用户名: 密码: 验证码:
单晶分子筛AFI孔道内溴分子的合成、光谱与高压行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,准一维纳米材料的研究已经引起了凝聚态物理、化学及材料科学家们的广泛关注。原子(分子)链是一维纳米材料中在纳米尺度上比较特殊、在应用上比较有前景的一种结构,不仅是研究力学参数尺寸与维度依赖的理想研究体系,同时也可作为纳米连接以及功能组元,在纳米电子、光电器件中发挥不可替代的作用。鉴于一维原子(分子)链结构特殊、性质独特以及潜在的应用前景,开展在限域条件内一维原子(分子)链状结构的合成和相关性质的研究对基础科学研究以及实际应用都有重要的意义。
     将材料限域到一维纳米孔道是当前合成研究一维原子分子结构的可行途径。单晶磷酸铝分子筛AFI由于孔道尺寸均匀、适中,可作为理想的一维限域模板。本论文利用高真空气相扩散法成功的将双原子分子溴填充到单晶磷酸铝分子筛AFI中,获得纯度较高的Br@AFI样品。利用Raman光谱,通过对比使用不同激发波长,系统的研究了样品中限域于AFI一维纳米孔道内的溴存在状态。同时,溴作为双原子分子的典型代表,在高压下有着丰富的结构变化,如分子解离、金属化等现象,为研究理解双原子分子的高压行为提供了理想的模型,也对研究氢的压致金属化起到了重要的指导作用。鉴于限域溴在一维纳米空间出现的新结构和新特性,我们进而利用高压手段,结合原位高压Raman光谱测量、原位高压同步辐射XRD衍射等技术方法,对限域于AFI分子筛纳米孔道内部溴的高压行为进行了研究。获得如下结果:
     (1)利用气相扩散法和热处理方法首次将溴成功地限域到AFI纳米孔道中。采用514nm和633nm两个激发波长,对样品进行了详细的拉曼光谱表征。发现限域溴的拉曼光谱主要有三个特征振动峰,根据以往的文献报道以及我们的偏振拉曼和高压研究(如下),可以进行指认:最强峰位于265cm~(-1)和314cm~(-1),分别来自于(Br_2)n链/Br_5~-链和离散的溴分子的振动,较弱峰位于208cm~(-1),来自于非对称性的Br_3~-链的振动。此外在633nm激发波长的拉曼光谱中还观察到一个位于170cm~(-1)的较弱拉曼峰,可能是来自对称性的Br_3~-链的拉曼振动。通过测量不同温度处理掺杂样品的拉曼信号,发现限域于孔道内溴链的稳定性要高于溴分子的稳定性。对单根溴掺杂分子筛单晶棒的拉曼光谱研究发现,溴链和溴分子在整个分子筛孔道都有分布,而棒两端开口处的拉曼峰强度比中间略高,表明管口处掺杂溴浓度要高于中间位置。
     (2)利用偏振拉曼光谱技术,进一步研究了限域于AFI纳米孔道内溴的排列取向。实验首先采用514nm激发光为激发波长对掺杂样品进行了VV偏振拉曼研究,发现从00到300,(Br_2)n链(265cm~(-1))和非对称性的Br_3~-链(208cm~(-1))的拉曼峰的强度几乎保持不;300到900的时候,溴链的拉曼信号逐渐减弱直至消失,而溴分子的拉曼峰位一直存在,且峰位从314cm~(-1)移动到318cm~(-1)。这些结果表明(Br_2)n链(265cm~(-1))和非对称性的Br_3~-链(208cm~(-1))并不是严格的沿AFI分子筛孔道方向排列,溴分子则在孔道中可以沿各个方向排列,其中拉曼峰在314cm~(-1)是来自平行孔道方向的溴分子振动,而318cm~(-1)为垂直孔道方向排列的溴分子。利用633nm激发波长,VV偏振模式得出与514nm激发波长相一致的结果;VH偏振模式的研究,发现样品从00到450,信号逐渐增强,从450到900信号逐渐减弱,进一步表明了(Br_2)n链、Br_3~-链中溴分子并不是严格的平行于AFI孔道方向,而是与孔道方向有一定夹角θ(00<θ<300),这种新奇的排列方式是我们在限域溴体系中首次发现。
     (3)利用高压原位Raman和同步辐射X光衍射方法,系统地研究了限域于AFI纳米孔道内的溴的高压行为。发现在0~3.7GPa,(Br_2)n链的拉曼峰振动强度逐渐增强,而溴分子的拉曼振动峰强度逐渐减弱,两者的强度比值逐渐增大。溴分子的峰位随压力升高发生红移,而溴链的拉曼峰位发生蓝移。3.7~9.5GPa,轴向压缩明显,链进一步增长,溴链的频率升高。在7.6~9.5GPa,(Br_2)n链和溴分子的拉曼峰合并为位置在305cm~(-1)一个宽的振动峰。结合高压XRD衍射技术分析了AFI的晶胞参数a、b、c随压力变化的行为,发现在3.7GPa之下,六角结构AFI的a、b轴随压力比c轴变化快。在3.7GPaAFI的晶面间距d值随压力的变化率出现拐点,特别是(220)晶面衍射峰在3.7GPa消失,表明高压下孔道的径向比轴向压缩性大,随着压力升高孔道出现椭圆化。孔道的形变导致孔道与溴分子的作用增强,溴分子峰位发生红移,同时孔道内空间的压缩引起了(Br_2)n链长度增长。在压力高于3.7GPa时,孔道的轴向被进一步压缩,在9.0GPa,沿孔道方向的(002)晶面衍射峰消失,因此平行于孔道的溴分子间距离进一步减小,聚合到溴链上使溴链进一步变长。9.0GPa以后,孔道继续压缩,溴链的作用力增强,表现为这种类似于溴分子的振动,但依然保持链的结构。卸压后观察到与(Br_2)n链相近的拉曼振动。Br@AFI样品的高压XRD光谱中,发现压力下孔道中的(Br_2)n链的支撑作用使AFI的(410)、(400)晶面难压缩,衍射信号一直持续到18.80GPa,与纯AFI发生非晶化的压力点提高了10GPa,表明掺杂溴之后的AFI由于溴链的支撑作用而使其结构稳定性得到提高。
