用户名: 密码: 验证码:
孤啡肽对大鼠左心室功能的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经肽是一类广泛存在于机体组织且参与多种器官生理功能调节的肽类物质,其对心血管功能的影响一直是研究的热点,孤啡肽(nociceptin, Orphanin FQ,OFQ)即是其中之一。孤啡肽是一种结构类似于κ阿片受体的内源性配体-强啡肽A的十七肽,但它与阿片类受体的亲和力很低,其特异性受体为ORL1受体,与阿片受体有很高的同源性,同属于G蛋白耦联受体超家族。在中枢及外周应用孤啡肽均可引起一定程度的血压下降和心率减慢,研究认为除与孤啡肽参与中枢和外周神经对心血管的调节有关外,还可能与其直接作用于心血管有关。目前在急性心肌缺血及心衰的研究中发现心肌与血浆中孤啡肽含量增高,提示孤啡肽可能参与上述病理过程,但是目前对其作用机制尚不清楚。孤啡肽是否对心功能有直接的调节作用?以及作用的机制如何?我们对此做了进一步的研究。
     目的:研究孤啡肽对大鼠心脏功能的影响及其可能机制,以期进一步阐述对孤啡肽参与调节心脏生理功能的认识。
     方法:本实验从四个方面进行研究
     1.大鼠应用孤啡肽(静脉注射)的在体研究:健康大鼠分为对照组(静脉给予等体积生理盐水)、不同浓度孤啡肽1nM组、10nM组和50nM组,采用颈动脉插管逆行置入左心室,观察给药前后LVSP、LVDP、+dP/dtmax、-dP/dtmax、HR的变化。进一步选用孤啡肽拮抗剂UFP-101与孤啡肽配伍给药,观察上述指标的变化。
     2.孤啡肽及其受体的免疫荧光化学标定实验:采用组织免疫荧光观察观察孤啡肽及其受体在大鼠心肌中的分布;并且采用急性分离大鼠心肌细胞使用Confocal方法观察孤啡肽受体的分布。
     3.孤啡肽对心肌细胞的L型钙通道、内向整流钾通道及瞬时外向钾通道研究:采用膜片钳技术,观察不同浓度的孤啡肽对上述离子通道功能的影响,以探讨孤啡肽对心脏作用可能的机制。
     4.孤啡肽对心肌细胞PKA活性的影响:提取分别经不同浓度OFQ处理的心肌细胞蛋白,采用PKA活性分析试剂盒测定其活化程度,以探讨孤啡肽作用可能的分子机制。
     结果:
     1.静脉给予孤啡肽引起大鼠LVSP、LVDP、+dP/dtmax、-dP/dtmax、HR有明显的剂量依赖性抑制(P<0.05),预先应用孤啡肽的拮抗剂UFP-101可以阻断此作用。
     2.免疫荧光组织化学显示在大鼠心肌组织中有孤啡肽及其受体存在而confocal结果进一步证实心肌细胞分布有孤啡肽受体。
     3.膜片钳实验结果显示,孤啡肽对心肌细胞L型钙电流有明显的抑制作用,但没有明显的剂量依赖性,以1nM孤啡肽的作用最为明显(抑制率为22.7%,P<0.05),UFP-101可以阻断此抑制作用。而孤啡肽对内向整流钾电流和瞬时外向钾电流均没有明显影响。
     4.心肌细胞PKA活性分析显示,孤啡肽对心肌细胞的PKA没有明显影响。给予Forskolin处理心肌细胞可以明显增高PKA活性,而孤啡肽并不能抑制这种PKA活性的增高,提示可能孤啡肽对心肌细胞的影响并不是通过PKA机制。
     结论:孤啡肽对大鼠心脏左心室收缩与舒张功能有明显的抑制作用,此作用可能是通过孤啡肽-孤啡肽受体作用,引起心肌细胞L型钙电流的抑制所致。进一步的研究显示孤啡肽对于心肌细胞的PKA活性没有影响,提示可能孤啡肽的这种作用不是通过影响cAMP-PKA通路介导的。对于心肌细胞的内向整流钾电流和瞬时外向钾电流并未见孤啡肽对其有明显影响。
Neuropeptides exist widely and could regulate physiological function of many organs. In recent years, the regulation of neuropeptides on cardiovascular system has becoming a hot spot of research, one of which is the regulation of OFQ (nociceptin, Orphanin FQ). OFQ is a heptadecapeptide whose primary structure is indeed similar to that of dynorphin A, but binds to classical opioid receptors with low affinity. The OFQ receptor is referred as opioid receptor-like 1(ORL1) receptor, which shares high structural homogeneity with the opioid receptors and also belong to G protein-coupled membrane receptors family. Both Intracerebroventricular and and intravenous administration of OFQ decreased the blood pressure and heart rate obviously. It is showed OFQ not only played a role in cardiovascular regulation via central or peripheral neverous mechanism, but also possibly had direct inhibition of cardiovascular system. The recent studies have showed OFQ increased markedly in myocardial tissue and blood plasma during acute myocardial ischemia and heart failure, which suggest OFQ may regulate the heart function directly and the mechanism need to be explored. Therefore we established the current study to investigate the effects of OFQ on heart function in vivo and explore the possible mechanism.
