用户名: 密码: 验证码:
微网控制策略与电能质量改善研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微网是由多种小型分布式电源和负荷共同组成的系统,能削弱分布式发电对电网的冲击和负面影响,充分发挥分布式发电的效益和价值。本文针对微网控制策略、微网电能质量问题和含分布式电源(以微网的形式投入应用)的配电网络重构问题进行研究,主要创新点如下:
     1对目前应用较广的微网控制策略分别进行深入研究分析,在应用最为广泛的下垂控制策略基础上进行分析改进。首先从理论上阐明了下垂系数值如何设定,针对实际应用时有功功率限值的存在对下垂控制策略进行改进,提出了添加功率越限加罚值环节来保证分布式电源功率输出达到限值时其功率特性从下垂特性转变为垂直特性;并在有功功率、无功功率及电压控制环节添加相应的滤波装置消弱谐波的影响,因而控制效果更好。
     2根据微电源类型的不同,其入网接口方式也可分为两种:电压源型逆变器(Voltage Source Inverter, VSI)接口和同步电机(Synchronous Generator, SG)接口。本文设计了一种包含这两种接口方式的微网控制策略。
     对于VSI接口,首先从理论上分析了逆变器出口电感值的设定原则,并在改进下垂控制策略和电压矢量调制合成原理的基础上得出了门信号脉冲发生电路的控制模块,为日后VSI接口控制策略投入实际应用提供了理论依据;同时也提出在仿真中采用理想三相电压源等效,将下垂控制策略输出的电压与相角值作为理想三相电压源模块的输入从而最终完成VSI接口的整体仿真控制模型。
     对于SG接口,将改进下垂控制策略环节得到的预期角速度值与测量角速度值作为原动机与调速系统等效模型的输入量并得到对应输出的机械功率;将下垂控制策略得到的预期电压幅值与测量的电压幅值作为励磁系统等效模型的输入并得到对应输出的励磁电压,从而实现同步电机的稳定运行。
     为实现微网与大电网的无缝转接,本文设计实现了静态开关(Static Switch,SS)使得电网、SG接口的微电源、VSI接口的微电源在彼此电压接近同频同相时接通。
     3对微网中存在的电能质量问题及产生原因进行了分析研究。针对谐波及无功功率需求不足引起的电压波动等问题,综合考虑电能质量的改善效果和经济性,本文提出了在微网中应用APF和SVC联合电能质量改善系统来提高微网的电能质量,其中APF装设在分布式电源出口进行滤波并进行小容量的无功电流补偿,SVC装设在负荷侧实现大容量无功的就地补偿,为避免耦合,二者控制各自独立。为获得更好的跟踪效果,提出采用重复控制与PI控制相结合的方法对APF控制加以改善。
     4当分布式电源以微网的形式接入配电网时,可将其视为负的负荷节点来处理。本文将负荷的变化和分布式电源发电波动的情况用多种运行方式来模拟,建立了一种含分布式电源并考虑多种运行方式的配电网络重构模型,并对所建立的模型采用动态调整惯性权重的二进制粒子群优化算法(Binary particle swarmoptimization algorithm,BPSO)进行求解,所用算法效果较好,重构结果可用于指导配电网络的运行。
Microgrid is a kind of system composed of the distributed generators (DGs) andloads, which can be used to weaken the negative effects of DGs and give full play ofDGs. This paper makes researches on microgrid control strategy, power quality andnetwork configuration with distributed generation which is accessed to the network inthe form of microgrid. The main achievements are as follows:
     1. The most popular microgrid control strategies are analyzed, and the droopcontrol is improved based on the analysis. The setting theory of droop coefficients ispresented firstly. And then the droop control strategy is improved by adding penaltyvalue to force DG to change its droop characteristics to vertical characteristics whenthe power output overruns its limit, which is consistent with the DG actual operation.Finally to eliminate the harmonics and get better control performance, filters areadopted to active power, reactive power and voltage control blocks.
