用户名: 密码: 验证码:
LTE TDD物理层过程关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LTE是在超3G的技术基础上研发出的“准4G技术”,其目的是为了迎接WiMax等移动宽带无线接入技术的市场挑战、进一步改进和增强现有3G技术,以提高3G在新兴宽带无线接入市场的竞争力。尤其是在移动通信技术的迅猛发展和近几年来基于HSPA的商用网络启动,LTE已引起了越来越多的关注。目前LTE第一个版本的标准已经完成,各个主要厂商已经纷纷推出了样机设备,使得移动通信系统在很好的保证用户QoS的情况下通信速率达到了一个前所未有的高度。TD-LTE作为TD-SCDMA的后续演进标准,其采用OFDM、MIMO等先进的无线传输技术、全IP系统架构和扁平网络结构的标准势必会成为我国移动通信产业关注的焦点和热点。
     我国的LTE标准也就是TD-LTE,做为一个刚刚制定完成的标准,还存在版本完善、增强和下一步演进的过程。在TD-LTE的改进中,物理层技术是提高系统性能的关键,其以达到降低时延、提高用户的数据速率、增大系统容量和覆盖范围以及降低成本的目的。其中同步过程、功率控制过程、随机接入过程、物理下行共享信道相关过程、物理上行共享信道相关过程和物理共享控制信道过程是LTE系统物理层过程的主要过程。移动终端通过随机接入过程与基站建立上行初始同步,利用同步跟踪来完成对上行用户信道的跟踪,完成用户上行信号发射时间的调整,有效的控制方法能够较好地跟踪用户信道响应的变化,使得主峰位置较好地收敛于循环前缀中合理的位置。通过小区搜索过程,用户终端(UE)可以搜索到一个可用的小区,并获得符号同步和帧同步,设计合理的检测方案,UE才能获取本小区更详细的信息以及邻近小区的信息,才可以监听寻呼或发起寻呼。随机接入(Random Access)是UE在开始和网络通信之前的接入过程,接收机中检测方法对虚警和漏警概率的正确检测才能满足LTE系统的性能要求。对于高码率、高阶调制的数据传输,符号定时偏差对系统性能影响较大,符号定时偏差越大,系统性能下降也越明显,在小区搜索完成后,需要设计一种精确的符号定时算法,使符号定时偏差的范围降到最低。
     针对上述问题,本文从LTE数字蜂窝移动通信网Uu接口物理层领域的研究热点出发,分别对LTETDD物理层过程中的上行同步控制、小区搜索、随机接入和下行符号定时进行了深入、系统地研究,并取得了一定数量的创新科研成果,主要内容包括:
     1、在理论分析上行同步过程的基础上,利用信道冲激响应原理提出了一种定时发送预值的测算方法,设计为移动台提供发送的定时提前量,并重新设计阈值检测方法。
     2、对3GPP LTE TDD系统的下行链路小区搜索及初始化载波同步标准化工作进行跟踪研究,理论推导给出下行链路符号定时、扇区ID检测、粗频偏估计和小区组ID检测的算法。仿真的同时对小区搜索各个步骤的复杂度做了分析和统计比较,提出一种使用FFT快速算法的简化措施来有效降低运算复杂度的算法。
     3、在理论研究LTE-TDD系统随机接入过程的同时,分析了随机接入信道的帧结构以及码序列和相应的资源映射等相关内容。提出了一种PRACH的接收机算法,并设计了接收机中的检测门限,最后对接收机算法进行了性能仿真,验证该算法的可行性。
     4、深入研究了LTE TDD系统链路与系统的接口模型和下行符号定时同步的问题,在此基础上推出了一种下行链路符号定时同步的算法,并对该算法进行了计算机仿真。结论表明该算法比已有算法定时跟踪准确,受信噪比影响小,算法复杂度低,在不同信道环境下均可正常工作等优点。
     通过以上四个方面的研究,为TD-LTE网络的业务可用性提供了较为完整的应用方案,较好的解决了LTE网络的综合性能,为TD-SCDMA系统的相关技术和LTE系统的实际情况相结合提供了保障机制。
To encounter the challenge of the wimax, the Long Term Evolution system is the fourth generation for the wireless cellular network, especially after the HSPA (High Speed Packet Access) network. Currently, the first version for the LTE is achieved; moreover, the prototype is released by many manufacturing company, furthermore, to providing the QoS for the user has gained more attention. As an evaluation technology of the TD-SCDMA technology, the LTE is viewed as the focus for the mechanism of OFDM, MIMO adopted to enhance the capability of the wireless transmission.