     Objective: The purpose of this study was to investigate the effects of OFQ by intravenous administration on heart function in rats and explore the possible mechanism from cardiac ion channels.
     Methods: The study was carried out in a series of experiments:
     1. In vivo research: Healthy adult male SD (weighing 250-280g) rats were used for this experiment. The rats were randomly divided into four groups: the control group (normal saline i.v.), 1nM group (1nmol/kg, i.v.), 10 nM group(10 nmol/kg, i.v.) and 50 nM group(50 nmol/kg, i.v.). For the measurement of left ventricular pressures, a polyethylene catheter (Epidural catheter) was inserted into the left carotid artery and gently pushed into the left ventricle of rat anesthetized with urethane. After Hemodynamics indexes came to a steady state, the LVSP, LVDP, +dP/dtmax, -dP/dtmax and HR were recorded.
     2. Immunofluorescence assay: OFQ and ORL1 receptor in the myocardial tissue were observed through immunofluorescence histochemistry, and ORL1 receptor was also located in the isolated ventricular myocytes from SD rats with confolcal laser scanning microscopy.
     3. Patch clamp experiment: Ventricular myocytes were isolated from SD rats by Langendorff perfusion of the heart with an enzyme-containing solution as previous described. L-Ca current (ICa-L), inward rectifyimg potassium current (Ik1) and transient outward potassium current (Ito) of ventricular myocytes were induced through the particular procedure and recorded with the whole-cell voltage-clamp technique, respectively. The effects of OFQ on ICa-L, Ik1 and Ito were investigated respectively. All experiments were performed at room temperature and solutions were gased with 100% oxygen.
     4. Effect of OFQ on PKA activity assay: Peptides were extracted from the isolated ventricular myocytes treated with and without OFQ, and using the Assay kit for Non-Radioactive Detection of cAMP Dependent Protein Kinase, PKA activity was measured via gel electrophoresis.
     Results:
     1. LVSP, LVDP, +dP/dtmax, -dP/dtmax and HR were significantly decreased in a dose-dependent manner after intravenous administration with OFQ. There was significant difference among groups (P<0.05). The OFQ induced inhibitions of LVSP, LVDP, +dP/dtmax, -dP/dtmax and HR were completely blocked by pre treatment with UFP-101, an potent, specific antagonist.
     2. Immunofluorescence Histochemistry showed OFQ and ORL1 receptor existed in the myocardial tissue, furthermore the ORL1 receptor was confirmed in isolated myocytes with confolcal laser scanning microscopy.
     3. OFQ obviously inhibited ICa-L in rat ventricular myocytes but not in a dose-depended manner, and the inhibition elicited by OFQ can be reversed by pre treatment with UFP-101. There were no significant effect on Ik1 and Ito in rat ventricular myocytes treated with OFQ.
     4. There was not obvious variation on PKA activity in rat ventricular myocytes treated with OFQ. The increase of PKA activity induced by Forskolin, a PKA activator, was not reversed by treatment with OFQ.
     Conclusions: OFQ inhibited the Left ventricular systolic and diastolic function, which may result from inhibition of ICa-L induced by OFQ in rat ventricular myocytes. Furthermore research showed OFQ had no significant effect on PKA activity of ventricular myocytes, which suggest the effect of OFQ on the heart function may not be mediated by cAMP-PKA passway. There was no significant effect on Ik1 and Ito in rat ventricular myocytes by treatment with OFQ.
引文
[1] Bilir A, Erkasap N, Koken T, Gulec S, Kaygisiz Z, Tanriverdi B, Kurt I. Effects of tramadol on myocardial ischemia-reperfusion injury. Scand Cardiovasc J 2007; 41: 242-247.
    [2] Kukreja RC. NFkappaB activation during ischemia/reperfusion in heart: friend or foe? J Mol Cell Cardiol 2002; 34: 1301–1304.
    [3] Kin H, Wang NP, Halkos ME, Kerendi F, Guyton RA, Zhao ZQ. Neutrophil depletion reduces myocardial apoptosis and attenuates NF-kB activation/TNF-a release after ischemia and reperfusion. J Surg Res 2006; 135: 170–178.
    [4] Brown M, McGuinness M, Wright T, Ren X, Wang Y, Boivin GP, Hahn H, Feldman AM, Jones WK. Cardiac-specific blockade of NF-kappaB in cardiac pathophysiology: Differences between acute and chronic stimuli in vivo. Am J Physiol-Heart Circ Physiol 2005; 289: H466-476.
    [5] Moss NC, Stansfield WE, Tang R, Selzman CH. Delayed NF-kappaB inhibition still provides cardioprotection from myocardial ischemia and reperfusion. J Am Coll Surg 2007; 205: S95-S96.
    [6] Valen G, Yan ZQ, Hansson GK. Nuclear factor kappa-B and the heart. J Am Coll Cardiol 2001; 38: 307-314.
    [7] Pfaffl MW. A new mathematical model for relative quantification in real time-PCR. Nucleic Acids Res. 2001; 29: 2002-2007.