     2. Based on the different types of Microsources, the interfaces of the microsourcescould be divided into two types: voltage source inverter (VSI) interface andSynchronous generator interface. This paper proposes the control strategy ofMicrogrid which contains the two interfaces. For VSI interface, the set rules ofexternal inductance value is presented and the gate pulse generator control block isdesigned based on the improved droop control and space vector modulation theory,which can be as theoretical guide for future VSI practical use. From the network pointof view,the inverter can be represented by an ideal and balanced voltage source withonly the fundamental component in simulation. The output of improved droop controlcan be as the input of the controlled voltage sources block, therefore the whole controlstrategy of VSI interface is achieved in simulation.
     For SG interface, the angular velocity output from the improved control strategyand the measured angular velocity are as the input of the equivalent speed controlsystem to output the desired mechanical active power, and the voltage amplitudeoutput from the improved control strategy and the measured voltage amplitude are asthe input of the equivalent field system to output the desired field voltage. The desiredmechanical active power and field voltage can be as the input of SG to make thegenerator operate smoothly.
     Static switch is designed to make the microgrid only connect with the grid whentheir voltages are closely with the same frequency and amplitude. The simulationresults testify the effectiveness of the proposed control strategy and SS.
     3. This paper analyzes the power quality problems of microgrid. For harmonicscaused by electronic devices and voltage variation caused by high reactive powerrequirement, a combined system constructed by SVC and SAPF is proposed based oneconomy and compensation performance, in which SAPF is adopted near themicrosource to mitigate harmonic currents and SVC near the load to compensatereactive power so as to relieve the voltage variation. To avoid coupling, the control ofSVC and SAPF are independent. To get better tracking performance, the repetitivecontrol and PI control combined together are applied to APF control.
     4. When the DG is used in the form of microgrid, it can be equivalent as a negativeload node. Distribution network reconfiguration model containing DGs andconsidering three running modes is established. Binary particle swarm optimizationalgorithm (BPSO) with dynamic inertia weight adaptation strategy is applied to solvethis model. Case results justify that the improved BPSO can solve distributionnetwork reconfiguration effectively with better results which can be used to guidedistribution networks operation.
引文
[1]梁才浩,段献忠.分布式发电及其对电力系统的影响[J].电力系统自动化,2001,25(12):53-56
    [2]王敏,丁明.分布式发电及其效益[J].合肥工业大学学报(自然科学版),2004,27(4):355-358
    [3]王成山,王守相.分布式发电供能系统若干问题研究[J].电力系统自动化,2008,32(20):1-4+31
    [4] W R BeckInc. Review of utility interconnection, tariff and contract provisions for distributedgeneration [EB/OL]. http://www.distributed-generation. com/Library/NARUC_Interconnect ion. pdf,2003-04-03
    [5] PUTTGEN H B, MACGREGOR P R, LAMBERT F C. Distributed generation: semantichype or the dawn of a new era? IEEE Power and Energy Magazine,2003,1(1):22229.
    [6] Distributed energy resources: current landscape and a roadmap for the future. Palo Alto, CA,USA: EPRI,2004.
    [7]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-75+88
    [8]王建,李兴源,邱晓燕.含分布式发电装置的电力系统研究综述[J].电力系统自动化,2005,29(24):90-97
    [9] IRED—integration of renewable energy sources and distributed generation into the Europeanelectricity grid [EB/OL].[2008-08-08]. http://www. ired2cluster. org/.
    [10]莫颍涛.影响我国分布式发电发展的关键因素[J].电源技术应用,2008,11(6):47-51
    [11] Renewable energy technical assessment guide-TAG-RE. Palo Alto, CA, USA: EPRI,2005.
    [12]高厚磊,田佳,杜强等.能源开发新技术-分布式发电[J].山东大学学报(工学版),2009,39(5):106-110
    [13] ACKERMANN T,KNYAZKIN V. Interaction Between Distributed Generation and theDistribution Network: Operation Aspects. In: Proceedings of IEEE PES Transmission andDistribution Conference and Exhibition2002: Asia Pacific, Vol2. Yokohama (Japan):2002.1357-1363
    [14]胡学浩.分布式发电_电源_技术及其并网问题[J].电工技术杂志,2004,10:1-5
    [15]李蓓,李兴源.分布式发电及其对配电网的影响[J].国际电力,2005,9(3):45-49
    [16] GOMEZ J C, MORCOS M M. Coordinating over current protection and voltage sags indistributed generation systems. IEEE Power Engineering Review,2002,22(2):16219.