     Considering about the state of our country, the TD-LTE system is determined to be an important technology in the future. As the evaluation procedure for the LTE, Physical layer technology is the key to improving system performance, to achieve lower latency and improve the user's data rate, increasing the system capacity and coverage and reduce costs. The uplink synchronization process、power control process、random access procedure、physical downlink shared channel related processes and physical process of shared control channel is main course of the LTE system physical layer process. By through random access procedure UE establish the initial uplink synchronization with base stations, through using the synchronization tracking it can track the uplink user channel and adjust the uplink signal transmission time. Effective control can track the change of users channel response better and make better convergence of the main peak position of the cyclic prefix in the appropriate position. Through the cell search UE can search for an available cell, a well-designed test program can get more information in this district and the neighboring cell information accurately. Random Access is the beginning of the process before UE and network communications. The detection method of receiver must meet the performance requirements of LTE systems when corrected probability false alarm and false detection. For high bit rate and higher order modulation data transmission, the symbol timing offset affects greater impact on system performance. The more offset the more affect on system performance, so it need a algorithm of downlink symbol timing to minimize the scope of the symbol timing offset.
     Considering about the problems above, the interface of Uu is studied in detail, and upstream synchro control, cellular searching, random access and downstream symbol timing mechanism is proposed.
     1. In according with the analysis on the procedure of upstream synchronous, a novel data transmitting method is proposed. To adjusting the offset of the packet sending, the threshold detecting method is designed reasonable.
     2. Base on the reach of the cellular downstream link and the initial synchronous of the carriers, the predicting on the timing, sector ID and frequency offset is introduced; moreover, the simplified method based on the FFT theory is proposed to reduce the complexity of the algorithms.
     3. With the analysis on the random access for the LTE-TDD system, the frame structure and corresponding resources mapping is studied. A novel algorithm for the receiver based on the PRACH is proposed; moreover, the detecting threshold is designed; finally, the simulation results show that the proposed algorithm is actually enough.
     4. The timing problem in the LTE TDD system is researched deeply, and based on the downstream symbols; the function of timing synchronous is achieved effectively. Results show that the accuracy of following can be guaranteed; furthermore, the complexity and the influence on the SNR can be reduced dramatically.
     From the researches on the above directions, the available of TD-LTE system can be enhanced; moreover, the evaluation from TD-SCDMA to the LTE system is smoother.
引文
[1]包东智,LTE产业现状及发展趋势[J],移动通信,2008(8):43-47.
    [2]Ping Zhang, Xiaofeng Tao, Jianhua Zhang, et al. A Vision from the Future:Beyond 3G TDD [J].IEEE Communications Magazine, Vol 43, Issue 1, Jan,2005:38-44.
    [3]陈哲,张正江,尹长川,乐光新.B3G技术演进与发展趋势[J].电信工程技术与标准化,2008(12):26-31.
    [4]李川,毛定军,宋立军,白立.WiMAX无线网络规划方法研究[J].移动通信,2007(4):17-21.
    [5]爱立信(中国)有限公司,TD-LTE和LTEFDD的同步发展[J].电信技术,2008(6):100-103.
    [6]胡海宁,林奇兵.下一代无线网络LTE介绍[J].电信网技术,200(7):49-51.
    [7]胡海波,3G长期演进技术—E3G[J],世界电信,2006(4):31-37.
    [8]李智星,周文瑜.WiMAX与3GPP网络融合的探讨[J].电信网技术,,2007(10):25-28.
    [9]R. Ludwig et al. An Evolved 3GPP QoS Concept Proc[R]. IEEE VTC, Spring 2006:16-19.
    [10]Policy and Charging Control Architecture [Z]. v.8.3.1.3GPP Tech. Spec.23.2003:49-55.
    [11]J. Rosenberg et al. SIP:Session Initiation Protocol [Z]. RFC 3261, www.ietf.org, June 2002:89-96.
    [12]3GPP Tech. General Packet Radio Service (GPRS) Enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Access [S]. v.8.3.0. Spec.23.401.
    [13]3GPP, Rl-050788.Fast Sector Group Selection (FSGS) based on OFDMA for E-UTRA Downlink[S].2005:233-237.
    [14]Y. Yang and T.-S. P. Yum. UTRA TDD handover performance[R].in Proceedings of the IEEE Global Telecommunications Conference, vol.5, (Dallas, Texas USA),29 Nov.-3 Dec.2004:3305-3309.
