用户名: 密码: 验证码:
面向装备固沙的沙障数值模拟方法与作用结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国沙害严重,在治理沙漠化的技术装备手段中,草沙障是应用最广的一种机械
     固沙工程方法。但当前对草沙障的作用机理研究不足,阻碍了治沙装备的研发和推广本文的以栽植草沙障的工程实践应用研究为目标,从广泛使用的防风固沙草方格
     沙障入手,利用激光扫描仪和图象等多传感器融合技术对沙面和沙障进行结构测绘,
     采集沙障地貌形态特征数据。在沙障3D点云模型基础上,进行沙障气动外形研究。
     利用风沙动力学、流体力学等的研究手段,对草沙障的基本结构和格网结构在流场中
     的作用机理进行了研究。基于流体力学数值计算方法及湍流理论,提出了沙障内流场存在稳定的沙障后方
     形成诱导涡流的现象的数值模拟方法,验证并分析了沙障后方稳定的诱导涡流结构对
     防风固沙效果有着重要影响;研究确立了涡流结构的稳定位置、尺寸与沙障尺寸参数
     的关系模型,利用CFD数值模拟,获得了系列不同尺寸规格的沙障后方诱导涡流的
     形态、作用机理和尺寸等特征规律。利用风沙作用模拟方法研究并构建了驻涡成型的沙面曲面函数,该外形曲线函数
     充分考虑了沙堆休止角作为背风边缘的设计参考因素,使阻滞沙流容量能力的最大
     化。同时能够根据不同的间隔尺寸进行调节,可确定出了草沙障的两个相关控制参数:
     基于侵蚀量的沙障间隔控制系数和基于侵蚀强度的凹坑深度控制系数。利用计算流体力学方法深入探讨了非平面条件下沙丘在气流场中附面层内压力
     梯度和速度矢量场变化的规律,利用k-ε湍流模型对凹坑形态条件下的结构化旋涡进
     行了模拟。结合具有一定孔隙度的沙障与沙垄模型,可选定于地形风力相适应的多边
     形沙障形态,通过沙坑平衡侵蚀积分条件给出了沙障填充的尺寸控制参数选择范围。针对草方格沙障减弱沙丘移动的本质性问题,以非光滑表面减阻的理论为切入
     点,根据沙凹坑曲线模型,设计了六边形的沙障和凹坑形貌,达到用料少、涡流大的
     目标.利用CFD软件行改进的方法和参数。并在沙障结构形态的要求基础上,探讨了
     作业装置的作业方式和轨迹控制的基本要求。本文针对治沙的技术装备要求,提出了涡流与沙障关系模型,创建了控制沙面和
     沙障的若干参数和工艺力法。这种关系模型和作用方法的创新性是利用流体的粘性特
     性,将惯性剪切方向的动能转换为涡流的环量动能,最终依靠这种稳定的凹坑型面和
     多边形结构减弱了主导风向的惯性剪切作用,减少了沙粒朝着主导风向迁移的速度,
     从而达到防风固沙的效果。本文的研究结论能够在荒漠化治理,特别是固定沙丘的固
     沙工程实践研究发挥理论指导作用。
Desertification damage to the environment is serious all over northern and western China. In
     technical equipment means of desertification control, the checkerboard grass sand barrier is one of the
     most successful and widely used methods of sand fixation engineering. However, the current researches
     of grass sand barrier mechanism still has defect in elaboration of its function. While successfully
     developed a grass barrier automation laying equipment, the lack of the basic role of sand barrier
     produced hamper effect on the application and popularization. In this paper, practical engineering research and application of the planting of grass sand barrier
     was the research goal. The study was started from straw checkerboard barriers that widely used with
     sand-fixing function; then the sand barrier surface morphology aerodynamic shape research was
     conducted by collecting sand barrier, sand beds, sand dunes and desert topography characteristics data;
     on the other hand, the mechanism of the flow field and blocking sand forming method affected by the
     basic and grid structure of grass sand barrier was studied, by sand dynamics, fluid dynamics and
     computational geometry, such as research tools. For grass sand barrier mechanism and application of research methods, based on turbulence theory,
     this paper put forward that the phenomenon of sand flow field locally stable was caused of induced
     vortex formation behind the sand barrier, and a numerical simulation algorithm was proposed to verify
     and analyze the effect of wind prevention and sand fixation by the stable induced eddy current structure
     behind sand barrier. This study established a relationship model between the stable positions, size and
     structure of the vortex and sand barrier dimensional parameters, and through numerical simulation CFD,
     certain sizes form of induced eddy behind sand barrier, mechanism of action and the size and other
     characteristics rule were obtained. Research on the use of two-phase flow simulation was introduced and the role of vortex sand
     surface intraction was interpated for its function as a windbreak, the shape of the curve function uses the
     angle of repose of the sand the edges as a design reference factors played a sand block to maximize flow
     capacity capabilities. At the same time intervals can be based on different size adjustment, given the
     grass sand barrier two design parameters:Size erosion intensity factor and volume erosion intensity
     factor. Through rumerical simulation compared to traditional sand barrier structure and morphology,
     structure design has a positive role in the sand hexagonai shapc and the shape of sand pits in the surface