    [17] BARAN M E, EPMARKABY I. Fault analysis on distribution feeders wit h distributedgenerators. IEEE Trans on Power Systems,2005,20(4):175721764.
    [18] Market driven distributed energy storage system requirements for load managementapplications. Palo Alto, CA, USA:EPRI,2006.
    [19] CELL G. PILO F. MV Network Planning Under Uncertainties on Distributed GenerationPenetration. In: Proceedings of2001IEEE Power Engineering Society Summer Meeting, Vol1. Vancouver (Canada):2001.485-490
    [20] BARKER P P, DE MELLO R W. Determining the Impact of Distributed Generation onPower Systems, Part1: Radial Distribution Systems, In: Proceedings of2000IEEE PowerEngineering Society Summer Meeting. Vol3. Seattle WA, USA:2000.1645-1658
    [21] Miller N W, Achiles A S. Impact of Distributed Resources on System Dynamic Performance,In: Proceedings of2001IEEE PES Transmission and Distribution Conference and Exposition.Vol2, Atlanta(GA, USA):2001.951-952
    [22] Caire R,Retiere N,Martino S,et al.Impact assessment of LV distributed generation on MVdistribution network[C].2002IEEE Power Engineering Society Summer Meeting,Chicago,2002:1428-1423.
    [23] Niknam T,Ranjabar A M,Shirani A R.Impact of distributed generation on Volt/Var controlin distribution networks[C].IEEE Power Tech Conference Proceedings,Bologna,2003.
    [24]黄伟,孙昶辉,吴子平,张建华.含分布式发电的微网技术研究综述[J].电网技术,2009,33(9):14-18+34
    [25] Lassetter R, Akhil A, Marnay C, et al. The CERTS microgrid concept
    [EB/OL].http://certs.lb.l gov/pdf/50829.pdf.2006-09-12.
    [26] Marnay C, Rubio F J, Siddiqui A S. Shape of the microgrid [EB/OL].[2007-01-01]. http://repositories. cdlib. Org/cgi/viewcontent.cgi? article=33798&context=lbnl.
    [27] Lasseter R. Microgrids//Proceedings of2001IEEE Power Engineering Society WinterMeeting: Vol1. Jan28-Feb1.2001, Columbus. OH, USA, Piscataway. NJ, USA:IEEE.2001:146-149
    [28] Marnay C, Bailey O C. The CERTS microgrid and the future of the microgrid[EB/OL].
    [2006-11-01]. http://certs.lbl.gov/pdf/55281.pdf.
    [29] Lasseter R H,Paigi P.Microgrid: a conceptual solution[C].IEEE Power ElectronicSpecialists Conference,Aachen,2004.
    [30] European Commission. European smartgrids technology platform[EB/OL]. http://ec.europa.eu/research/energy/pdf/smartgrids_en.pdf.[2007-05-01]
    [31] European Commission. Strategic research agenda for Europe’s Electricity Networks of theFuture[EB/OL].http://www.sm.Artgrids.eu/documents/sra/sra_finalversion.pdf,2007-05-01.
    [32]王成山,高菲,李鹏等.可再生能源与分布式发电接入技术欧盟研究项目述评[J].南方电网技术,2008,2(6):1~6
    [33] Sanchez M. Overview of microgrid research and development activities in theEU[C].Montreal2006-Symposium on Microgrids,2006.
    [34] SATOSHI Morozumi.Overview of microgrid research and development activities inJapan[EB/OL][2008_11_02]. http//www.ceem.UNSW.edu.au/eontent/userdocs/overviewof microgrid management and control_000.pdf.