    [15]T. Rouse, S. McLaughlin, and I. Band, Congestion-based routing strategies in multihop TDD-CDMA networks[R]. IEEE Journal on Selected Areas in Communications, vol.23, March 2005:668-681.
    [16]P. Zhang, X. Tao, J. Zhang, Y. Wang, L. Li, and Y. Wang. A vision from the future:beyond 3g tdd[J]. IEEE Communications Magazine,vol.43,January 2005:38-44.
    [17]杨鹏,李波.LTE的关键技术及其标准演进[J].电信网技术,2009(01):25-29.
    [18]赵婧华,酆广增.OFDM-第四代无线通信的技术核心[J].电信建设,2002(03):11-14.
    [19]王侃,窦伟.第四代移动通信系统技术与发展[J].河南商业高等专科学校学报,2005(05):21-24.
    [20]杨瑞临. Competitive Analysis and Business Opportunity Exploration for WiMAX in Mobile Broadband Arena[R]. ITRI/IEK. Nov,2008:49-54.
    [21]Nadine Manjaro and Stuart Carlaw, Long-Term Evolution (LTE) Network Deployment Strategies, Market Drivers, Opportunities and Challenges [R]. ABI Research,2Q 2008:79-88.
    [22]A. Agnetis, G. Brogi, G. Ciaschetti, P. Detti, and G. Giambene. Optimal packet scheduling in UTRA-TDD[R], IEEE Communications Letters, March 2003:vol.7,112-114.
    [23]J. Blogh and L. Hanzo. Adaptive modulation and adaptive antenna array assisted network performance of multi-user detection aided UTRA-like FDD/CDMA[R]. in Proceedings of the IEEE Vehicular Technology Conference 2002 Fall, September 2002:vol.3, (Vancouver, Canada),1806-1810,24-28.
    [24]S. Ni and L. Hanzo. Genetic algorithm aided timeslot scheduling for UTRA TDD CDMA networks [R]. IEEE Electronics Letters, March 2005:vol.41.
    [25]马志鑫,李小文.3GPP LTE发展现状、无线接口协议及体系结构的研究[J].广东通信技术,2008(12):44-47.
    [26]Harri Holma, Markku kuusela, Esa Malkamaki, Karri Ranta-aho, Chen Tao. VoIP over HSPA with 3GPP Release 7[R]. IEEE PIMRC'06, September 2006:1-5.
    [27]Tao Chen, Markku Kuusela, Esa Malkamaki. Uplink Capacity of VoIP on HSUPA[R]. IEEE VTC 2006 spring, May 2006:Vol.1.
    [28]Petteri Lunden, Markku Kuusela. Enhancing performance of VoIP over HSDPA[R]. IEEE VTC 2007 spring, April 2007:825-829.
    [29]St. Julian's, Malta. Number of Control Symbols[R].3GPP TSG-RAN WG2 Meeting#57bis, R2-071227, March 26-30,2007:312-324.
    [30]3GPP TSG-RAN WG1 Meeting#48, Rl-070674, "LTE physical layer framework for performance verification", St. Louis, USA, Feb 12-16,2007
    [31]R.Bosisio and U.Spagnolini. Inteference Cooridnation versus Interference Randomization in Multicell 3GPP LTE System [R]. IEEE Wireless Communications and Networking Conference,2008:186-198.
    [32]Chrysostomos Koutsimanis and G'abor Fodor. A Dynamic Resource Allocation Scheme for Guaranteed Bit Rate Services in OFDMA Networks[R]. IEEE Interntional Conference on Communications,2008:242-253.
    [33]Saad G. Kiani, Geir E.(?)ien, David Gesbert. Maximizing Multicell Capacity Using Distributed Power Allocation and Scheduling[R]. IEEE Wireless Communications and Networking Conference,2007:311-316.
    [34]A. Abrardo, A. Alessio, P. Detti and M. Morett. Centralized Radio Resource Allocation for OFDMA Cellular Systems[R]. IEEE International Conference on Communications'07, 2007:269-274.
    [35]M. Iwamura and A. Aghvami. Impact of handover blocking on control load, capacity and coverage of WCDMA downlink[R]. in Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) 2004, vol.1, (Barcelona, Spain),5-8 September 2004:350-354.
    [36]H. Haas, S. McLaughlin, and G. Povey. Capacity-coverage analysis of TDD and FDD Mode in UMTS at 1920MHz[J]. IEEE Electronics and Communication Engineering Journal, vol. 149, February 2002:51-57.
