用户名: 密码: 验证码:
圆形精子细胞特异基因rsb66编码的蛋白质及睾丸新基因hsd14的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了分离、鉴定精子发生过程的新基因,本实验室在国际上首次用激光捕获显微切割(Laser Capture Microdissection)技术分离获得了大量的大鼠初级精母细胞和圆形精子细胞,提取了这两种细胞的总RNA后,通过抑制性消减杂交技术建立了初级精母细胞消减圆形精子细胞的消减cDNA文库(RSB)。本论文的研究对象rsb66基因就是从RSB文库分离得到的一条新基因。rsb66的cDNA全长为564bp,GenBank注册号为AY121839。开放阅读框编码含168个氨基酸残基的多肽链。Northern blot显示该基因特异性表达于大鼠睾丸中。rsb66和它的人同源基因在核苷酸水平上的同源性为88.2%,在氨基酸水平上的同源性高达92.3%,提示该基因在进化上高度保守。
     在先前的研究中,我们应用酵母双杂交系统,以全长的RSB66为诱饵,筛选人睾丸cDNA文库,共获得2个与RSB66相互作用的分子:HSD45(AY604176)和HSD46(AY604177)。hsd45的cDNA全长为985bp,开放读码框编码221个氨基酸残基的多肽链。BLAST分析发现hsd45与一新基因完全相同。该基因的编码产物能通过与cyclinA1相互作用抑制Cdk的活性,故命名为INCA1(Inhibitor of Cdk interacting with Cyclin A1)。
     本研究中,我们运用GST-pull down和免疫共沉淀首先分别在体外和体内两种体系中确证了RSB66和HSD45的相互作用。
     前期工作中对蛋白质晶体结构的解析结果提示:RSB66的Tyr-117和His-119残基可能形成一个活性位点。在进一步的功能研究中,我们探索了这两个位点对RSB66功能的影响。我们构建了点突变体mRSB66(117Ala119Ala)及两个截短体106RSB66和128RSB66的重组表达质粒。免疫共沉淀的结果显示:外源性的RSB66和mRSB66虽都能与HeLa细胞中内源性的HSD45相互作用,但RSB66全长与HSD45的相互作用明显较mRSB66强;然而实验中未检测到截短体106RSB66和128RSB66与HSD45的相互作用。结果提示:Tyr-117和His-119残基在RSB66与HSD45的相互作用中起到了一定的作用,但仅这两个位点的突变并不能完全抑制RSB66和HSD45之间的相互作用;位于RSB66结构C端的α-螺旋在二者的相互作用中也有重要作用。此外,免疫荧光的结果提示:HSD45在HeLa细胞的核和胞浆中都有表达,RSB66主要表达于HeLa细胞的胞浆中,二者在HeLa细胞的胞浆中共定位;突变体mRSB66、106RSB66和128RSB66也都主要定位于HeLa细胞的胞浆中;无论是点突变体还是截短体的定位与RSB66全长相比,没发生明显的改变。提示Tyr-117和His-119残基以及C端的α-螺旋对于RSB66的定位没有明显的影响。
     据报道:HSD45(INCA1)能与cyclin A1发生相互作用并抑制cyclin A1/Cdk2复合物的激酶活性,提示其可以通过对Cdk活性的调控影响细胞周期的进程。因此,我们推测RSB66也可能通过与HSD45的相互作用影响细胞周期。流式细胞分析的结果显示:过量表达RSB66能够引起HeLa细胞的细胞周期出现明显的G2/M期延迟的现象;mRSB66的过量表达也能引起了类似的现象,但G2/M期的延迟程度比全长RSB66轻。
     通过体外激酶活性实验我们发现:纯化的RSB66能抑制以histone H1为底物的cyclin A1/Cdk2复合物的激酶活性,Western Blotting显示cyclin A1/Cdk2激酶活性的下调与cyclin A1、Cdk2和HSD45(INCA1)表达水平的变化无关。纯化的mRSB66、106RSB66和128RSB66不同程度地抑制cyclin A1/Cdk2激酶活性。我们推测这可能是RSB66引起HeLa细胞的细胞周期G2/M期延迟的原因。
     hsd14基因是本组借助电子克隆的方法,以睾丸特异性的EST为基础克隆得到的一个睾丸特异性表达的新基因,其cDNA全长为1107bp,GenBank注册号为AY251164,读码框编码288个氨基酸,包括3个dsRNA结合结构域。BLASTP分析的结果表明HSD14的氨基酸序列除了缺少了N端的25个氨基酸外与PACT(PKR activating protein)蛋白完全一致,这提示HSD14和PACT有可能是同一基因在不同组织中的不同剪接体。PACT能通过激活PKR导致细胞蛋白质的合成受阻,从而诱导细胞凋亡,还可能参与RNAsilencing途径的调节。本研究旨在结合PACT已知的功能,探索HSD14在生精过程中的作用。
     在以纯化的His_6-HSD14免疫BALB/c小鼠和以HSD14的多克隆抗体显微注射BALB/c小鼠睾丸曲细精管时,我们观察到小鼠睾丸曲细精管组织结构紊乱,生精细胞退化、凋亡的现象。此外,在应用酵母双杂交系统,以HSD14为诱饵筛选其相互作用蛋白质时,观察到HSD14的表达使酵母菌出现了明显的生长抑制(anti-growthphenotype)。利用精原细胞株GC-1spg,我们成功地构建了hsd14小鼠同源基因的内源性稳定RNAi细胞株。本实验组经过多年的研究和探索成功建立了小鼠体内睾丸曲细精管显微注射和以精原细胞系移植为基础的体内RNAi的技术平台。以上的初步结果和成功构建的RNAi稳定细胞株,为我们充分利用该技术平台,对HSD14在生精过程的功能进行深入的研究奠定了基础。