    [35]郑漳华,艾芊.微电网研究现状及在我国的应用前景[J].电网技术,2008,32(16):27-31+58
    [36]鲁宗相,王彩霞,阂勇等.微电网研究综述[J].电力系统自动化,2007,31(19):100-107
    [37]国海,苏建徽,张国荣.微电网技术研究现状[J].四川电力技术,2009,32(2):1-6
    [38]赵波,李鹏,童杭伟等.从分布式发电到微网的研究综述[J].浙江电力,2010,(3):1-5
    [39]李鹏,张玲,盛银波.新能源及可再生能源并网发电规模化应用的有效途径—微网技术[J].华北电力大学学报,2009,36(1):10-14
    [40]程华,徐政.分布式发电中的储能技术[J].高压电器,2003,39(3):53-56
    [41]金晓东,丁明,茆美琴.分布式发电系统中的蓄电池模型[J].仪器仪表用户,2008,15(2):88-90
    [42]张国驹,唐西胜,齐智平.超级电容器与蓄电池混合储能系统在微网中的应用[J].电力系统自动化,2010,34(12):85-89
    [43] GAO Lijun, DOUGAL R A, LIU Shengyi. Power enhancement of an actively controlledbattery/ultracapacitor hybrid. IEEE Trans on Power Electronics,2005,20(1):236-243.
    [44]黄宇淇,方宾义,孙锦枫.飞轮储能系统应用于微网的仿真研究[J].电力系统保护与控制,2011,39(9):83-87+113
    [45]黄宇淇,董琴,诸嘉惠.飞轮及柴油发电混合储能系统应用于微网的仿真研究[J].电工电能新技术,2011,30(3):32-37
    [46] Jayawarna N, Wu X, Zhang Y, et al. Barnes M. Stability of a MicroGrid Power Electronics
    [C]. The3rd IET International Conference on Machines and Drives,2006:316-320.
    [47] Iravani R. Control and protection requirements formicrogrids[EB/OL].[2006-10-23].http://www.energy.ca.gov/pier/conferences+seminars/2006-06-23_microgrids_montreal/presentations/Presentation_2_Iravani.pdf.
    [48]陈琳,分布式发电接入电力系统若干问题的研究:[博士学位论文],杭州,浙江大学,2007
    [49] Georgakis D,Papathanassiou S,Hatziargyriod N,et a1.Operation of a prototype microgridsystem based on micro-sources equipped with fast-acting power electronicsinterfaces[C]∥2004Annual IEEE Power Electronics Specialists Conference,35th.Aachen,Germany:2004.
    [50]鞠洪新,分布式微网电力系统中多逆变电源的并网控制研究[D],合肥;合肥工业大学博士学位论文,2006
    [51]肖朝霞.微网控制及运行特性分析[D].天津:天津大学博士学位论文,2009
    [52]王成山,杨占刚,王守相等.微网实验系统结构特征及控制模式分析[J].电力系统自动化,2010,34(1):99~105
    [53] PECAS LOPES J A, MOREIRA C L, M ADUREIRA A G, et al. Control strategies formicrogrids emergency operation//Proceedings of the International Conference on FuturePower Systems, November16-18,2005, Amsterdam, Netherlands:1-6.
    [54] HAJIM IRAGHA A. Generation control in small isolated power systems [D]. Zurich,Switzerland: Swiss Federal Institute of Technology,2005.
    [55] PIAGI P, L ASSETER R H. Autonomous control of microgrids//Proceedings of IEEEPower Engineering Society Meeting, June18-22,2006, Montreal, Canada.
    [56]王成山,肖朝霞,王守相.微网中分布式电源逆变器的多环反馈控制策略[J].电工技术学报,2009,24(2):100~107
    [57]王成山,肖朝霞,王守相.微网综合控制与分析[J].电力系统自动化,2010,32(7):98~103
    [58] S.A.Al-Askari, S.J.Ranade, and J.Mitra. Designing a sufficient reactive power supplyscheme to multi islands in a MicroGrid[C].IEEE Power Engineering Society GeneralMeeting,Canada,2006, p1709361.
    [59] S.A.Al-Askari, A.Pedrasa, T. Spooner. A survey of techniques used to control MicroGridgeneration andstorage during islandoperation[Online].Available:http://www.ceem.unsw.edu.au/content/userDocs/PedrasaSpoonerAUPEC2006.pdf.
    [60] J.Liang, T.C.Green, G.Weiss, and et al. Hybrid control of multiple inverters in anisland-mode distribution system[C].IEEE Annual Power Electronics Specialists Conference,USA,2003,1:61-66.
    [61] M. Prodanovic and T.C. Green. High-quality power generation through distributed control ofa power park Micro Grid[J].IEEE Transactions on IndustrialElectronics,2006,53(5):1471-1482.
    [62] A. Engler. Applicability of droops in low voltage grids [J].International Journal ofDistributed Energy Resources,2005,1(1):1-6.