     将双原子分子Br_2限域到AFI纳米孔道中,获得一维的溴原子(分子)链,是一个全新的限域内一维原子(分子链)的研究领域,为获得新型的一维纳米材料提供实验依据和理论支持,为我们研究一维原子分子结构提供了一个新的思路。
One dimensional (1D) materials have attracted wide attention from condensedmatter physicists, chemists, and material scientists etc, and becoming one of the hottesttopic in nano-materials field. Atomic (molecular) chains can be taken as onedimensional nano-scale materials and is very promising in the application ofnano-connection and the functional group element in the nano-electronics, opticaldevices, which is also an ideal model to study the relation between the mechanicalparameters and size/dimensions in nanomaterials. Based on the idea that the atomicchain confined in a1D space usually has been found to be stable even at ambientconditions, to study such1D system has become practicable.1D atomic (molecular)chains can be obtained by doping the nanotubes with the typical diatomic molecules,that provides the experiment basis and theoretical support for the study of1D atomic(molecular) chains. Iodine atomic chains have been found to be stable inside theSWNT. The iodine molecular wires and a spot of iodine atomic chains can beincorprated in the channels of type5Molecular Sieve (AFI). Polarized resonantRaman scattering reveal that the iodine molecular wires and a spot of iodine atomicchains can only aligned to the channel direction while the molecular iodine orientatedrandomly. From previous studies, we found that type5Molecular Sieve (AFI) can betaken as a ideal confinement material, exhibiting the advantages of having long andstraight channels, uniform pore size and fewer defects. On the other hand, bromine, atypical diatomic molecule, similar to iodine, has rich structures transition in the lowpressure range, which makes it to be a ideal model to realize (simulate) other similardiatomic molecules, and give us additional indications in the study of pressure-inducedmetallization of hydrogen, etc.
     It is still an open question that the synthesis、optical characterizations and highpressure study of bromine chains in confined environment. High Pressure techniqueand Polarized resonant Raman scattering provide a new perspective to study thestructures and physical properties of1D atomic (molecular) chains.