In order to identify novel genes in spermatogenesis,tens of thousands of rat spermatocytes and round spermatids had been isolated by Laser Capture Microdisseetion (LCM) in our laboratory,and total RNA of these two cells had been extracted.Then the Suppression Subtracted Hybridization(SSH) library of round spermatid-specific cDNAs against those of primary spermatocyte(RSB) had been constructed,rsb66 which is investigated in present study was one of those genes obtained from RSB subtracted library.Its full-length cDNA comprises 564bp and was assigned the GenBank accession number AY121839.The open reading frame encodes a polypeptide consisting of 168 amino acid residues.Northern blot showed that rsb66 was specifically expressed in rat testis.The coding sequences of rsb66 and its human homolog showed 88.2%homology on the nucleotide and 92.3%identity on the amino acid level.Such highly homolog between human and rodents suggests that this gene is conserved in the evolution.
     In previous studies,a Yeast Two-Hybrid system had been used to screen the interaction partners of full-length RSB66 in human testis eDNA library.As a result,two positive clones were identified and designated as hsd45(AY604176) and hsd46(AY604177).The full-length cDNA of hsd45 comprises 985bp and the open reading frame encodes a polypeptide consisting of 221 amino acid residues.The result of BLASTP analysis showed that HSD45 was identical to INCA1(Inhibitor of CDK interacting with Cyelin A1),a novel cyclin A1/CDK2 interaction partner in a Yeast-Triple Hybrid approach.
     In our study the interaction between RSB66 and HSD45 were firstly eomfirmed both in vitro and in vivo by GST-pull down and co-immunoprecitetation,respectively.According to the previous results in crystal structure of RSB66,Tyr-117 and His-119 residues may form an active site which is essential for the function of RSB66.To investigate the influence of these two sites on the function of RSB66,one dot mutant mRSB66(117Ala119Ala) and tow deletions(106RSB66 and 128RSB66) were constructed.Results of co-immunoprecitetation showed that mRSB66 had weaker interaction with HSD45 compareing with wild-type RSB66, while the interaction between two deletions of RSB66 and HSD45 could not be detectable.It indicated Tyr-117 and His-ll9 residues had effected on the interaction between RSB66 and HSD45,and theα-helix in C-terminal was also crucial for the interaction.By immunoflouresence we found HSD45 located in both nuclear and cytoplasm of HeLa,it co-localized with RSB66 in cytoplasm.All the mutants showed similar localization to wild-type RSB66 which indicated that the mutants had no apparent effect on the localization of the protein.
     It was reported that HSD45(INCA1) can interacted with eyclin A1 and therefore inhibit the kinase activity of Cdk.This suggested its participation in regulation of the cell cycle.We presumed that RSB66 could also regulate the cell cycle through its interaction with HSD45. Results of flow cytometry showed that obvious G2/M delay was induced by overexpression of RSB66 in HeLa,which was also found in overexpression of mRSB66.However,the degree of G2/M delay was alleviated in the latter one.