    [8] Quinlan KL, Naik SM, Cannon G, et al. Substance P activates coincident NF-AT- and NF-kappaB-dependent adhesion molecule gene expression in microvascular endothelial cells through intracellular calcium mobilization. J Immunol 1999; 163(10):5656-5665.
    [9] Okuducu H, Onal SA. Is nitric oxide involved in the antinociceptive activity of tramadol? Findings in a rat model of neuropathic pain. Agri Dergisi 2005; 17: 31-40.
    [10] Dal D, Salman MA, Salman AE, Iskit AB, Aypar U. The involvement of nitric oxide on the analgesic effect of tramadol. Eur J Anaesthesiol 2006; 23: 175-177.
    [11] Kaya T, Gursoy S, Karadas B, Sarac B, Fafali H, Soydan AS. High-concentration tramadol-induced vasodilation in rabbit aorta is mediated by both endothelium-dependent and -independent mechanisms. Acta Pharmacol Sin 2003; 24: 385-389.
    [12] Peng HB, Libby P, Liao JK. Induction and stabilization of IkBa by nitric oxide mediates inhibition of NF-kB. J Biol Chem 1995; 270: 14214–14219.
    [13] Matthews JR, Botting CH, Panico M, Morris HR, Hay RT: Inhibition of NF-kB DNA binding by nitric oxide. Nucleic Acids Res 1996; 24: 2236–2242.
    [14] Shin WS, Hong YH, Peng HB, De Caterina R, Libby P, Liao JK. Nitric oxide attenuates vascular smooth muscle cell activation by interferon-gamma. The role of constitutive NF-kappa B activity. J Biol Chem 1996; 271: 11317–11324.
    [15] Morishita R, Sugimoto T, Aoki M, Kida I, Tomita N, Moriguchi A, Maeda K, Sawa Y, Kaneda Y, Higaki J, Ogihara T. In vivo transfection of cis element "decoy" against nuclear factor-kappaB binding site prevents myocardial infarction. Nat Med 1997; 3: 894-899.
    [16] Sawa Y, Morishita R, Suzuki K, Kagisaki K, Kaneda Y, Maeda K, Kadoba K, Matsuda H. A novel strategy for myocardial protection using in vivo transfection of cis element 'decoy' against NFkappaB binding site: evidence for a role of NFkappaB in ischemia-reperfusion injury. Circulation 1997; 96: II-280-284; discussion II-285.
    [17] Ritchie ME. Nuclear factor-kB is selectively and markedly activated in humans with unstable angina pectoris. Circulation 1998; 17: 1707–1713.
    [18] Sakaguchi T, Sawa Y, Fukushima N, Nishimura M, Ichikawa H, Kaneda Y, Matsuda H. A novel strategy of decoy transfection against nuclear factor-kappaB in myocardial preservation. Ann Thorac Surg 2001; 71: 624–629; discussion 629-630.
    [19] Fukushima S, Coppen SR, Varela-Carver A, Yamahara K, Sarathchandra P, Smolenski RT, Yacoub MH, Suzuki K. A novel strategy for myocardial protection by combined antibody therapy inhibiting both P-selectin and intercellular adhesion molecule-1 via retrograde intracoronary route. Circulation 2006; 114(1 Suppl):I251-256.
    [1] Mollereau C, Parmentier M, Mailleux P, et al. ORL1, a novel member of the opioid receptor family cloning, functional expression and localization. FEBS Lett 1994; 341:33-38.
    [2] Bunzow JR, Saez C, Mortrud M, Bouvier C, Williams JT, Low M, Grandy DK Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not aμ-,κ-, orδ-opioid receptor type. FEBS Lett 1994; 347:284-288.
    [3] Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monsarrat B: Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 1995; 377:532-535.
    [4] Reinscheid R K, Nothacker H P, Bourson A, et al. Orphanin FQ: A neuropeptide that activaties an opioid-like G protein-coupled receptor. Science 1995; 270:792-794.
    [5] Nothacker HP, Reinscheid RK, Mansour A, Henningsen RA, Ardati A, Monsma FJ, Watson SJ Jr, and Civilli O. Primary structure and tissue distribution of the orphanin FQ precursor. Proc Natl Acad Sci 1996; 93:8677-8682.
    [6] Okuda-Ashitaka E, Ito S. Nocistatin: A novel neuropeptide encoded by the gene for the nociceptin/orphanin FQ precursor. Peptides 2000; 21(7):1101-1109.
    [7] Orsini MJ, Nesmelova I, Young HC, et al. The nociceptin pharmacophore site for opioid receptor binding derived from the NMR structure and bioactivity relationships. J Biol Chem 2005; 280:8134-8142.
    [8] Reinscheid RK, Ardati A, Monsma FJ Jr, et al. Structure-activity relationship studies on the novel neuropeptide orphanin FQ. J Biol Chem 1996; 271:14163-14168.
    [9] Dooley CT, Houghten RA. Orphanin FQ: receptor binding and analog structure activity relationships in rat brain. Life Sciences 1996; 59:L23-29.
    [10] New DC, Wong YH. The ORL1 receptor: molecular pharmacology and signalling mechanisms. Neurosignals 2002; 11(4):197-212.
