了异步化汽轮发电机的引入对电力系统低频振荡的有效抑制作用。
     论文将电力系统引入异步化汽轮发电机后对低频振荡的抑制作用和电力系统稳定器对低频振荡的抑制作用进行了对比研究,指出异步化汽轮发电机在有效抑制电力系统低频振荡的同时,还能够提高系统的暂态稳定性,同时具有吸收过剩无功等综合作用,因此在提高电力系统稳定性方面能够发挥更大的作用。
     论文将异步化汽轮发电机的研究重点从发电机本体转移到电力系统,从电力系统的角度对异步化汽轮发电机进行研究,所取得的研究成果对于异步化汽轮发电机投入工程实际应用具有重要的理论价值。
In the modern power system with the conventional synchronous generator as major power generation equipment, the rapid excitation system of generators has weakened the damping of the electrical and mechanical oscillation mode, so the electrical and mechanical oscillation mode showed weak or even negative damping that leading to unstable power system oscillations change issues in the increasingly prominent. The asynchronized turbogenerator as a new generator, owing to the rotor structure and excitation control, goes beyond the conventional synchronous generator with the excellent performance and damping characteristics. In this paper mainly aiming at the low-frequency oscillations of power system, based on the damping characteristics of the asynchronized turbogenerator, the low-frequency oscillations of the power system have been deeply researched when the asynchronized turbogenerator partly replacing the conventional synchronous generator in power system.
     Firstly the steady-state and transient-state operation of the asynchronized turbogenerator was studied in the one-machine infinite-bus power system. The results showed that the asynchronized turbogenerator under the dual-channel excitation control strategy has the fine steady operating performances beyond the conventional synchronous generator such as independent active and reactive power regulation, in-depth absorption into reactive power and the rapid response reactive power(voltage) regulation, as well as the transient process of achieving optimal excitation magnetic field orientation, maintaining larger electromagnetic torque and good transient voltage stability. The asynchronized turbogenerator has supplied a new way to solve the problems of continuous over voltage on extra-high voltage transmission lines due to the surplus of reactive power and the stability of power systems with long distance transmission line.
     The causes has been analysed that producing the low-frequency oscillation of modern power system from the perspective of damping. The results showed that the rapid excitation control system of conventional synchronous generator with voltage as feedback may weaken the damping of the electrical and mechanical oscillation mode, and the electrical and mechanical oscillation mode shows weak or even negative damping, that resulting the low frequency oscillation phenomenon in the power system, and the results pointed out that the most fundamental measure restraining low frequency oscillation is to enhance the damping of the electrical and mechanical oscillation mode, offset the negative damping effect by the rapid excitation system.
     The damping characteristics of the asynchronized turbogenerator has been detailed analysed, particularly the closed-loop damping characteristics of the asynchronized turbogenerator under dual-channel excitation control strategy was in-depth researched, and was compared with the damping characteristics of the conventional synchronous generator. The results showed that the damping characteristics of the asynchronized turbogenerator is superior to conventional synchronous generator, such as in the one-machine infinite-bus power system synchronous torque coefficient and damping torque coefficient is independent of the operational status of generators, but is only dependent on the excitation control parameters, the generator parameters and the transmission line parameters, through the regulation of excitation control parameters can improve synchronous torque coefficient and damping torque coefficient and the power system has a good stability and adequate damping.
     In this paper the linear mathematical model of the multi-machine power system was established including the asynchronized turbogenerator with the damping windings. Based on the damping characteristics of the asynchronized turbogenerator, the theory and methods of effectively restraining low frequency oscillation that the asynchronized turbogenerator partly replaces the conventional synchronous generator has been proposed, and the simulation results validate the theory and methods.
     The effect of restraining low-frequency oscillations was compared between the asynchronized turbogenerator and power system stabilizer (PSS), the rsults showed that the asynchronized turbogenerator not only can effectively restrain low-frequency oscillations of the power system, but also can improve transient stability, absorb surplus reactive and so on, thus the asynchronized turbogenerator can play a greater role on improving the stability of the power system.
     In this paper the focus on researching the asynchronized turbogenerator is to the multi-machine power system, and not to the generator individual. The research results have important theoretical value to the practical application of the asynchronized turbogenerator.
引文
[1]肖友强.大型同步发电机非正常运行工况的仿真研究[D].重庆:重庆大学电气工程学院,2001.
    [2]《面向21世纪电力科普知识读本》编写组.面向21世纪电力科普知识读本[M].北京:中国电力出版社,2002.
    [3] Prabha Kundur.电力系统稳定与控制[M].北京:中国电力出版社,2002.
    [4]倪以信.动态电力系统理论与分析[M].北京:清华大学出版社,2002.