     In vitro kinase avtivity assay using histone H1 as substrates demonstrated that cyclin A1/Cdk2 kinase activity was inhibited by purified RSB66.And this down-regulation of kinase activity did not due to the variation of the expression levels of cyclin A1,Cdk2 and HSD45. Moreover,the kinase activity was influenced by putified mRSB66,106RSB66 and 128RSB66 in different levels.Our results indicated that this inhibition in kinase activity might be cause of G2/M delay in cell cycle of HeLa.
     hsd14 was a novel gene obtained from a human testis-specific EST by silicon cloning.Its full-length eDNA comprises 1107bp and was assigned the Genbank accession number AY251164.The open reading frame encodes a polypeptide consisting of 288 amino acid residues and contains three dsRNA binding domain.The result of BLASTP analysis showed that amino acid sequence of HSD14 was identical to PACT(PKR activating protein) except the absence of 25 amino acids in the N-terminal.It indicated that HSD14 and PACT might be products of the same gene due to selected splicing.It was reported that PACT can activate PKR,inhibit protein synthesis,and therefore induce apoptosis of cells.It may also be involved in RNA silencing pathway.In this study,we try to explore the function of HSD14 in spermatogenesis on the base of the function of PACT.
     We immuned BALB/c mice with purified His6-HSD14 and injected mice testis with anti-HSD14 antibodies.To our surprise,the testes of mice were in severe disorder. Degeneration and apoptosis were observed in many germ cells.Moreover,anti-growth phenotype was observed in yeast when we screen for interaction partner of HSD14 in a Yeast-Two Hybrid system using HSD14 as bait.We constructed stable RNAi cell line of endogenous prkra(hsd14 mouse homologue) successfully using GC-1spg.Our group has established a novel technique of microinjection into seminiferous tubules of mouse and spermatogonial cell line(GC-1spg) transplantation.Our work of serum microinjection and constructin of stable RNAi cell line will lay a foundation for our dedication to function of HSD14 in spermatogenesis through the novel technique.
引文
Bai, D., Chen, H., and Huang, B. R. (2003). RanBPM is a novel binding protein for p75NTR. Biochem Biophys Res Commun 309, 552-557.
    Balachandran, S., Kim, C. N., Yeh, W. C., Mak, T. W., Bhalla, K., and Barber, G. N. (1998). Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. Embo J 17, 6888-6902.
    Banks, R. E., Dunn, M. J., Forbes, M. A., Stanley, A., Pappin, D., Naven, T., Gough, M., Harnden, P., and Selby, P. J. (1999). The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis-preliminary findings. Electrophoresis 20,689-700.
    Bennett, R. L., Blalock, W. L., and May, W. S. (2004). Serine 18 phosphorylation of RAX, the PKR activator, is required for PKR activation and consequent translation inhibition. J Biol Chem 279,42687-42693.
    Choi, T., Aoki, F., Mori, M., Yamashita, M., Nagahama, Y, and Kohmoto, K. (1991). Activation of p34cdc2 protein kinase activity in meiotic and mitotic cell cycles in mouse oocytes and embryos. Development 113, 789-795.
    Cobb, J., Cargile, B., and Handel, M. A. (1999). Acquisition of competence to condense metaphase I chromosomes during spermatogenesis. Dev Biol 205,49-64.
    D'Acquisto, F., and Ghosh, S. (2001). PACT and PKR: turning on NF-kappa B in the absence of virus. Sci STKE 2001, RE1.
    Diederichs, S., Baumer, N., Ji, P., Metzelder, S. K., Idos, G. E., Cauvet, T., Wang, W., Moller, M., Pierschalski, S., Gromoll, J., et al. (2004). Identification of interaction partners and substrates of the cyclin A1-CDK2 complex. J Biol Chem 279,33727-33741.
    Dunphy, W. G., Brizuela, L., Beach, D., and Newport, J. (1988). The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54,423-431.
    Eddy EM, W. J., and O'Brien DA (1993). Gene expression during spermatogenesis (Orlando: Academic Press). Fisher, R. P., and Morgan, D. O. (1994). A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 78, 713-724.
    Frankel, S., Sohn, R., and Leinwand, L. (1991). The use of sarkosyl in generating soluble protein after bacterial expression. Proc Natl Acad Sci U S A 88, 1192-1196.
    Galaktionov, K., and Beach, D. (1991). Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67, 1181-1194.