    [11] Reinscheid RK, Nothacker H, Civelli O. The orphanin FQ/nociceptin gene: structure, tissue distribution of expression and functional implications obtained from knockout mice. Peptides 2000; 21(7):901-906.
    [12] Neal CR, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Watson SJ. Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol 1999; 406(4):503-547.
    [13] Witta J, Palkovits M, Rosenberger J, Cox BM. Distribution of nociceptin/orphanin FQ in adult human brain. Brain Res 2004; 997(1):24-29.
    [14] Lachowicz JE, Shen Y, Monsma FJ, et al. Molecular cloning of a novel G proten-coupled receptor related to the opioid receptor family.J Neurochem 1995; 64:34-40.
    [15] Houtani T, Nishi M, Takeshima H, et al. Structure and regional distribution of nociceptin/ orphanin FQ precursor. Bioch and Bioph Res Commu 1996; 219:714-719.
    [16] Riedl M, Shuster S, Vulchanova L, Wang J, Loh HH, Elde R. Orphanin FQ/nociceptin-immunoreactive nerve fibers parallel those containing endogenous opioids in rat spinal cord. Neuroreport 1996; 7:1369-1372.
    [17] Dun NJ, Dun SL , Hwang LL. Nociceptin like immunoreactivity in autonomic nuclei of the rat spinal cord. Neurosci Lett 1997; 234:95-98.
    [18] Kummer W, Fischer A. Nociceptin and its receptor in guinea pig symathetic ganglia. Neurosci Lett 1997; 234:35-38.
    [19]邹冈主编,基础神经药理学,北京:北京医科大学出版社, 1999:288.
    [20] Nohacker HP, Reinscheid R, M ansour A, et al. Primary structure and tissue distribution of the Orphanin FQ precursor. Neurobiology 1996; 93:8677-8682.
    [21] Calo' G, Guerrini R, Rizzi A, Salvadori S, Regoli D. Pharmacology of nociceptin and its receptor: a novel therapeutic target. Br J Pharmacol 2000; 129(7):1261-1283.
    [22] Guo Z, Yao TP, Wang JP, Ding JY. Acute myocardial ischemia up-regulates nociceptin/orphanin FQ in dorsal root ganglion and spinal cord of rats. Neurosci Lett 2008; 433(3):274-278.
    [23] Mollereau C, Simons MJ ,Soularue P, et al. Structure, tissue distribution, and chromosomal localization of the prepronocicetin gene. Neurobiology 1996; 93:8666-8670.
    [24] Meunier JC. Nociceptin/orphanin FQ and the opioid receptor-like ORL1 receptor. Eur J Pharmacol 1997; 340(1):1-15.
    [25] Wang JB, Johnson PS, Imai Y, Persico AM, Ozenberger B, Eppler CM, Uhl GR. cDNA cloning of an orphan opiate receptor gene family member and its splice variant. FEBS Lett 1994; 348:75-79.
    [26] Halford WP, Gebhardt BM, Carr DJ. Functional role and sequence analysis of a lymphocyte orphan opioid receptor. Neuroimmunol 1995; 59:91-101.
    [27] Tian JH, Xu W, Han JS et al. Bidirectional modulatory effect of orphanin FQ on morphine-induced analgesia: antagonism in brain and potentiation in spinal cord of the rat. Br J Pharmacol 1997; 120(4):676-680.
    [28] Hao JX, Wiesenfeld-Hallin Z, Xu XJ. Lack of cross-tolerance between the antinociceptive effect of intrathecal orphanin FQ and morphine in the rat. Neurosci Lett 1997; 223(1):49-52.
    [29] Schulz S, Schreff M, Nüss D, Gramsch C, H?llt V. Nociceptin/orphanin FQ and opioid peptides show overlapping distribution but not co-localization in pain-modulatory brain regions. Neuroreport 1996; 7(18):3021-3025.
    [30] Faber ESL, Chambers JP, Evans RH et al. Depression of glutamatergic transmission by nociceptin in the neonatal rat hemisected spinal cord prepara tion in vitro. British Journalof Pharmacology 1996; 119(2):189-190.
    [31] Helyes Z, Nemeth J, Pinter E, Szolcsanyi J. Inhibition by nociceptin of neurogenic inflammation and the release of SP and CGRP from sensory nerve terminals. Br J Pharmacol 1997; 121(4):613-615.
    [32] Jenck F, Moreau JL, Martin JR, et al. Orphanin FQ acts as an anxiolytic to attenuate behavioral responses to stress. Proc Natl Acad Sci 1997; 94(26):14854-14858.
    [33] Ciccocippo R, Angeletti S, Panocka I, Massi M. Nociceptin/orphanin FQ and drugs of abuse. Peptides 2000; 21(7):1071-1080.
    [34] Sandin J, choott PA, et al. Nociceptin/orphanin FQ microinjected into hippocampus impairs spatial learning in rats. Eur J Neurosci 1997; 9(1):194-197.
    [35] Saito Y, Maruyama K, Saido TC, et al. Overexpression of a neuropeptide nociceptin/orphanin FQ precursor gene, N23k/N27K, indures neurite outgrowth in mouse NS20Y cells. J Neurosci Res 1997; 48(5):397-406.