    [63] K.De Brabandere, B.Bolsens, J.Vanden Keybus, and et al. A voltage and frequency droopcontrol method for parallel inverters [J].IEEE Transactions on Power Systems,2007,22(4):1107-1115.
    [64] K.De Brabandere, K.Vanthournout, J.Driesen, G.Deconinck, and et al. Control ofMicrogrids[C]. IEEE Power Engineering Society General Meeting, USA,2007, p4275808.
    [65] M.C.Chandorkar, D.M.Divan, and R.Adapa. Control of parallel connected inverters instandalone ac supply systems[J].IEEE Trans on Industry Applications,1993,29(1):136-141.
    [66] M.Hauck and H.Spath. Control of a three phase inverter feeding an unbalanced load andoperating in parallel with other power sources[C].International Power Electronics and MotionControl Conference, Croatia,2002: p.1-p.10.
    [67] S.Barsali, M.Ceraolo, and P.Pelacchi. Control techniques of dispersed generators to improvethe continuity of electricity supply[C].Power Engineering Society Winter Meeting,USA,2002,2:789-794.
    [68] N.Pogaku, M.Prodanovic′, and T.C.Green. Modelling, analysis and testing of autonomousoperation of an inverter-based MicroGrid[J]. IEEE Transactions on power electronics,2007,22(2):613-625.
    [69] H.Laaksonen, P.Saari, and R.Komulainen.Voltage and frequency control of inverter basedweak LV network MicroGrid[C].International Conference for Future PowerSystems,Netherlands,2005,6pp.
    [70] F.Gao, M.R Iravani.A control strategy for a distributed generation unit in grid-connected andautonomous modes of operation[J].IEEE Transactions on PowerDelivery,2008,23(2):850-859.
    [71] A.L.Dimeas and N.D.Hatziargyriou. Multi-agent based automatic generation control ofisolated stand alone power system[J].Power Systems Technology,2005,1(1):139-143
    [72] FUNABASHIT, FUJITA G, KOYANAGI K, et al. Field tests of a microgrid control system//Proceedings of the41st International Universities Power Engineering Conference, September6-8,2006, New cast l e, UK:232-36.
    [73] A.L.Dimeas and N.D.Hatziargyriou. A MAS architecture for MicroGrids control[C].Proceedings of the13th International Conference on Intelligent Systems Application toPower Systems USA,2005:402-406
    [74] Vu Van Thong,Johan Driesen,Ronnie Belmans.The influence of the connection technologyof dispersed energy sources on grid stability[C].2nd international conference on powerelectronics, machines and dirves.31March–2April2004. Conf. Publ. No.498, volume2pp:742-745
    [75] N.Jayawarna,X.Wut, Y.Zhangt, and et al. Stability of a MicroGrid[C].The3rd IETInternational Conference on Power Electronics,Machines and Drives,Ireland,2006:316-320
    [76] E.Barklund, N.Pogaku, M.Prodanovic, and et al. Energy management system with stabilityconstraints for stand-alone autonomous MicroGrid[C]. IEEE International Conference onSystem of Systems Engineering, USA,2007:Z114-Z119.
    [77] O.Osika. Stability of MicroGrids and inverter-dominated grids with high share ofdecentralized sources[D].ISET,Germany,PhD thesis,2005
    [78] G.Venkataramanan and M.Illindala. Small signal dynamics of inverter interfaced distributedgeneration in a chain-MicroGrid[C].IEEE Power Engineering Society General Meeting, USA,2007,p4275737.
    [79] M.S.Illindala.Vector control of PWM VSI based distributed resources in a MicroGrid[D].University of Wisconsin, U.S. PhD thesis,2005.
    [80] N.Jayawarna, X.Wut, Y.Zhangt, and et al. Stability of a MicroGrid[C].The3rd IETInternational Conference on Power Electronics, Machines and Drives, Ireland,2006:316-320.