    [37]A. Viterbi, A. Viterbi, K. Gilhousen, and E. Zehavi. Soft handoff extends CDMA cell coverage and increases reverse link capacity [J]. IEEE Journal on Selected Areas in Communications, vol.12, October 1994:1281-1288.
    [38]胡乐明,万学元.第三代移动通信FDD和TDD基站邻频干扰问题研究[J].广东通信技术,2002(11):33-37.
    [39]沈嘉.OFDM系统的小区间干扰抑制技术研究[J].电信科学,2006,(07):55-58.
    [40]A. S. Acampora and M. Naghshinen. Control and Quality-of-Service Provisioning in High-Speed Microcellular Networks [R]. IEEE Personal Communications, vol.1,2nd Quarter 1994:36-43.
    [41]孙媛.4G通信系统关键技术初探[J].电信工程技术与标准化,2004,(04):34-38.
    [42]何琳琳,杨大成.4G移动通信系统的主要特点和关键技术[J].移动通信,2004,(10):22-26.
    [43]朱晓华,张滋朋.4G移动通信技术的研究[J].电脑知识与技术,2009,(15):19-23.
    [1]3GPP TS 36.211 V8.2.0 (2008-03), Physical Channel and Modulation (Release 8).
    [2]3GPP TS 36.201 V8.2.0[S]. Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer-General Description (Release 8).
    [3]3GPP TS 36.212 V8.2.0[S]. Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and Channel Coding (Release 8).
    [4]H.R.Karimi, N.W.Anderson, a Novel and Efficient Solution fix-point data based Joint-detection using approximate cholesky factorization[J].2000 IEEE:1262-1266.
    [5]Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming. Evolution HSPA and LTE for Mobile Broadband [J]. IEEE 2007:331-335.
    [6]3GPP TS 25.221[S]. Physical channels and mapping of transport channels onto physical channels (TDD).2006:211-215.
    [7]S. H. Hwang and L. Hanzo. Reverse-link performance of synchronous DS-CDMA systems in dispersive Rician multipath fading channels[R]. IEEE Electronics Letters, vol.39, November 2003:1682-1684.
    [8]S. H. Hwang and L. Hanzo. Effects of multipath propagation delay on uplink performance of synchronous DS-CDMA systems communicating in dispersive Rayleigh fading channels[R]. IEE Electronics Letters, vol.40, December 2004:1589-1591.
    [9]S. Ni, H. Wei, J. S. Blogh, and L. Hanzo. Network Performance of Asynchronous UTRA-like FDD/CDMA Systems using Loosely Synchronized Spreading Codes[C]. in Proceedings of the IEEE Vehicular Technology Conference 2003 Fall, vol.2, (Orlando, USA), October, 2003:pp.1359-1363.
    [10]Y.-I. Kim, K.-J. Lee and Y.-O. Chin. Analysis of multi-level threshold handoff algorithm[C]. in Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM'96, vol. 2, (London, UK), November 1996:pp.1141-1145.
    [1]3GGP R1-061682, Sharp. Hybrid Method of SCH Symbol Timing Detection for E-UTRA Cell Search[S]. Cannes, France,27-30 June,2006:363-367.
    [2]3GGP R1-071469, Texas Instruments. Primary SCH Code Design and Performance[S]. St. Julian's, Malta,26-30 March,2007:437-444.
    [3]3GGP R1-072321, Huawei. P-SCH sequences[S]. Kobe, Japan, May 7-11,2007:574-581.
    [4]3GGP R1-074143, Texas Instruments. Secondary SCH Mapping and Scrambling[S].
    [5]3GGP R1-073898, Marvell Semiconductor. SSCH Mapping to Group ID and Frame Timing[S].
    [6]Yang Wen, Wei Huang, Zhongpei Zhang. CAZAC sequence and its application in LTE random access[J]. Proceedings of 2006 IEEE Information Theory Workshop (ITW'06), 2006:93-98.
    [7]3GGP R4-080357, Motorola. E-UTRA Intra-frequency Cell Search Performance Results[S]. February 11-15,2007:575-589.
    [8]3GGP R1-074498, Texas Instruments. Way Forward for Secondary SCH Mapping and Scrambling[S]
    [9]3GPP R1-062096. Cell Search Time Performance of Three-Step Cell Search Method in Multi-Cell Environment [S].2006:382-402.
    [10]3GGP R1-071583. Ericsson. Primary Synchronization Signal Desing[S].3GGP TSG RAN WG1 Meeting#48bis,2007:377-398.
    [11]3GPP.3GPP TS 36.101 V8.6.0, User Equipment (UE) radio transmission and reception[S]. 2009-06:37-42.