    Gautier, J., Norbury, C, Lohka, M., Nurse, P., and Mailer, J. (1988). Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell 54,433-439.
    Hoffmann, I., Clarke, P. R., Marcote, M. J., Karsenti, E., and Draetta, G. (1993). Phosphorylation and activation of human cdc25-C by cdc2~cyclin B and its involvement in the self-amplification of MPF at mitosis. Embo J 12, 53-63.
    Hofmann, M. C., Abramian, D., and Millan, J. L. (1995). A haploid and a diploid cell coexist in an in vitro immortalized spermatogenic cell line. Dev Genet 16, 119-127.
    Ito, T., Yang, M., and May, W. S. (1999). RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. J Biol Chem 274, 15427-15432.
    Jinno, S., Suto, K., Nagata, A., Igarashi, M., Kanaoka, Y., Nojima, H., and Okayama, H. (1994). Cdc25A is a novel phosphatase functioning early in the cell cycle. Embo J 13,1549-1556.
    Kok, K. H., Ng, M. H., Ching, Y. P., and Jin, D. Y. (2007). Human TRBP and PACT directly interact with each other and associate with Dicer to facilitate the production of small interfering RNA. J Biol Chem.
    Kumar, A., Haque, J., Lacoste, J., Hiscott, J., and Williams, B. R. (1994). Double-stranded RNA-dependent protein kinase activates transcription factor NF-kappa B by phosphorylating I kappa B. Proc Natl Acad Sci U S A 91,6288-6292.
    Lammer, C., Wagerer, S., Saffrich, R., Mertens, D., Ansorge, W., and Hoffmann, I. (1998). The cdc25B phosphatase is essential for the G2/M phase transition in human cells. J Cell Sci 111(Pt 16), 2445-2453.
    Lee, Y., Hur, I., Park, S. Y, Kim, Y. K., Suh, M. R., and Kim, V. N. (2006). The role of PACT in the RNA silencing pathway. Embo J 25, 522-532.
    Liang, G., Zhang, X. D., Wang, L. J., Sha, Y. S., Zhang, J. C., Miao, S. Y, Zong, S. D., Wang, L. F., and Koide, S. S. (2004). Identification of differentially expressed genes of primary spermatocyte against round spermatid isolated from human testis using the laser capture microdissection technique. Cell Res 14, 507-512.
    Liao, C., Li, S. Q., Wang, X., Muhlrad, S., Bjartell, A., and Wolgemuth, D. J. (2004). Elevated levels and distinct patterns of expression of A-type cyclins and their associated cyclin-dependent kinases in male germ cell tumors. Int J Cancer 108,654-664.
    Liu, D., Liao, C., and Wolgemuth, D. J. (2000). A role for cyclin A1 in the activation of MPF and G2-M transition during meiosis of male germ cells in mice. Dev Biol 224, 388-400.
    Liu, D., Matzuk, M. M., Sung, W. K., Guo, Q., Wang, P., and Wolgemuth, D. J. (1998). Cyclin Al is required for meiosis in the male mouse. Nat Genet 20, 377-380.
    Makela, T. P., Tassan, J. P., Nigg, E. A., Frutiger, S., Hughes, G. J., and Weinberg, R. A. (1994). A cyclin associated with the CDK-activating kinase MO15. Nature 371,254-257.
    McGowan, C. H., and Russell, P. (1995). Cell cycle regulation of human WEE1. Embo J 14, 2166-2175.
    Nagata, A., Igarashi, M, Jinno, S., Suto, K., and Okayama, H. (1991). An additional homolog of the fission yeast cdc25+ gene occurs in humans and is highly expressed in some cancer cells. New Biol 3, 959-968.
    Patel, R. C., and Sen, G. C. (1998). PACT, a protein activator of the interferon-induced protein kinase, PKR. Embo J 17,4379-4390.
    Peters, G. A., Hartmann, R., Qin, J., and Sen, G. C. (2001). Modular structure of PACT: distinct domains for binding and activating PKR. Mol Cell Biol 21, 1908-1920.
    Proud, C. G. (1995). PKR: a new name and new roles. Trends Biochem Sci 20,241-246.
    Qiu, X., Forman, H. J., Schonthal, A. H., and Cadenas, E. (1996). Induction of p21 mediated by reactive oxygen species formed during the metabolism of aziridinylbenzoquinones by HCT116 cells. J Biol Chem 271, 31915-31921.