     In this work, we present that bromine atomic chains have been successfullysynthesized by introducing bromine molecules into the channels of AFI (AFI) singlecrystals through a vapor phase method. The bromine absorbed on the AFI surface canbe easily removed by sublimation naturally when heated to590C for2hours and thenstored at room temperature for3days. The doped bromine@AFI samples showsgolden color, obviously different from the white color of pristine AFI crystal. The Raman spectra of bromine doped samples obviously differ from those of pristine bromine single crystals, that reveal the bromine chains(Br5-chains/(Br2)n chains and asymmetric Br3-chains) and bromine molecules formed inside the AFI channels. We assign208cm-1peak to asymmetric Br3-chains, that is also observed in Cs+Br3-. Due to size confinement of the AFL channels, the Raman peak shifts from320cm-1for gaseous Br2to314cm-1. So314m"1peak originates from isolated bromine molecules. For the peak at265cm-1, we assign it to (Br2)n or Br5-chains, that is supported by the same Raman peak at (trimesic acid.H20)10H+Br5-and our deduction has been made on the basis iodine doped into the channels of AFI. The bromine chains and bromine molecules can be stable inside the channels. Our detailed Raman study along the bromine doped AFI rods shows that the distribution of bromine in the zeolite pores is not homogeneous, with more existing in the open end of the zeolite, less in the middle.
     Studies of polarized Raman spectra show that the (Br2)n、symmetric Br3-and asymmetric Br3-chains are not exactly aligned the channel direction but with a slightly titled angle, while the bromine molecules are oriented randomly inside the channels of AFI.
     To further explore the high-pressure behavior of polybromide confined into the AFI channels, we measure an in-situ high-pressure Raman and XRD study for AFI doped with bromine. All the pressure evolution differs from the case of pristine bromine, as an additional proof of the intercalation process. We firstly assume that the265cm-1can be attributed Br5-wires. At0.16-3.74GPa, bromine molecules interact with the asymmetric Br3-chains and Br5-chains can be synthesized. Br2+Br3-→Br5-, increasing the amount of the Br5-chains. If this happened, the below scheme will happen:Br2+Br5-→Br7-,but we can't observe the large frequency shift at Br5-peak or new raman peaks appear and become more intensity at pressure. So we suggest that the265cn-1more reasonably originate from (Br2)n wires rather than Br5-wires, that is similar to (I2)n wires formed inside the channels of AFI crystal. At0.2-3.7GPa, pressure can mBr2+(Br2)n→(Br2)m+n or mBr2+nBr2→(Br2)m+n, prolongating or increasing the amount of the (Br2)n wires. A slope change has been observed in all the curves at-7GPa. In detail, at this pressure the peak starting from305cm-1due to bromine chain increases abruptly in its frequency. After the highest pressure (18GPa)reached in this study the framework is completely destructed and becomes irreversibleupon decompression. All these results are further confirmed by Raman measurementson the samples decompressed from different high pressures.
     The structural stability of Br@AFI zeolite (AFI) has been studied as a function ofpressure up to18.8GPa in a diamond anvil cell by using synchrotron X-ray diffraction.It is found that the AFI structural stability can be enhanced significantly when brominespecies doped into the AFI channels. In this case the (400) and (410) peaks are stillexist at18.8GPa, while the AFI crystals become amorphous state at higher pressure.The bromine chains and bromine molecules in channels of AFI affect the structuralevolution of the AFI channel under pressure. The results demonstrated that brominecan be doped into the channels of porous zeolite AFI single crystals, exerting asupporting effect against the structure collapse of AFI and thus improving theirstructural stability.
引文
[1]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [2]袁哲俊,纳米科学与技术.哈尔滨:哈尔滨工业大学出版社,2005
    [3] B.Vonnegut, B.E.Warren, The Structure of Crystalline Bromine, J.Am.Chem.Soc.(1936)58,2459.
    [4] Defang Duan, Yanhui Liu, Yanming Ma, Zhiming Liu, Tian Cui*, Bingbing Liu,Guangtian Zou. Ab initio studies of solid bromine under high pressure. Phys.Rev.B,2007,76,104113.
    [5] P.G.Johannsen,W.B.Holzapfel, Effect of pressure on Raman spectra of solidbromine,J.Phys.C:Solid State Phys.(1983)16,1961.
    [6] H.Fujihisa, Y.Fujii, K. Takemura,and O.Shimomura, Structural aspects of densesolid halogens under high pressure studied by x-ray diffraction—Moleculardissociation and metallization,Journal of Physics and Chemistry of Solids (1995)56,1439.
    [7] T.Kenichi, S.Kyoko, F.Hiroshi,and O.Mitsuko, Modulated structure of solid iodineduring its molecular dissociation under high pressure, Nature(2003)424,971.