    [36] Nelson RM, Calo G, Guerrini R, Hainsworth AH, Green AR, Lambert DG. Nociceptin/orphanin FQ inhibits ischaemia-induced glutamate efflux from rat cerebrocortical slices. Neuroreport 2000; 11(17):3689-3692.
    [37] Mela F, Marti M, Ulazzi L, Vaccari E, Zucchini S, Trapella C, Salvadori S, Beani L, Bianchi C, Morari M. Pharmacological profile of nociceptin/orphanin FQ receptors regulating 5-hydroxytryptamine release in the mouse neocortex. Eur J Neurosci 2004; 19(5):1317-1324.
    [38]孟美金,吴新民.鞘内注射孤啡肽对不同小鼠所致痛觉超敏的比较.中华麻醉学杂志2003; 23(9):671-674.
    [39] Gintzler AR, Adapa ID, Toll L, et al. Modulation of enkephalin release by nociceptin (orphanin FQ). Fur J Pharmacol 1997; 325(1):29-34.
    [40] Knoflach F, Reinscheid RK, Civclli O, et al. Modulation of voltagegated calcium channels by orphanin FQ in freshly dissociated hippocampal neurons. J Neurosci 1996; 16(21):6657-6664.
    [41] Liebel JT, Swandulla D, Zeilhofer HU. Modulation of excitatory synaptic transmission by nociceptin in superficial dorsal horm neurones of the neonatal rat spinal cord. Br J Pharmacol 1997; 121(3):425-432.
    [42] Ouagazzal AM, Moreau JL, Pauly-Evers M, Jenck F. Impact of environmental housing conditions on the emotional responses of mice deficient for nociceptin/orphanin FQ peptide precursor gene. Behav Brain Res 2003; 144(1-2):111-117.
    [43] Nishi M, Houtani T, Noda Y, et al. Unrestrained nociceptive response and disregulation of hearing ability in mice lacking the nociceptin/orphanin FQ receptor. EMBOJ 1997; 16:1858-1864.
    [44] Champion HC, Zadina JE, Kastin AJ, et al. The endogenous mu-opioi d receptor agonistsendomorphins 1 and 2 have novel hypotensive activity in the rabbit. Biochem Biophys Res Commun 1997; 235(3):567-570.
    [45] Gumusel B, Hao Q, Hyman A et al. Nociceptin: an endogenous agonist for central opioid like 1(ORL1) receptors possesses systemic vasorelaxant properties. Life Sci 1997; 60(8):141-145.
    [46] Wei Y, Ouyang D, Liu Y, Chang Z, Tang J, Ding J. Peripheral tissue distribution of orphanin FQ precursor mRNA in stroke-prone spontaneously hypertensive rats. Chin Med Sci J 1999; 14(2):67-70.
    [47] Granata F, Potenza RL, Fiori A, Strom R, Caronti B, Molinari P, Donsante S, Citro G, Iacovelli L, De Blasi A, Ngomba RT, et al. Expression of OP4 (ORL1, NOP1) receptors in vascular endothelium. Eur J Pharmacol 2003; 482(1-3):17-23.
    [48] Xu PH, Chang M, Cheng LX, Cheng Q, Yan X, Wang R. The relaxant effect of nociceptin on porcine coronary arterial ring segments. Can J Physiol Pharmacol 2004; 82(11):993-999.
    [49] Hugghins SY, Champion HC, Cheng G, Kadowitz PJ, Jeter JR. Vasorelaxant responses to endomorphins, nociceptin, albuterol, and adrenomedullin in isolated rat aorta. Life Sci 2000; 67(4): 471-476.
    [50] Girolamo C, Remo G, Ralfaella B, Anna R, Giuliano M, Hirobumi O, Clementina B, Lambert DG, Salvadori S, Regoli D. Characterization of [NPhe1]nociceptin(1-13)NH2, a new selective nociceptin receptor antagonist. Br J Pharmacol 2000; 129(6):1183-1193.
    [51] Champion HC, Pierce RL, Kadowitz PJ. Nociceptin, a novel endogenous ligand for the ORL1 receptor, dilates isolated resistance arteries from the rat. Regul Pept 1998; 78(1-3):69-74.
    [52] Bucher B. ORL1 receptor-mediated inhibition by nociceptin of noradrenaline release from perivascular sympathetic nerve endings of the rat tail artery. Naunyn Schmiedebergs Arch Pharmacol 1998; 358(6):682-685.
    [53] Giuliani S, Maggi CA. Prejunctional modulation by nociceptin of nerve-mediated inotropic responses in guinea-pig left atrium. Eur J Pharmacol 1997; 332(3):231-236.
    [54] Malinowska B, Godlewski G, Schlicker E. Function of nociceptin and opioid OP4 receptors in the regulation of the cardiovascular system. J Physiol Pharmacol 2002; 53(3):301-324.
    [55] Giuliana S, Tramontana M, Lecci A, Maggi CA. Effect of nociceptin on heart rate and blood pressure in anaesthetized rats. Eur J Pharmacol 1997; 333(2-3):177-179.