    [5]余贻鑫,陈礼义.电力系统的安全性和稳定性[M].北京:科学出版社,1988.
    [6]韩祯祥.电力系统稳定[M].北京:中国电力出版社,1995.
    [7]周孝信,郑健超,沈国荣等.从美加东北部电网大面积停电事故中吸取教训[J].电网技术,2003,27(9):T1.
    [8]电力系统专门委员会(日本).电力系统稳定性问题与对策[M].北京:水利电力出版社,1994.
    [9]张晓明等.四川电网低频振荡及控制措施.中国电力[J],2006,33(6):36-39.
    [10]电力科学研究院.安保线功率振荡问题研究[R],1999.
    [11]王铁强.低频振荡共振机理研究[D].华北电力大学,2001.
    [12]王铁强,贺仁睦,徐东杰等.电力系统低频振荡机理的研究[J].中国电机工程学报,2002,22(2):21-25.
    [13]倪以信,陈寿孙,卢卫星.现代电网的稳定性和安全性(一)[J].电力系统自动化,1994,18(1):51-57.
    [14]倪以信,陈寿孙,卢卫星.现代电网的稳定性和安全性(二)[J].电力系统自动化,1994,18(2):60-64.
    [15]李家坤.同步发电机励磁控制方式发展综述[J].电力学报,2005,20(1):26-29.
    [16]余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响[J].中国电机工程学报,2005,25(11):6-11.
    [17]朱方,刘增煌,高光华.电力系统稳定器对三峡电力系统暂态稳定的影响[J].中国电机工程学报,2002,22(11):20-22.
    [18]张强.电力系统非线性振荡研究[J].电力自动化设备,2002,22(5):17-19.
    [19]胡云花,赵书强.电力系统低频振荡和次同步振荡的阻尼耦合分析[J].电力自动化设备,2004,24(9):15-17.
    [20] Abu-Al-Feilat E,Bettayeb M,Al-Duwaish H,et al.Neuraln- etwork-based approach for on-line dynamic stability assessment using synchronizing and damping torquecoefficients[J].Electric Power Systems Research,1996,39(2):103-110.
    [21]杨顺昌.异步化汽轮发电机电磁设计特点[J].中国电机工程学报,1992,12(5):8-14.
    [22]杨顺昌,牟道槐,邓祥曜.转子励磁异步发电机的研究[J].电工技术学报,1991(3):20-24.
    [23] (英)R.G.Harley.双轴励磁同步电机的稳定(译)[J].国外大电机,1990(4).
    [24] (法)Herve Mangel等.发电机双轴励磁对电网稳定性的改善(译)[J].国外大电机,1996(3).
    [25] Ioannidou M G.Performance of a double-fed induction motor with controlled rotor voltage magnitude and phase angle.IEEE Trans EG,1987,2(2):301-307.
    [26] Sen Gupta D.P,Hogg B.W.Hunting characteristic of a synchronous machine with two fieldwindings.Proc.IEE,117(1):119-125.
    [27] Kaynak M.O , Greighton G.K , Smith I.R . 3-phase sudden short-sircuit analysis of asynchronized synchronous machine.Proc.IEE,1975,122(9).
    [28] Hallenius K.-E.,Vas P.,Brown J.E..The analysis of a saturated self-excited asynchronous generator.IEEE Transactions on Energy Conversion,1991,6(2):336-345.
    [29] Pidre J.C.,Carrillo C.J.,Lorenzo A.E.F..Probabilistic model for mechanical power fluctuations in asynchronous wind parks.IEEE Transactions on Power Systems,2003,18(2):761-768.
    [30] Tapia A.,Tapia G.,Ostolaza J.X.,Saenz J.R..Modeling and control of a wind turbine driven doubly fed induction generator.IEEE Transactions on Energy Conversion,2003,18(2):194-204.
    [31] Rodriguez J.M.,Fernandez J.L.,Beato D.,Iturbe R.,Usaola J.,Ledesma P., Wilhelmi J.R. .Incidence on power system dynamics of high penetration of fixed speed and doubly fed wind energy systems study of the Spanish case.IEEE Transactions on Power Systems,2002,7(4):1089-1095.
    [32]颜湘武等.交流励磁电机综述[J].电力情报,1996(4):6-10.
    [33]梁志翔.异步化汽轮发电机励磁控制研究[D].重庆:重庆大学电气工程学院,1995.
    [34]杨顺昌.国外对异步化同步发电机的探讨[J].国外大电机,1991(4):1-7.
    [35] Song Junying,Liu Dichen,Chen Yunping,Li Hancheng.Asynchronized synchronous generator’s variable structure excitation control and its transient analysis. Power System Technology,2002,3:1710-1716.