     of the vortex, quadrilateral sand-binding straw checkerboard barriers model results with the current use
     of construction, compared with more good production characteristics and coverage eddy size, process
     characteristics. Research based on the overall morphology of the terrain and sandy grass sand barrier,
     combined with sand barrier effect of the structured form of space, established its role model, gives the
     optimized shape of the sand pit in the vortex of the grass and sand barrier model can design practices to
     improve operations and equipment play a role. The conditions under non-planar flow field of sand dunes in the pressure drag and friction drag
     reduction measures fluid mechanics methods. Using the k-ε model for structured turbulent vortices form
     dimples under simulated conditions, the principle described inhibit separation of the boundary layer,
     the parameter calculation based on the experimental model of the structure size of the vortex. Through
     a combination of sand dune barrier model, selected and terrain contours adapt to changes in wind sand
     barrier polygon shape, given the size of the sand barrier filling bunkers equilibrium parameters erosion
     integral condition. For dune grass checkerboard barriers weaken the role of the nature, the main theory discovery is a
     non-smooth surface drag reduction, according to a newly designed sand barrier between the pit curve
     model, re-verify the condition of the structure of the vortex generator. Combined with the results of
     numerical simulation and geometric methods to achieve with less material, eddy big goals, and design a
     sand barrier morphology hexagonal pits and using CFD software to simulate and study the results of the
     planning results improved methods and parameters. By analyzing the role of the boundary layer near
     the surface of the flow field pits on the surface of the results of different structures. With a simple
     one-size straw checkerboard barriers formed contours and topography pressure to adapt to multi-size
     checkerboard barriers polygonal pits, boundary layer flow field characteristics of a more stable, better
     able to weaken the role of the sand dunes global. This study was inspired by when straw checkerboard barriers in the wind and sand successful
     application process, first through field visits, found the grass in the sand box form a stable state, the
     internal morphology showing pits. Through the above principles, this paper equipment of large-scale
     sand technical equipment requirements, proposed the relational model eddy and sand barrier, as well as
     a number of parameters to control the sand and the sand barrier and process methods. This inhibiting
     effect by a simple method is not the force of inertia of the surface of the sand flow, but through the use
     of viscous properties of the fluid, the inertia of the kinetic energy is converted into shear direction
     vortex circulation kinetic energy created in favor of the existence of a stable vortex is generated and
     spatial dimensions conditions, and ultimately rely on this type of surface and stable pits polygonal
     structure weakened the dominant wind shear inertia, reducing the migration of sand towards the
     dominant wind speed, so as to achieve the effect of wind and sand to stabilize the sand bed, further
     guidance can play a role in theoretical and applied research in the application process fixed dunes and
     desertified land in.
引文
舒庆,刘晋浩.防风固沙草方格铺设机器人总体设计[J].农业机械学报2007(38.6):199-201.http://www.chinadaily.com.cn/china/2012strides/2012-10/10/content_15807350.htm
    袁汉秀,防风固沙草方格在酒航公路中的应用[J].甘肃科技,2011(09):第71-73页
    George.Steinmetz, http://www.georgesteinmetz.com/index.php
    刘贤万.实验风沙物理与风沙工程学[M].科学出版社,1995
    Lee, S.etc, Surface-pressure variations on a triangular prism by porous fences in a simulated atmospheric boundary layer. Journal of Wind Engineering Industrial Aerodynamics[J],1998.73(1):p.45-58.