    [12]3GPP.3GPP TS 36.211 V8.7.0, Physical Channels and Modulation[S].2009-05:387-398.
    [13]Jan-Jaap van de Beek.Magnus Sandell. ML Estimation of Time and Frequency Offset in OFDM Systems[M]. Samsung Electronics,1997,45(7):180-185.
    [14]3GGP R1-062096. NTT DoCoMo, Fujitsu, Mitsubishi Electric, NEC, Panasonic, Toshiba Corporation. Cell Search Time Performance of 3-step Cell Search Method in Multicell environment[S].3GGP TSG RAN WG1 Meeting#46,2006:366-378.
    [1]3GPP, TS 36.211 V8.5.0 [S]. Physical Channel and Modulation (Release 8). (2008-12)
    [2]3GPP, TS 36.213 V8.5.0 [S]. Physical Channel and Modulation (Release 8). (2008-12)
    [3]3GPP, TS 36.104 V8.4.0 [S]. Physical layer procedures (Release 8). (2008-12),
    [4]Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming. Evolution HSPA and LTE for Mobile Broadband[J]. IEEE 2007:29-36.
    [5]R4-081262. Ideal Simulation Results for PRACH Format 4[Z]. Motorola.
    [6]R4-080578. PRACH simulation assumptions[Z]. Nokia Siemens Networks.
    [7]Chu, D. C. Polyphase codes with good periodic correlation properties[M]. IEEE Transactions on Information Theory, IT-18, July 1972:531-532.
    [8]Frank, R. L. Comments on Polyphase codes with good correlation properties [M]. IEEE Transactions on Information Theory, IT-19, Mar.1973:244.
    [9]R1-061168 Preamble Sequence Design for Random Access of E-UTRA [Z]
    [10]R1-062174. Panasonic,NTT,DoCoMo.Random access sequence comparison for E-UTRA[R]. TSG-RAN WG1 Meeting#46, Tallinn, Estonia, August 28-September 1,2006:146-149.
    [11]R1-062275, Ericsson. Comparison of Zadoff-Chu and Zero Correlation Zone Codes for E-UTRA RACH[R]. TSG-RAN WG1#46, Tallinn, Estonia, August 28-September 1, 2006:369-382.
    [12]R1-060998, Ericsson. E-UTRA Random Access Preamble Designp[R]. TSG-RAN WG1 #44bis Athens, Greece, March 27-31,2006:162-175.
    [13]R1-062515, Samsung. Asynchronous RACH Preamble Design[R] 3GPP TSG RAN WG1#46bis Seoul, South Korea,9-13 October,2006:243-252.
    [14]R1-063181, Panasonic. RACH Preamble performance evaluation with frequency offset for E-UTRA[R]. TSG-RAN WG1 Meeting#47, Riga, Latvia, November 6-10,2006:187-196.
    [1]3GPP TS 36.201 V8.5.0[S]. LTE Physical Layer-General Description.
    [2]3GPP TS 36.211 V8.5.0[S]. Physical Channels and Modulation.
    [3]B. Yang, K. B. Letaief, R. S. Cheng, and Z. Cao. Timing Recovery for OFDM Transmission[R]. IEEE Journal on Selected Areas in Communications, vol.18, Issue 11, Nov 2000:2278-2291.
    [4]S. Fukumoto, M. Sawahashi, and F. Adachi. Matched filter-based RAKE combiner for wideband DS-CDMA mobile radio[R]. IEICE Trans.Commun., vol. E81-B, no.7, July 1998: 1384-1390.
    [5]W. C. Jakes. Microwave Mobile Communications[J]. New York:IEEE Press, classic reissue, 1993:33-38.
    [6]Keller T.Hanzo L. a convenient framework for time-frequency processing in wireless communications[M]. Adaptive multicarrier modulation:2000(5):28-33.
    [7]van de Beek J, J.Sandell, M.Borjesson P O. ML estimation of time and frequency offset in OFDM systems[M].SKG Tel Communications,1997(7):45-49.
    [8]Speth M.Classen F.Meyr. H Frame synchronization of OFDM systems if frequency selective fading channels[M]. SKG Tel Communications,1997(10):54-60.
    [9]Schmidl T M, Cox D C. Robust frequency and timing synchronization for OFDM[M]. SKG Tel Communications,1997(12):28-32.
    [10]Minn H.Bhargava V K. On timing offset estimation for OFDM systems[M]. SKG Tel Communications,2000(7):37-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700