    Ravnik, S. E., and Wolgemuth, D. J. (1999). Regulation of meiosis during mammalian spermatogenesis: the A-type cyclins and their associated cyclin-dependent kinases are differentially expressed in the germ-cell lineage. Dev Biol 207,408-418.
    Sadhu, K., Reed, S. I., Richardson, H., and Russell, P. (1990). Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc Natl Acad Sci U S A 87, 5139-5143.
    Simone, N. L., Bonner, R. F., Gillespie, J. W., Emmert-Buck, M. R., and Liotta, L. A. (1998). Laser-capture microdissection:opening the microscopic frontier to molecular analysis.Trends Genet 14,272-276.
    Strausfeld,U.,Fernandez,A.,Capony,J.P.,Girard,F.,Lautredou,N.,Derancourt,J.,Labbe,J.C.,and Lamb,N.J.(1994).Activation of p34cdc2 protein kinase by microinjection of human cdc25C into mammalian cells.Requirement for prior phosphorylation of cdc25C by p34cdc2 on sites phosphorylated at mitosis.J Biol Chem 269,5989-6000.
    Suarez-Quian,C.A.,Goldstein,S.R.,and Bonner,R.F.(2000).Laser capture microdissection:a new tool for the study of spermatogenesis.J Androl 21,601-608.
    Watanabe,N.,Broome,M.,and Hunter,T.(1995).Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle.Embo J 14,1878-1891.
    Welch,J.E.,Schatte,E.C.,O'Brien,D.A.,and Eddy,E.M.(1992).Expression ofa glyceraldehyde 3-phosphate dehydrogenase gene specific to mouse spermatogenic cells.Biol Reprod 46,869-878.
    Williams,B.R.(1997).Role of the double-stranded RNA-activated protein kinase(PKR) in cell regulation.Biochem Soc Trans 25,509-513.
    Wu,S.,and Wolgemuth,D.J.(1995).The distinct and developmentally regulated patterns of expression of members of the mouse Cdc25 gene family suggest differential functions during gametogenesis.Dev Bioi 170,195-206.
    Yang,M.,Li,S.,Liang,G.,Sun,L.,Zhang,X.,Liu,N.,Pang,H.,Miao,S.,Wang,L.,and Rao,Z.(2003).Crystallization and preliminary crystallographic analysis of RSB-66,a novel round spermatid-specific protein.Acta Crystallogr D Biol Crystallogr 59,1853-1855.
    Yang,R.,Morosetti,R.,and Koeffier,H.P.(1997).Characterization of a second human cyclin A that is highly expressed in testis and in several leukemic cell lines.Cancer Res 57,913-920.
    Zhao,M.,Shirley,C.R.,Yu,Y.E.,Mohapatra,B.,Zhang,Y.,Unni,E.,Deng,J.M.,Arango,N.A.,Terry,N.H.,Weil,M.M.,et al.(2001).Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice.Mol Cell Biol 21,7243-7255.
    胡廷徽(2005)RSB66和HSDl3编码蛋白质的功能研究,中国协和医科大学,北京.
    黄培堂等(2000).细胞实验指南(上册):科学出版社).
    [1]Clemens,M.J.and Elia,A.(1997) J Interferon Cytokine Res 17,503-24.
    [2]Williams,B.R.(1997) Biochem Soc Trans 25,509-13.
    [3]Patel,R.C.,Stanton,P.,McMillan,N.M.,Williams,B.R.and Sen,G.C.(1995) Proc Natl Acad Sci U S A 92,8283-7.
    [4]Romano,ER.,Zhang,E,Tan,S.L.,Garcia-Barrio,M.T.,Katze,M.G.,Dever,T.E.and Hinnebusch,A.G.(1998) Mol Cell Biol 18,7304-16.
    [5]de Haro,C.,Mendez,R.and Santoyo,J.(1996) Faseb J 10,1378-87.
    [6]Tian,B.and Mathews,M.B.(2001) J Biol Chem 276,9936-44.
    [7]Ortega,L.G.,McCotter,M.D.,Henry,G.L.,McCormack,S.J.,Thomis,D.C.and Samuel,C.E.(1996) Virology 215,31-9.
    [8]Saelens,X.,Kalai,M.and Vandenabeele,P.(2001) J Biol Chem 276,41620-8.
    [9]Patel,R.C.,Stanton,P.and Sen,G.C.(1996) J Biol Chem 271,25657-63.