    [36] Song Junying et al.Static stability of asynchronous generator for power system.IEEE catalog Number 01EX501,Vol.1,ICEMS’2001.
    [37] Yan xiangwu et al.Analysis on the static stability of asynchronous generator.IEEE catalog Number 01EX501,Vol.1,ICEMS’2001.
    [38] C. P. Steninmetz.Power control and stability of electric generating stations.AIEE Trans,1920:1215.
    [39] R. D. Evans,R. C. Bergvall.Experimental analysis of stability and power limitations.AIEE Trans,1924:39-58.
    [40] R. Wilkins.Paratical aspects of system stability.AIEE Trans,1926:41-50.
    [41] IEEE Task Force.Proposed terms definitions for power system stability.IEEE Transactions on Power and Apparatus and System,1982.7,Vol. PAS-101:1894-1898.
    [42]王锡凡.现代电力系统分析[M].北京:科学出版社,2003.
    [43]陈亚民.电力系统暂态解析论[M].北京:水利电力出版社,1995.
    [44]卢强,孙元章.电力系统非线性控制[M].北京:科学出版社,1993.
    [45] Shanechi H. M.,Pariz N.,Vaahedi E. .General nonliner modal representation of large scale power system[J].IEEE Transactions on power systems,2003,18(3):1103-1109.
    [46] Songzhe Zhu,Vittal V.,Klirmann W..Analyzing dynamic performance of power systems over parameter sapce using normal forms of vector fields- Part I: Identification of vulnerable regions[J].IEEE Transactions on power systems,2001,16(4):711-718.
    [47] Songzhe Zhu,Vittal V.,Klirmann W..Analyzing dynamic performance of power systems over parameter sapce using normal forms of vector fields- Part II: comparison of the system structure[J].IEEE Transactions on power systems,2001,16(3):451-455.
    [48]李颖晖,张保会.运用非线性系统理论确定电力系统暂态稳定域的一种新方法[J].中国电机工程学报,2000,20(1):41-44.
    [49]邓集祥,华瑶,韩雪飞.大干扰稳定中低频振荡模式的作用研究[J].中国电机工程学报,2003,23(11):60-64.
    [50]宋永华等.电力系统在参数扰动下的混沌行为[J].中国电机工程学报,1990,10(增刊).
    [51]赵书强.电力系统振荡模式分析与控制的分群等值方法研究[D].华北电力大学,1999.
    [52]赵书强,常鲜戎,潘云江,贺仁睦.多机系统低频振荡模式阻尼分配规律分析[J].电网技术,1999,23(7):26-27
    [53] Demello F P,Concordia C.Concepts of synchronous machine stability as affected by excitation control.IEEE Transactions on Apparatus & Systems,1969,88(4):189-202.
    [54]赵书强,常鲜戎,贺仁睦等.PSS控制过程中的借阻尼现象和负阻尼效应[J].中国电机工程学报,2004,24(5):7-11.
    [55]杨顺昌.异步化汽轮发电机数学模型[J].电工技术学报,1995.5(2):13-16.
    [56] A. T. Morgan.General Theory of Electrical Machines[M],1979.
    [57]杨顺昌.异步化发电机定子端部发热的研究[J].电工技术学报,1992.11(4):5-8
    [58]杨顺昌.电机矩阵分析[M].重庆大学出版社,1988.
    [59]黄家裕.同步电机基本方程式和短路分析[M].水利电力出版社,1993.
    [60]梁志翔等.异步化汽轮发电机的双通道励磁控制[J].重庆大学学报(自然科学版),Vol.18,No.6,1995:96-102.
    [61]何耀三等.异步化汽轮发电机双通道励磁控制系统的研究[J].电工技术学报,Vol.11,No.1,1996.2.
    [62]李晓艳,廖勇,杨顺昌.异步化汽轮发电机的控制策略[J].重庆大学学报(自然科学版),Vol.23,No.5,2000.9.
    [63]粱志翔,杨顺昌等.异步化发电机有功和无功调节特性的仿真研究[J],重庆大学学报,1994,17(6):36-42.
    [64]杨顺昌,徐国禹,牟道槐等译.异步化发电机.重庆大学译文资料,1991.
    [65]杨顺昌,粱志翔.异步化汽轮发电机励磁故障后运行行为的仿真研究[J].中国电机工程学报,Vol.22,No.8 ,Aug.2002:104-108.
    [66]刘刃,马渝,杨顺昌.异步化汽轮发电机励磁系统局部故障后稳态运行性能的仿真研究[J].中国电机工程学报,2004,24(5):137-140.