    [81]张建华,苏玲,刘若溪等.逆变型分布式电源微网小信号稳定性动态建模分析[J].电力系统自动化,2010,34(22):97~102
    [82]张建华,苏玲,刘若溪等.逆变型分布式电源微网并网小信号稳定性分析[J].电力系统自动化,2011,35(6):76~80+102
    [83]张纯江,王晓寰,薛海芬等.微网中三相逆变器类功率下垂控制和并联系统小信号建模分析[J].电工技术学报,2012,27(1):32~39
    [84]张尧,马皓,雷彪等.基于下垂特性控制的无互联线逆变器并联动态性能分析[J].中国电机工程学报,2009,29(3):42~48
    [85] Piagi P. Microgrid Control [D]. University of Wisconsin-Madison, PhD thesis,2005
    [86] George J.Wakileh著,徐政译.电力系统谐波基本原理、分析方法和滤波器设计[M].北京:机械工业出版社,2003.
    [87]张丽,徐玉琴,王增平等.包含同步发电机及电压源逆变器接口的微网控制策略[J].电网技术,2011,35(3):70-76
    [88] Shashank Krishnamurthy, On the Modeling and Control of Wound Field SynchronousMachine based Gensets for Operation in a Microgrid Environment. University ofWisconsin-Madison, PhD thesis,2008
    [89]房大中,贾宏杰编著.电力系统分析[M].北京:科学出版社,2009
    [90]李维波编著.MATLAB在电气工程中的应用[M].北京:中国电力出版社,2006
    [91] Laaksonen Hannu, Kauhaniemi Kimmo. Voltage and current THD in microgrid withdifferent DG unit and load configurations [C]. Smart Grids for Distribution. CIREDSeminar,2008:1-4.
    [92]肖湘宁,徐永海.电能质量问题剖析[J].电网技术,2001,25(3):66-69
    [93]雷之力,鲁希娟.微网电能质量特点及有源滤波补偿方式研究综述[J].湖南电力,2009,29(5):59-62
    [94] A lejandro R. O liva, Juan Carlos Balda. A PV Dispersed Generator: A Power QualityAnalysis Within the IEEE519[J]. IEEE Transactions on Power Delivery,2003,2003,18(2):525~530.
    [95] Walid G. Morsi M. E. E l-Hawary. Effect of Distributed Generation on Voltage Flicker inDistributed Systems: A Case Study [C]. Conference on Electrical and Computer Engineering,2008[C]. Canadian.4-7M ay,2008.65~70.
    [96] Edward R. Collins, Jr. Jian Jiang.The Role of a Synchronous Distributed Generator onVoltage Sags [C].11th International Conference on Harmonics and Quality of Power,2004,12~15Sep t,2004.637~641.
    [97] G. Paulillo, P. R. Impinnisi, M. P. Cantio, et al. Power Quality in Distributed GenerationSystem based on Fuel Cell Technology-A Case Study [C].11th International Conference onHarmonics and Quality of Power,2004.12-15Sept,2004.608~612.
    [98] Stavros A. Papathanassiou, Fritz Santjer. Power-Quality Measurements in an AutonomousIsland Grid With High Wind Penetration [J]. IEEE Transactions on Power Delivery,2006,21(1):218~224.
    [99]韩民晓,刘讯.分布式电源并网中电能质量相关规范探讨[J].电力设备,2007,8(1):57~60
    [100]韩奕,张东霞,胡学浩等.中国微网标准体系研究[J].电力系统自动化,2010,34(1):69~72
    [101] IEEE1547-2003Standard for interconnecting distributed resources with electric powersystems.2003.
    [102] IEEE Std1547—2003IEEE standard for interconnecting distributed resources withelectric power systems.