    [56] Champion HC, Czapla MA, Kadowitz PJ. Nociceptin, an endogenous ligand for the ORL1 receptor, decreases cardiac output and total peripheral resistance in the rat. Peptides 1997; 18(5):729-732.
    [57] Guerrini R, Calo G, Rizzi A, Bigoni R, Bianchi C, Salvadori S, Regoli D. A new selectiveantagonist of the nociceptin receptor. Br J Pharmacol 1998; 123(2):163-165.
    [58] McDonald J, Barnes TA, Okawa H, Williams J, Calo' G, Rowbotham DJ, Lambert DG. Partial agonist behaviour depends upon the level of nociceptin/orphanin FQ receptor expression: Studies using the ecdysone-inducible mammalian expression system. Br J Pharmacol 2003; 140(1):61-70.
    [59] Bigoni R, Giuliani S, Calo' G, Rizzi A, Guerrini R, Salvadori S, Regoli D, Maggi CA. Characterization of nociceptin receptors in the periphery: In vitro and in vivo studies. Naunyn Schmiedebergs Arch Pharmacol 1999; 359(3):160-167.
    [60] Olianas MC, Concas D, Onali P. Agonist activity of naloxone benzoylhydrazone at recombinant and native opioid receptors. Br J Pharmacol 2006; 147(4):360-370.
    [61] Hashiba E, Hirota K, Kudo T, Calo' G, Guerrini R, Matsuki A. Effects of nociceptin/orphanin FQ receptor ligands on blood pressure, heart rate, and plasma catecholamine concentrations in guinea pigs. Naunyn Schmiedebergs Arch Pharmacol 2003; 367(4):342-347.
    [62] Lin B, Waterman R, Lippton H. Nociceptin receptor activation produces nitric oxide-mediated systemic hypotension. Life Sci 2000; 66(6):99-104.
    [63] Nossaman BD, Champion HC, Kaye AD, Anwar M, Feng CJ, Kadowitz PJ. Nociceptin has vasodilator activity in the pulmonary vascular bed of the rat. J Cardiovasc Pharmacol Ther 1998; 3(3):253-258.
    [64] Abdelrahman AM, Pang CCY. Regional hemodynamic effects of nociceptin/orphanin FQ in the anesthetized rat. Eur J Pharmacol 2002; 450(3):263-266.
    [65] Arndt ML, Wu D, Soong Y, Szeto HH. Nociceptin/orphanin FQ increases blood pressure and heart rate via sympathetic activation in sheep. Peptides 1999; 20(4):465-470.
    [66] Salis MB, Emanueli C, Milia AF, Guerrini R, Madeddu P. Studies of the cardiovascular effects of nociceptin and related peptides. Peptides 2000; 21(7):985-993.
    [67] Kapusta DR. Neurohumoral effects of orphanin FQ/nociceptin: Relevance to cardiovascular and renal function. Peptides 2000; 21(7):1081-1099.
    [68] Habler H, Timmermann L, Stegmann J, Janig W. Effects of nociceptin and nocistatin on antidromic vasodilation in hairless skin of the rat hindlimb in vivo. Br J Pharmacol 1999; 127(7):1719-1727.
    [69] Shimohigashi Y, Hatano R, Fujita T, Nakashima R, Nose T, Sujaku T, Saigo A, Shinjo K, Nagahisa A. Sensitivity of opioid receptor-like receptor ORL1 for chemical modification on nociceptin, a naturally occurring nociceptive peptide. J Biol Chem 1996; 271(39):23642-23645.
    [70] Varani K, Rizzi A, Calo G, Bigoni R, Toth G, Guerrini R, Gessi S, Salvadori S, Borea PA, Regoli D. Pharmacology of [Tyr1]nociceptin analogs: Receptor binding and bioassay studies. Naunyn Schmiedebergs Arch Pharmacol 1999; 360(3):270-277.
    [71] Champion HC, Kadowitz PJ. [Tyr1]-nociceptin has naloxone-insensitive vasodilator activity in the hindquarters vascular bed of the rat. Life Sci 1997; 61(26):403-408.
    [72] Champion HC, Kadowitz PJ. [Tyr1]-nociceptin, a novel nociceptin analog, decreases systemic arterial pressure by a naloxone-insensitive mechanism in the rat. Biochem Biophys Res Commun 1997; 234(2):309-312.
    [73] Champion HC, Bivalacqua TJ, Rauchwarger A, McWilliams SM, McNamara DB, Kadowitz PJ. Analysis of vasodepressor responses to nociceptin and nociceptin analogs in the systemic vascular bed of the anesthetized rabbit in vivo. J Cardiovasc Pharmacol Ther 1998; 3(3):247-252.
    [74] Champion HC, Wang R, Hellstrom WJ, Kadowitz PJ. Nociceptin, a novel endogenous ligand for the ORL1 receptor, has potent erectile activity in the cat. Am J Physiol 1997; 273(1):E214-E219.
    [75] Champion HC, Bivalacqua TJ, Wang R, Hellstrom WJ, Kadowitz PJ. [Tyr1]-nociceptin and nociceptin have similar naloxone-insensitive erectile activity in the cat. J Androl 1998; 19(6):747-753.