    Lee, Sang-Joon, Ki-Chul Park, and Cheol-Woo Park. Wind tunnel observations about the shelter effect of porous fences on the sand particle movements[J]. Atmospheric Environment 36.9 (2002):1453-1463.
    Dong, Z., et al., A wind tunnel simulation of the mean velocity fields behind upright porous fences[J]. Agricultural and Forest Meteorology,2007.146(1-2):p.82-93.
    Dong, Z., et al., A wind tunnel simulation of the turbulence fields behind upright porous wind fences[J]. Journal of Arid Environments,2010.74(2):p.193-207.
    Lasagna, D., et al., Effects of a trapped vortex cell on a thick wing airfoil[J]. Experiments in Fluids,2011.51(5):p.1369-1384.
    Donelli, Raffaele S., et al. "Control of a trapped vortex in a thick airfoil by steady/unsteady mass flow suction." Seventh IUTAM Symposium on Laminar-Turbulent Transition. Springer Netherlands,2010.
    Rossow, Vernon J. Aerodynamics of airfoils with vortex trapped by two spanwise fences[J]. Journal of aircraft 31.1 (1994):146-153.
    KIM, J., A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k-Epsilon turbulence model.
    Atmospheric Environment,2004.38(19):p.3039-3048. Krall, K. M., and C. H. Haight. Wind Tunnel Tests of a Trapped Vortex-High Lift Airfoil. No. ATC-B-94300/3TR-10. ADVANCED TECHNOLOGY CENTER INC DALLAS TEX, 1972. van de Wijdeven, Trebsijg, and Joseph Katz. "Automotive Application of Vortex
    Generators in Ground Effect." Journal of Fluids Engineering 136.2 (2014):021102.
    高歌,宁棍,沙丘驻涡火焰稳定性的理论及实验研究.工程热物理学报,1982(01):第89-95页.
    吴文权,工程热物理学 火焰稳定沙丘驻涡理论[J],自然科学年鉴,主编贺崇寅,主编贺崇寅.1985,上海翻译出版.第511页.
    高歌,沙丘驻涡火焰稳定器发明经过.北京航空学院学报,1986(02):第17-25页.
    钱广强等,不同坡度障碍物前气流场特征及其对回涡沙丘形成的影响.中国科学:地球科学,2012(01):第34-41页.
    哈斯,董光荣与王贵勇,腾格里沙漠东南缘格状沙丘的形态-动力学研究.中国科学(D辑:地球科学),1999(05):第466-471页.
    孙显科,吕亚军,张大治,王姗姗,徐兵.风成沙地地形1/10定律的研究与敦煌鸣沙山成因的猜想.中国沙漠,(2006).26(5),704-710.
    黄翠华,张伟民,李爱敏.莫高窟窟顶风况及输沙势研究.中国沙漠,(2006).26(3),394-398.
    钱广强,董治宝,罗万银,王洪涛.横向沙丘气流平均速度变化规律的风洞模拟.中国沙漠,(2009).29(1),10-17.
    凌裕泉,吴正,刘绍中,李长治.新月形沙丘形态的模拟实验研究.地理科学,(1998).18(1),88-93.
    柳本立,张伟民,彭飞,谭立海.金字塔沙丘流场的三维数值模拟.中国沙漠,(2011).31(2),386-392.
    董智,等,土工格栅沙障防风积沙效应风洞模拟实验.中国水土保持科学,2007(01):第35-39页.
    罗万银,董治宝,钱广强,马立鹏.(2012).栅栏防护体系空气动力学效应研究进展.中国沙漠,32(4).
    董治宝.中国风沙物理研究五十年(Ⅰ).中国沙漠,(2005).25(3),293-305.
    孔丽娟.包兰线治沙建绿显神威——宁夏中卫固沙林场治沙护路40年纪实.中国林业,(2003).14,011.