    [103]薛迎成,邰能灵.国际上分布式电源的互联标准介绍[J].南方电网技术,2008,2(6):13-17
    [104]薛迎成,邰能灵,刘立群等.微网标准和技术发展[J].华东电力,2009,37(9):1579-1583
    [105] Li Yunwei, Vilathgamuwa D. Mahinda, Loh Poh Chiang. Microgrid Power QualityEnhancement Using a Three-Phase Four-Wire Grid-Interfacing Compensator[J]. IEEETransactions on Industry Applications,2005,41(6):1707-1719
    [106] Tzung-Lin Lee,Po-Tai Cheng,Design of a New Cooperative Harmonic Filtering Strategyfor Distributed Generation Interface Converters in an Islanding Network, IEEETRANSACTIONS ON POWER ELECTRONICS,IEEE,2007,22(5),1919~1927
    [107]姜齐荣,赵东元,陈建业.有源电力滤波器—结构原理控制[M].北京:科学出版社,2005
    [108]罗安.电网谐波治理和无功补偿技术及装备[M].北京:中国电力出版社,2006
    [109] Gyugyi L, strycula E C. Active ac power filters. In Proc. of IEEE/IAS Annual Meeting,1976:529-535
    [110]陈仲.并联有源电力滤波器实用关键技术的研究:[博士论文],杭州;浙江大学,2005
    [111]中野道雄,山本裕等著,吴敏译.重复控制[M].湖南:中南工业大学出版社,1994
    [112]张凯.基于重复控制原理的CVCF-PWM逆变器波形控制技术研究:[博士学位论文],武汉;华中科技大学图书馆,2000
    [113] Akagi H, Kanazawa Y, Nabae A. Generalized theory of the instantaneous reactive power inthree-phase in three-phase circuits. In Proc. of IEEE&JIEE IPEC. Tokyo,1983:1375-1386
    [114] H, Akagi Kanazawa Y, Nabae A. Instantaneous reactive power compensators comprisingswitching devices without energy storage component. IEEE Trans. Ind. Appl.,1984,vol.20(3), pp.625-630.
    [115]张爱国.SVC装置的Simulink实现和仿真[J].科技综述,2007,35(5):55~58
    [116]朱金奇.TCR+FC型SVC原理及应用[J].电气传动自动化,2007,29(3):57~59
    [117]邓礼宽,姜新建,朱东起等.APF和SVC联合运行的稳定控制[J].电力系统自动化,2005,29(18):29-32
    [118]朱俊星,姜新建,黄立培等. SVC和APF联合系统的研究[J].电力电子技术,2008,42(9):4~5+8
    [119]崔金兰,刘天琪,李兴源.含分布式发电的配电网重构研究[J].电力系统保护与控制,2008,36(15):37-40+49
    [120]王林川,梁峰,李漫等.含有分布式电源配电网重构算法的研究[J].电力系统保护与控制,2011,39(5):41-44+50.
    [121]王守相,王成山编著.现代配电系统分析[M].北京:高等教育出版社,2007
    [122] M.A.Kashem, VGanapathy, G.B.Jasmon. Network reconfiguration for load balancing indistribution networks, IEE Proc.-Gener, Transm. Distrib,1999,146(6):563-567
    [123] Mesut.E.Baran, Felix F.Wu. Network reconfiguration in distribution systems for lossreduction and load balancing, IEEE Transactions on Power Delivery,1989,4(2):1401-1407
    [124] Dariush Shirmonhammadi, H.Wayne Hong. Reconfiguation of electric distributionnetworks for resistive line losses reduction[J]. IEEE Trans. On Power Delivery,1989,4(2):1492-1498
    [125]王成山,郑海峰,谢莹华等.计及分布式发电的配电系统随机潮流计算[J].电力系统自动化,2005,29(24):39-44
    [126]陈海焱,陈金富,段献忠.含分布式电源的配电网潮流计算[J].电力系统自动化,2006,30(1):35-40
    [127]王守相,黄丽娟,王成山等.分布式发电系统的三相不平衡潮流计算[J].电力自动化设备,2007,27(8):11-15
    [128]雷振,韦钢,沈芸等.基于改进遗传算法的含分布式电源配电网重构[J].上海电力学院学报,2011,27(3):233-237
    [129]张尧,王琴,宋文南等.树状网的潮流算法[J].中国电机工程学报,1998,18(3):217-220
    [130]尹丽艳,于继来.多时间段落的配电网络动态重构[J].中国电机工程学报,2002,22(7):44-48
    [131]余健明,王征,许苗.考虑负荷变化的配电网动态分时段重构[J].高电压技术,2007,33(9):125-128
    [132]靳晓凌,赵建国.基于改进二进制粒子群优化算法的负荷均衡化配电网重构[J].电网技术,2005,29(3):40-43
    [133] Shi.Y. Eberhart.R. A modified particle swarm optimizer[C], IEEE International Conferenceof Evolutionary Computation, Anchorage, Alaska, May1998
    [134]张丽平,俞欢军,陈德钊.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-571

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700