    [76] Lawrence AJ, Jarrott B. Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Prog Neurobiol 1996; 48(1):21-53.
    [77] Anton B, Fein J, To T, Li X, Silberstein L, Evans CJ. Immuno-histochemical localization of ORL-1 in the central nervous system of the rat. J Comp Neurol 1996; 368(2):229-251.
    [78] Kapusta DR, Sezen SF, Chang J-K, Lippton H, Kenigs VA. Diuretic and antinatriuretic responses produced by the endogenous opioid-like peptide, nociceptin (orphanin FQ). Life Sci 1997; 60(1): 15-21.
    [79] Kapusta DR, Chang JK, Kenigs VA. Central administration of [Phe1ψ(CH2-NH)Gly2] nociceptin(1-13)-NH2 and orphanin FQ/ nociceptin (OFQ/N) produce similar cardiovascular and renal responses in conscious rats. J Pharmacol Exp Ther 1999; 289(1):173-180.
    [80] Burmeister MA, Kapusta DR. Centrally administered nociception/ orphanin FQ (N/OFQ) evokes bradycardia, hypotension, and diuresis in mice via activation of central N/OFQ peptide receptors. J Pharmacol Exp Ther 2007; 322(1):324-331.
    [81] Shirasaka T, Kunitake T, Kato K, Takasaki M, Kannan H. Nociceptin modulates renal sympathetic nerve activity through a central action in conscious rats. Am J Physiol 1999; 277(4 Pt 2):R1025-R1032.
    [82] Carra G, Rizzi A, Guerrini R, Barnes TA, McDonald J, Hebbes CP, Mela F, Kenigs VA, Marzola G, Rizzi D, Gavioli E, et al. [(pF)Phe4,Arg14,-Lys15]N/OFQ-NH2 (UFP-102), a highly potent and selective agonist of the nociceptin/orphanin FQ receptor. J Pharmacol Exp Ther 2005; 312(3):1114-1123.
    [83] Kapusta DR, Dayan LA, Kenigs VA. Nociceptin/orphanin FQ modulates thecardiovascular, but not renal, responses to stress in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 2002; 29(3):254-259.
    [84] Chu X, Xu N, Li P, Wang JQ. Profound inhibition of cardiomotor neurons in the rat rostral ventrolateral medulla by nociceptin (orphanin FQ). Neuroreport 1998; 9(6):1081-1084.
    [85] Chu X, Xu N, Li P, Wang JQ. The nociceptin receptor-mediated inhibition of the rat rostral ventrolateral medulla neurons in vitro. Eur J Pharmacol 1999; 364(1):49-53.
    [86] Chu X, Xu N, Li P, Mao L, Wang JQ. Inhibition of cardiovascular activity following microinjection of novel opioid-like neuropeptide nociceptin (orphanin FQ) into the rat rostral ventrolateral medulla. Brain Res 1999; 829(1-2):134-142.
    [87] Mao L, Wang JQ. Microinjection of nociceptin (orphanin FQ) into nucleus tractus solitarii elevates blood pressure and heart rate in both anesthetized and conscious rats. J Pharmacol Exp Ther 2000; 294(1):255-262.
    [88] Mao L, Wang JQ. Cardiovascular responses to microinjection of nociceptin and endomorphin-1 into the nucleus tractus solitarii in conscious rats. Neuroscience 2005; 132(4):1009-1015.
    [89] Mao L, Wang JQ. Pharmacological activation of nociceptin receptors in the nucleus tractus solitarius inhibits baroreflex in pentobarbital-anesthetized rats. Neuroscience 2000; 101(2):435-440.
    [90] Chitravanshi VC, Sapru HN. Mechanism of cardiovascular effects of nociceptin microinjected into the nucleus tractus solitarius of the rat. Am J Physiol Regul Integr Comp Physiol 2005; 288(6):R1553-R1562.
    [91] Venkatesan P, Wang J, Evans C, Irnaten M, Mendelowitz D. Nociceptin inhibitsγ-aminobutyric acidergic inputs to cardiac para-sympathetic neurons in the nucleus ambiguous. J Pharmacol Exp Ther 2002; 300(1):78-82.
    [92] Venkatesan P, Baxi S, Evans C, Neff R, Wang X, Mendelowitz D. Glycinergic inputs to cardiac vagal neurons in the nucleus ambiguus are inhibited by nociceptin andμ-selective opioids. J Neurophysiol 2003; 90(3):1581-1588.
    [93] Chitravanshi VC, Sapru HN. Microinjections of nociceptin into the nucleus ambiguus elicits tachycardia in the rat. Brain Res 2005; 1051(1-2):199-204.
    [94] Krowicki ZK, Kapusta DR. Tonic nociceptinergic inputs to neurons in the hypothalamic paraventricular nucleus contribute to sympathetic vasomotor tone and water electrolyte homeostasis in conscious rats. J Pharmacol Exp Ther 2006; 317(1):446-453.
    [95] Ma L, Cheng ZJ, Fan GH, Cai YC, Jiang LZ, Pei G. Functional expression, activation and desensitization of opioid receptor-like receptor ORL1 in neuroblastoma glioma NG108-15 hybrid cells. FEBS Lett 1997; 403:91-94.