    [8] A.San-Miguel, H.Libotte, M.Gauthier, G.Aquilanti, S.Pascarelli, J.P.Gaspard, NewPhase Transition of Solid Bromine under High Pressure,Physical ReviewLetters(2007)99,015501.
    [9] E.Wigner, H.B.Huntington, Possibility of a Metallic Modification of Hydrogen,The Journal of Chemical Physics (1935)3,764.
    [10] H.K.Mao, P.M.Bell, R.J.Hemley, Ultrahigh pressures: Optical observations andRaman measurements of hydrogen and deuterium to1.47Mbar, Physical ReviewLetters(1985)55,99.
    [11] H.E.Lorenzana, I. F.Silvera, K.A.Goettel, Physical Review Letters(1989)63,2080.
    [12] Barrer R M. Hydrothermal chemistry of zeolites. New York:Academic Press,1982.
    [13] Davis M E. Ordered porous materials for emerging applications. Nature,2002,417:813-821.
    [14] Wilson S T,Lok B M,Flanigen E M,et al. Crystalline metallophosphatecompositions. United State Patent,1982,310(4):440.
    [15] Guildford. Proceedings of the6th International Conference on Zeolites,1984[C].UK:Butterworths,1985.
    [16]徐如人,庞文琴.分子筛与多孔材料化学.北京:科学出版社,2004.
    [17] JAMIESON J C, LAWSON A W, NACHTRIEB N D, New Device for ObtainingX-Ray Diffraction Patterns from Substances Exposed to High Pressure[J]. Rev, Sci.Instrum.1959,30:1016-1019.
    [18] Hang Lv,Mingguang Yao, Quanjun Li, Accepted by Journal of Applied Physics
    [19] Ohnishi H,Kondo Y,Quantized conductance through individual rows ofsuspended gold atoms. Nature,1998,395:780-783.
    [20] Yanson A I,Bollinger G R,Brom H E,et al. Formation and manipulation of ametallic wire of single gold atoms. Nature,1998,395:783.
    [21] Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354:56-58.
    [22] Manning T J,Taylor L,Purcell J. Impact on the photothermal emission fromsingle wall nanotubes by some alkali halide salts[J]. Carbon,2003,41(14):2813-2818.
    [23] Michihiro Miyake, Hirofumi Uehara, Hiroaki Suzuki, et al. Microporous andMesoporous Materials32(1999)45–53
    [24] N. Bendiab, L. Spina,1A. Zahab, et al. PHYSICAL REVIEW B, VOLUME63,153407
    [25] Tsang S C,Chen Y K,Harris P J F,et al. A simple chemical method of openingand filling carbon nanotubes. Nature,2002,372:159-162.
    [26] Jung Y,Hwang S,Kim S J,Spectroscopic Evidence on Weak Electron Transferfrom Intercalated Iodine Molecules to Single-Walled Carbon Nanotubes. The Journalof Chemical Physics,2007,111(28):10181-10184.
    [27] R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess and R. E. Samlley, Nature388,255(1997).
    [28] D.D.D.Chung, Phase Transtitions,8,35(1986)
    [29] Bingbing Liu, Qiliang Cui, Miao Yu, et al.Raman study of bromine-dopedsingle-walled carbon nanotubes under high pressure,J. Phys.: Condens. Matter14(2002)11255–11259
    [30] Z. K. Tanga,Michael M. T. Loy. Appl. Phys. Lett.70(1),6January1997
    [31] Poborchii V V,Kolobov A V. Dynamics of Single Selenium Chains Confined inOne-Dimensional Nanochannels of AFI: Temperature Dependencies of the First-andSecond-Order Raman Spectra. Physical Review Letters,1999,82:1955.
    [32] Bichara C,Pellenq R J M. Chain versus ring structures of Selenium confined inAFI zeolite[J]. Molecular Simulation.2004,30(11):781-786.
    [33] Inoue S,Koshizaki N,Kodaira T. Formation of te Nanowires in Zeolite Afi andTheir Polarized Absorption Spectra. International Journal of Modern Physics B,2005,19(15):2817-2822.
    [34] Floquet N,Coulomb J P,Dufau N,et al. Confined Water in Mesoporous MCM-41and Nanoporous AFI: Structure and Dynamics. Adsorption,2004,11:139-144.