    [10]Lee,S.B.,Green,S.R.,Mathews,M.B.and Esteban,M.(1994) Proc Natl Acad Sci U SA91,10551-5.
    [11]Peters,G.A.,Hartmann,R.,Gin,J.and Sen,G.C.(2001) Mol Cell Biol 21,1908-20.
    [12]Patel,R.C.and Sen,G.C.(1998) Embo J 17,4379-90.
    [13]Patel,C.V.,Handy,I.,Goldsmith,T.and Patel,R.C.(2000) J Biol Chem 275,37993-8.
    [14]Ito,T.,Yang,M.and May,W.S.(1999) J Biol Chem 274,15427-32.
    [15]Yang,M.,Ito,Y.and May,W.S.(2003) J Biol Chem 278,38325-32.
    [16]Bennett,R.L.,Blalock,W.L.and May,W.S.(2004) J Biol Chem 279,42687-93.
    [17]Peters,G.A.,Khoo,D.,Molar,I.and Sen,G.C.(2002) J Virol 76,11054-64.
    [18]Li,S.,Min,J.Y.,Krug,R.M.and Sen,G.C.(2006) Virology 349,13-21.
    [19]Li,S.,Peters,G.A.,Ding,K.,Zhang,X.,Gin,J.and Sen,G.C.(2006) Proc Natl Acad Sci U S A 103,10005-10.
    [20]Peters,G.A.,Li,S.and Sen,G.C.(2006) J Biol Chem 281,35129-36.
    [21]Demarchi,F.,Gutierrez,M.I.and Giacca,M.(1999) J Virol 73,7080-6.
    [22]Balachandran,S.,Roberts,EC.,Brown,L.E.,Yruong,H.,Pattnaik,A.K.,Archer,D.R.and Barber,G.N.(2000) Immunity 13,129-41.
    [23]Der,S.D.and Lau,A.S.(1995) Proc Natl Acad Sci U S A 92,8841-5.
    [24]Hiscott,J.,Pitha,P.,Genin,P.,Nguyen,H.,Heylbroeck,C.,Mamane,Y.,Algarte,M.and Lin,R.(1999) J Interferon Cytokine Res 19,1-13.
    [25]Kumar,A.,Haque,J.,Lacoste,J.,Hiscott,J.and Williams,B.R.(1994) Proc Natl Acad Sci U S A 91,6288-92.
    [26] Chu, W.M. et al. (1999) Immunity 11, 721-31.
    [27] Cheshire, J.L., Williams, B.R. and Baldwin, A.S., Jr. (1999) J Biol Chem 274,4801-6.
    [28] Kumar, A. et al. (1997) Embo J 16, 406-16.
    [29] Bonnet, M.C., Weil, R., Dam, E., Hovanessian, A.G. and Meurs, E.F. (2000) Mol Cell Biol 20, 4532-42.
    [30] Zamanian-Daryoush, M., Mogensen, T.H., DiDonato, J.A. and Williams, B.R. (2000) Mol Cell Biol 20,1278-90.
    [31] Fremont, M., Vaeyens, F., Herst, C.V., De Meirleir, K.L. and Englebienne, P. (2006) Life Sci 78,1845-56.
    [32] Rowe, T.M., Rizzi, M., Hirose, K., Peters, G.A. and Sen, G.C. (2006) Proc Natl Acad Sci U S A 103, 5823-8.
    [33] Lee, Y., Hur, I., Park, S.Y., Kim, Y.K, Suh, M.R. and Kim, V.N. (2006) Embo J 25, 522-32.
    [34] Kok, K.H., Ng, M.H., Ching, Y.P. and Jin, D.Y. (2007) J Biol Chem.
    Anton, E. (1983) Association of Golgi vesicles containing acid phosphatase with the chromatoid body of rat spermatids. Experientia 39, 393-394.
    Bardsley, A., McDonald, K. & Boswell, R. E. (1993) Distribution of tudor protein in the drosophila embryo suggests separation of functions based on site of localization. Development 119, 207-219.
    Biggiogera, M., Fakan, S., Leser, G, Martin, T. E. & Gordon, J. (1990) Immunoelectron microscopical visualization of ribonucleoproteins in the chromatoid body of mouse spermatids. Molecular Reproduction and Development 26,150-158.
    Breucker, H., Schafer, E. & Holstein, A. F. (1985) Morphogenesis and fate of the residual body in human spermiogenesis. Cell and Tissue Research 240, 303-309.