    [67] SANGARE Adama Fanhiri,YANG Shunchang,LIU Ren.Simulating the operation action of an asynchronized turbogenerator under loss of excitation.重庆大学学报(英文版),2004,3(1):16-19.
    [68]李志军.基于新型稳定策略的励磁控制研究[D].河北工业大学,2004.
    [69]谢小荣,韩英铎,崔文进,唐义良.多机电力系统中发电机励磁控制设计的数学模型分析[J].中国电机工程学报,2001,21(9):8-12.
    [70]常鲜戎,潘云江,万军,杨以涵.基于Lyapunov稳定性理论的发电机非线性励磁控制研究[J].电力系统自动化,1994,18(10):25-29.
    [71]刘宪林,柳焯,娄和恭.考虑阻尼绕组作用的单机无穷大系统线性化模型[J].中国电机工程学报,2000,20(10):41-45.
    [72] Canay I M.A novel approach to the torsional interaction and electrical damping of the synchronous machine[J].IEEE Transactions on Power Apparatus and Systems,1982.101(10):3630-3638.
    [73]郭培源.电力系统自动控制新技术[M].北京:科学出版社,2001.
    [74]高景德.电机过渡过程基本理论及分析方法[M].北京:科学出版社,1983.
    [75]袁训奎,赵红光,张维超,濮钧.电力系统稳定器(PSS)试验若干问题研究[J].中国电力,2005,38(3):23-25.
    [76]朱方,赵红光,刘增煌,寇汇珍.大区电网互联对电力系统动态稳定性的影响[J].中国电机工程学报,2007,272(1):1-7.
    [77] Power System Damping Ad Hoc Task Force of the Power System Dynamic Perfirmance Committee.Damping representation for power system stability studies[J].IEEE Transactions on Power Systems,1999,14(1):151-157.
    [78]李颖,贺仁睦.负荷与PSS的相互作用对系统动态稳定的影响[J].电力系统自动化,2004,28(8):40-44.
    [79] Liu Q.,Zhou S.X.,Feng Z.H. .Using decouple characteristic in the synthesis of stabilizer in multimachine systems.IEEE Transactions on Power Systems,1987,2(1):31-36.
    [80] H.F. Wang,F.J. Swift.Application of the Phillips-Heffron model in the analysis of the damping torque contribution to power systems by SVC damping control.Electrical Power & Energy Systems,1996,18(5):307-313.
    [81] Arabi S.,Rogers G.J.,Wong D.Y.,et al.Small signal stability program analysis of SVC and HVDC in AC power systems.IEEE Transactions on Power Systems,1991,6(3):1147-1153.
    [82] Han B.M.,Karady G.G.,Park J.K.,et al.Interaction analysis model for transmission static compensator with EMTP.IEEE Transactions on Power Systems,1998,13(4):1297-1302.
    [83] Aree P.,Acha E. .Block diagram model for fundanmental studies of a synchronous generator-static VAR compensator system.IEE. Proc-Gener. Transm. Distrib.,1999,146(5):507-514.
    [84] Kwang M.S.,Jong K.P. .On the robudt LQG control of TCSC for damping power system oscillations.IEEE Transactions on Power Systems,2000,15(4):1306-1312.
    [85]刘宪林.基于同步机和水系统详细模型的电力系统小扰动稳定研究[D].哈尔滨工业大学,2002.
    [86] D. K. Chaturvedi,O. P. Malic,P. K. Kalra.Performance of a Generalized Neuron-Based PSS in a Multimachine Power System.IEEE Transactions on Energy Conversion,2004,19(3):625-632.
    [87] Young-Moon Park,Myeon-Song Choi,Kwang Y. Lee.A neural network-based power system stabilizer using power flow characteristics.IEEE Transactions on Energy Conversion,1996,11(2):435-441.
    [88]李天云,高磊,赵妍.基于HHT的电力系统低频振荡分析[J].中国电机工程学报,2006,26(14):24-30.
    [89]徐东杰.互联电力系统低频振荡分析方法与控制策略研究[D].北京:华北电力大学,2004.
    [90] Yuan-Yih Hsu,Pei-Hwa Huang,Chia-Jen Lin,Chiang-Tsung Huang.Oscillatory stability considerations in transmisson expansion planning.IEEE Transactions on Power Systems,1989,4(3):1110-1114.
    [91]朱方,汤涌,张东霞,张文朝.我国交流互联电网动态稳定性的研究及解决策略[J].电网技术,2004,28(15):1-5.
    [92] Zhu Fang,Liu Zenghuang,Chu Liu.Achievement and experience of improving power system stability by PSS/excitation control in China[C].IEEE PES 2004 General Meeting,Denver,USA 2004.
    [93]方思立,朱方.电力系统稳定器的原理及其应用[M].北京:中国电力出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700