    [35] Tang Z K,Sun H D,Wang J,et al. Mono-sized single-wall carbon nanotubesformed in channels of AFI single crystal. Appl. Phys. Lett,1998,73:2287.
    [36] Wang N,Tang Z K,Li G D,et al. Single-walled4A carbon nanotube arrays.Nature,2000,408:50-51.
    [37] Tang Z K,Zhang L,Wang N,et al. Superconductivity in4AngstromSingle-Walled Carbon Nanotubes[J]. Science,2001,292:2462–2465.
    [38] Tang Z K,Zhang L Y,Wang N,et al. Ultra-small single-walled carbon nanotubesand their superconductivity properties. Synthetic Metals,2003,133(13):689-693.
    [39] Tang Z K,Wang N,Zhang X X,et al. Novel properties of0.4nm single-walledcarbon nanotubes templated in the channels of AFI single crystals. New Journal ofPhysics,2003,5:146.
    [40] Ye J T,Zhai J P,Tang Z K. Raman characterization of0.4nm single-walled carbonnanotubes formed in the channels of AFI zeolite single crystals. Journal of Physics:Condensed Matter,19(44):445003.
    [41] S.S.Batsanov,Van der Waals Radii of Elements,Inorganic Materials(2001)37,871
    [42] RAMAN C V, A new radiation[J].Ind.J.Phys.,1928,2:387.
    [43] RAMAN C V, KRISHMAN K S, A new type of secondary radiation[J]. Nature,1928,121:501.
    [44] GARY R. BURNS, ROBYN M. RENNER, A Raman and resonance Raman studyof polybromide anions and a study of the temperature dependence of the Raman-activephonons of tetrabutylammonium tribromide. Spemochimiia Arm. Vol.47A. No.8. pp.991-999.1591
    [45] A. Schnittke, H. Stegemann,H. Fullbier.Raman Spectroscopic Investigation ofPolybromide-Containing Functional Polymers. JOURNAL OF RAMANSPECTROSCOPY, VOL.22,627-631(1991)
    [46] Davida W. Kalina, S Joseph, W. Lyding, Mark T, et al. Bromine as a PartialOxidant. Oxidation State and Charge Transport in Brominated Nickel and PalladiumBis (diphenylglyoximates). A Comparison with the Iodinated Materials andResonance Raman Structure-Spectra Correlation for Polybromides. J. Am. Chem. SOC.1980,102,7854-7862
    [47] J. T. Ye,Z. K. Tang, Nano Science and Technology(2008)
    [48] W. Gabes, H. Gerding. Vibrational spectra and structures of the trihalide ionsJournal of Molecular StructureVolume14, Issue2, November1972, Pages267–279
    [49] F.Y. Jiang, R.C. Liu, Incorporation of iodine into the channels of AlPO4-5crystals,Journal of Physics and Chemistry of Solids68(2007)1552–1555
    [50] Y.Fujii et al.,Evidence for molecular dissociation in bromine near80GPa,PhysicalReview Letters(1989)63,536
    [51] S.Matsuzaki, T.Kyoda, T.Ando and M.Sano. Raman Spectra of Graphite-bromineinteraction compounds at High Pressure. Solid State Communications,Vol.67,No.5,505-507(1998)
    [52] Mao H K,Jephcoat A P,Hemley R J,et al. Synchrotron X-ray DiffractionMeasurement of Single-Crystal Hydrogen to26.5Gigapascals. Science,1988,239(4844):1131-1134.
    [53] Tetsuji Kume, Takashi Hiraoka, Yasuhisa Ohya, et al., High Pressure RamanStudy of Bromine and Iodine: Soft Phonon in the Incommensurate, Phase, Phys. Rev. Lett.85,1262(2005).
    [54] P-G Johannsen and W B Holzapfel, Effect of pressure on Raman spectra of solidbromine, J. Phys. C: Solid State Phys.,16(1983)1961-1965
    [55] U.D.Venkateswaran, E. A. Brandsen, and M. E. Katakowski. Pressure dependenceof the Raman modes in iodine-doped single-walled carbon nanotube bundles.PHYSICAL REVIEW B, VOLUME65,054102
    [56] L. Alvarez, J.-L. Bantignies, R. Le Parc, et al. High-pressure behavior ofpolyiodides confined into single-walled carbon nanotubes: A Raman study PHYSICALREVIEW B82,205403(2010)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700