    Burzio, L. O., Concha, I. I., Figueroa, J & Concha, M. (1983) Poly(ADP-ribose) synthetase associated to cytoplasmic structures of meiotic cells. Princess Takamatsu Symposium 13, 141-152.
    Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G J. (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes and Development 16, 2733-2742.
    Carrera, P., Johnstone, O., Nakamura, A., Casanova, J., Jackie, H. & Lasko, P. (2000) VASA mediates translation through interaction with a drosophila yIF2 homolog. Molecular Cell 5, 181-187.
    Comings, D. E. & Okada, T. A. (1972) The chromatoid body in mouse spermatogenesis: Evidence that it may be formed by the extrusion of nucleolar components. Journal of Ultrastructure Research 39, 15-23.
    Daoust, R. & Clermont, Y. (1955) Distribution of nucleic acids in germ cells during the cycle of the seminiferous epithelium in the rat. American Journal of Anatomy 96,255-283.
    Eddy, E. M. (1970) Cytochemical observations on the chromatoid body of the male germ cells. Biology of Reproduction 2,114-128.
    Fagard, M., Boutet, S., Morel, J. B., Bellini, C. & Vaucheret, H. (2000) AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proceedings of the National Academy of Sciences USA 97,11650-11654.
    Findley, S. D., Tamanaha, M., Clegg, N. J. & Ruohola-Baker, H. (2003) Maelstrom, a drosophila spindle-class gene, encodes a protein that colocalizes with VASA and RDE1/ AGO1 homolog, Aubergine, in nuage. Development 130, 859-871.
    Fujiwara, Y., Komiya, T., Kawabata, H., Sato, M., Fujimoto, H., Furusawa, M. & Noce, T. (1994) Isolation of a DEAD-family protein gene that encodes a murine homolog of drosophila VASA and its specific expression in germ cell lineage. Proceedings of the National Academy of Sciences USA91,12258-12262.
    Haraguchi CM, Mabuchi T, Hirata S. Shoda T, Hoshi K, Akasaki K, Yokota S. (2005) Chromatoid bodies: aggresome-like characteristics and degradation sites for organelles of spermiogenic cells. J Histochem Cytochem. 53(4):455-65.
    Harris, A. N. & Macdonald, P. M. (2001) Aubergine encodes a drosophila polar granule component required for pole cell formation and related to eIF2C. Development 128, 2823-2832.
    Hay, B., Ackerman, L., Barbel, S., Jan, L. Y. & Jan, Y. N. (1988) Identification of a component of Drosophila polar granules. Development 103,625-640.
    Head, J. R. & Kresge, C. K. (1985) Reaction of the chromatoid body with a monoclonal antibody to a rat histocompatibility antigen. Biology of Reproduction 33, 1001-1008.
    Hess, R. A., Miller, L. A., Kirby, J. D., Margoliash, E. & Goldberg, E. (1993) Immunoelectron microscopic localization of testicular and somatic cytochromes c in the seminiferous epithelium of the rat. Biology of Reproduction 48,1299-1308.
    Kotaja N, Bhattacharyya SN, Jaskiewicz L, Kimmins S, Parvinen M, Filipowicz W, Sassone-Corsi P. (2006) The chromatoid body of male germ cells: Similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci U S A. 2006 Feb 13; [Epub ahead of print]
    Ikenishi, K. (1998) Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Dev Growth Differ. 40(1): 1-10. Review.
    Krimer, D. B. & Esponda, P. (1980) Presence of polysaccharides and proteins in the chromatoid body of mouse spermatids. Cell Biology International Reports 4, 265-270.
    Lasko, P. F. & Ashburner, M. (1990) Posterior localization of VASA protein correlates with, but is not sufficient for, pole cell development. Genes and Development 4, 905-921.
    Mahowald, A. P. (2001) Assembly of the Drosophila germ plasm. International Review of Cytology 203, 187-213. Mali, P., Fagerhed, R. M. & Parvinen, M. (1988) Cytoskeletal regulation of the chromatoid body. In: Development and Function of the Reproductive Organs,
    Vol. II, Serono Symposia Review No. 14. (eds M. Parvinen, I. Huhtaniemi & L. J. Pelliniemi), pp. 317-323. AresSerono Symposia, Rome, Italy.
    Moussa, F., Oko, R. & Hermo, L. (1994) The immunolocalization of small nuclear ribonucleoprotein particles in testicular cells during the cycle of the seminiferous epithelium of the adult rat. Cell and Tissue Research 278, 363-378.