    [96] Cheng ZJ, Fan GH, Zhao J, Zhang Z, Wu YL, Jiang LZ, Zhu Y, Pei G, Ma L. Endogenous opioid receptor-like receptor in human neuroblastoma SK-N-SH cells: Activation ofinhibitory G protein and homologous desensitization. Neuroreport 1997; 8:1913-1918.
    [97] Ho MK, Wong YH. Gz signaling: Emerging divergence from Gi signaling. Oncogene 2001; 20:1615-1625.
    [98] Lou LG, Ma L, Pei G. Nociceptin/orphanin FQ activates protein kinase C, and this effect is mediated through phospholipase C/Ca2+ pathway. Biochem Biophys Res Commun 1997; 240:304-308.
    [99] Chan JS, Yung LY, Lee JW, Wu YL, Pei G, Wong YH. Pertussis toxin-insensitive signaling of the ORL1 receptor: Coupling to Gz and G16 proteins. J Neurochem 1998; 71:2203-2210.
    [100] Ho MK, Yung LY, Chan JS, Chan JH, Wong CS, Wong YH. Gа14 links a variety of Gi- and Gs-coupled receptors to the stimulation of phospholipase C. Br J Pharmacol 2001; 132:1431-1440.
    [101] Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 1994; 265:808–811.
    [102] Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 1994; 369:156-160.
    [103] Bevan N, Scott S, Shaw PE, Lee MG, Marshall FH, Rees S. Nociception activates Elk-1 and Sap1a following expression of the ORL1 receptor in Chinese hamster ovary cells. Neuroreport 1998; 9:2703-2708.
    [104] Fukuda K, Shoda T, Morikawa H, Kato S, Mori K. Activation of mitogen-activated protein kinase by the nociceptin receptor expressed in Chinese hamster ovary cells. FEBS Lett 1997; 412:290-294.
    [105] Lou LG, Zhang Z, Ma L, Pei G. Nociceptin/orphanin FQ activates mitogen-activated protein kinase in Chinese hamster ovary cells expressing opioid receptor-like receptor. J Neurochem 1998; 70:1316-1322.
    [106] Zhang Z, Xin SM, Wu GX, Zhang WB, Ma L, Pei G. Endogenous delta-opioid and ORL1 receptors couple to phosphorylation and activation of p38 MAPK in NG108-15 cells and this is regulated by protein kinase A and protein kinase C. J Neurochem 1999; 73:1502–1509.
    [107] Chan ASL, Wong YH. Regulation of c-Jun Nterminal kinase by the ORL1 receptor through multiple G proteins. J Pharmacol Exp Ther 2000; 295:1094-1100.
    [108] Okada K, Sujaku T, Chuman Y, et al. Highly potent nociceptin analog containing the Arg-Lys triple repeat. Biochem Biophys Res Commun 2000; 278:493-498.
    [109] Ambo A, Hamazaki N, Yamada Y, et al. Structure-activity studies on nociceptin analogues: ORL1 receptor binding and biological activity of cyclic disulfide-containing analogues of nociceptin peptides. J Med Chem 2001; 44:4015-4018.
    [110] Guerrini R, Calo G, Bigoni R, et al. Structure-activity studies of the Phe4 residue of nociceptin(1-13)-NH(2): identification of highly potent agonists of the nociceptin/orphanin FQ receptor. J Med Chem 2001; 44:3956-3964.
    [111] Bigoni R, Rizzi D, Rizzi A, et al. Pharmacological characterisation of [(pX)Phe4]nociceptin(1-13)amide analogues 1. In vitro studies. Naunyn Schmiedebergs Arch Pharmacol 2002; 365:442-449.
    [112] Rizzi A, Salis MB, Ciccocioppo R, et al. Pharmacological characterisation of [(pX)Phe4]nociceptin(1-13) -amide analogues 2. In vivo studies. Naunyn Schmiedebergs Arch Pharmacol 2002; 365:450-456.
    [113] Zhang C, Miller W, Valenzano KJ, et al. Novel, potent ORL-1 receptor agonist peptides containing alpha-Helix-promoting conformational constraints. J Med Chem 2002; 45:5280-5286.
    [114] Calo G, Guerrini R, Bigoni R, et al. Structure-activity study of the nociceptin (1-13)-NH2 N-terminal tetrapeptide and discovery of a nociceptin receptor antagonist. J Med Chem 1998; 41:3360-3366.
    [115] Calo G, Guerrini R, Bigoni R, et al. Characterization of [Nphe1]nociceptin(1-13)NH2, a new selective nociceptin receptor antagonist. Br J Pharmacol 2000; 129:1183-1193.
    [116] Chen Y, Chang M, Wang R, et al. [Nphe1]nociceptin(1-13)-NH2 antagonizes nociceptin- induced hypotension, bradycardia, and hindquarters vasodilation in the anesthetized rat. Can J Physiol Pharmacol 2002; 80:31-35.
    [117] Calo G, Rizzi A, Rizzi D, et al. [Nphe1,Arg14,Lys15]nociceptin-NH2, a novel potent and selective antagonist of the nociceptin/orphanin FQ receptor. Br J Pharmacol 2002; 136:303-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700