    Noce, T., Okamoto-Ito, S. & Tsunekawa, N. (2001) Vasa homolog genes in mammalian germ cell development. Cell Structure and Function 26,131-136.
    Oko, R., Korley, R., Murray, M. T., Hecht, N. B. & Hermo, L. (1996) Germ cell-specific DNA and RNA binding proteins p48/52 are expressed at specific stages of male germ cell development and are present in the chromatoid body. Molecular Reproduction and Development 44,1-13.
    Paniagua, R., Nistal, M., Amat, P. & Rodriguez, M. C. (1986) Ultrastructural observations on nucleoli and related structures during human spermatogenesis. Anatomy and Embryology 174, 301-306.
    Parvinen, M. & Jokelainen, P. T. (1974) Rapid movements of the chromatoid body in living early spermatids of the rat. Biology of Reproduction 11, 8592.
    Parvinen, M., Salo, J., Toivonen, M., Nevalainen, O., Soini, E. & Pelliniemi, L. J. (1997) Computer analysis of living cells: movements of the chromatoid body in early spermatids compared with ultrastructure in snap-frozen preparations. Histochemistry and Cell Biology 108,77-81.
    Parvinen, M. (2005) The chromatoid body in spermatogenesis. Int J Androl. 28(4): 189-201 Review.
    Russell, L. & Frank, B. (1978) Ultrastructural characterization of nuage in spermatocytes of the rat testis. Anatomical Record 190, 79-97.
    Sassone-Corsi, P. (2002) Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296,2176-2178.
    Saunders, P. T., Millar, M. R., Maguire, S. M. & Sharpe, R. M. (1992) Stage-specific expression of rat transition protein 2 mRNA and possible localization to the chromatoid body of step 7 spermatids by in situ hybridization using a nonradioactive riboprobe. Molecular Reproduction and Development 33, 385-391.
    Setchell, B. P. (1978) The Mammalian Testis. Paul Elek, London, 193 pp. Shibata, N., Tsunekawa, N., Okamoto-Ito, S., Akasu, R., Tokumasu, A. & Noce, T. (2004) Mouse RanBPM is a partner gene to a germline specific RNA helicase, mouse VASA homolog protein. Molecular Reproduction and Development 67, 1-7.
    Snee, M. J. & Macdonald, P. M. (2004) Live imaging of nuage and polar granules: evidence against a precursor-product relationship and a novel role for Oskar in stabilization of polar granule components. Journal of Cell Science 117, 2109-2120.
    Styhler, S., Nakamura, A., Swan, A., Suter, B. & Lasko, P. (1998) vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development 125, 1569-1578.
    Sud, B. N. (1961a) The chromatoid body in spermatogenesis. Quarterly Journal of Microscopic Science 102, 273-292.
    Sud, B. N. (1961b) Morphological and histochemical studies of the chromatoid body and related elements in the spermatogenesis of the rat. Quarterly Journal of Microscopic Science 102,495-505.
    Tanaka, S. S., Toyooka, Y., Akasu, R., Katoh-Fukui, Y., Nakahara, Y, Suzuki, R., Yokoyama, M. & Noce, T. (2000) The mouse homolog of Drosophila vasa is required for the development of male germ cells. Genes and Development 14, 841-853.
    Thorne-Tjomsland, G., Clermont, Y. & Hermo, L. (1988) Contribution of the Golgi apparatus components to the formation of the acrosomic system and chromatoid body in rat spermatids. Anatomical Record 221, 591-598.
    Tovich, P. R. & Oko, R. J. (2003) Somatic histones are components of the perinuclear theca in bovine spermatozoa. Journal of Biological Chemistry 278, 32431-32438.
    Toyooka, Y, Tsunekawa, N., Takahashi, Y, Matsui, Y, Satoh, M. & Noce, T. (2000) Expression and intracellular localization of mouse VASA-homologue protein during germ cell development. Mechanisms of Development 93,139-149.
    Toyooka, Y, Tsunekawa, N., Akasu, R. & Noce, T. (2003) Embryonic stem cells can form germ cells in vitro. Proceedings of the National Academy of Sciences USA 100, 11457-11462.
    Werner, G. & Werner, K. (1995) Immunocytochemical localization of histone H4 in the chromatoid body of rat spermatids. Journal of Submicroscopic Cytology and Pathology 27, 325-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700