    张德平,王效科,哈斯,孙宏伟,赵家明,刘秀,冯宗炜.呼伦贝尔沙质草原风蚀坑研究(1)——形态,分类,研究意义.中国沙漠,(2006).26(6),894-902.
    张奎壁,邹受益等,治沙原理与技术[M].中国林业出版社,1980.
    董智,李红丽,汪季,丁国栋,孙保平.土工格栅沙障防风积沙效应风洞模拟实验.中国水土保持科学,(2007).5,D5-39.
    周丹丹等,沙袋沙障凹曲面特性研究[J].水土保持通报,2009(04):第22-25+80页.
    张奎璧等,治沙原理与技术[M].中国林业出版社,1980.
    邹本功.沙坡头地区风沙流的基本特征及其防治效益的初步观察[J].中国沙漠,1981,1(1):35.
    韩志文,刘贤万,姚正义.复膜沙袋阻沙体与芦苇高立式方格沙障防风机理风洞模拟实验[J].中国沙漠2.1(1982):13-20.
    高永,邱国玉等,沙柳沙障的防风固沙效益研究[J].中国沙漠,2004(03):第111-116页.
    吴正.风沙地貌与治沙工程学[J].北京:科学出版社,2003:402 404
    刘吉军,徐秀芳,机械沙障在乌审旗造林中的推广应用[J].内蒙古林业科技,2006(04):第46-47页.
    成国苗,孙德新,徐灵风,利用作物秸秆扎设草方格沙障保护输电线路基础[J].湖北电力,2009(06):第35-37页.
    刘贤万.(1995).实验风沙物理与风沙工程学[J].科学出版社.
    高永等,沙柳沙障的防风固沙效益研究[J].中国沙漠,2004(03):第111-116页.
    王振亭,郑晓静.(2002).草方格沙障尺寸分析的简单模型[J].中国沙漠,22(3),229-232.
    刘晋浩,孙术发,刘兵.(2005).防风固沙草方格铺设机器人剪切机构的设计[J].林业机械与木工设备,33(8),29-30.
    Liu, Jinhao, et al. "Height Servo System for Straw-Checkerboard Sand Barriers Paving Robot." Computational Intelligence and Design,2009. ISCID'09. Second International Symposium on. Vol.2. IEEE,2009.
    刘晋浩,舒庆.(2007).草方格铺设机器人虚拟样机建模及平顺性分析[J].北京林业大学学报,29(4),72-74.
    闫满存,王光谦,李保生,董光荣.(2001).巴丹吉林沙漠高大沙山的形成发育研究[J].地理学报,56(1),83-91.
    Tsoar, H. Types of aeolian sand dunes and their formation[J]. Geomorphological Fluid Mechanics[J]. Springer Berlin Heidelberg,2001.403-429.
    凌裕泉,金炯,邹本功.栅栏在防止前沿积沙中的作用[J].中国沙漠,(1984).4(3),16-25.
    丁连刚,严平,杜建会,马玉凤,周进省.基于三维激光扫描技术的草方格沙障内蚀积形态监测[J].测绘科学,(2009).34(2),90-92.
    黄宁,郑晓静.(2007).风沙运动力学机理研究的历史,进展与趋势[J].力学与实践,29(4).
    徐峻龄,裴章勤,王仁化.半隐蔽式麦草方格沙障防护带宽度的探讨[J].中国沙漠,(1982).2(3),16-23.
    董治宝,郑晓静.中国风沙物理研究50a(Ⅱ)[J].中国沙漠,(2005).25(6),795-815.
    黄鹏展,赵建平.沙丘移动的研究现状与未来研究思路[J].沙漠与绿洲气象,(2010).4(1),1-5.
    江丽娟,马高生,郑晓静.新月形沙丘表面流场的数值模拟[J].兰州大学学报,(2010).46(1),48-52.
    张春来,郝青振,邹学勇等.新月形沙丘迎风坡形态及沉积物对表面气流的响应[J].中国沙漠,1999,19(4):359-363.
    魏怀东等.库姆塔格沙漠各沙丘类型沙粒粒度分析[J].甘肃科技23.5(2007):85-88.
    Zhang, D., C. Narteau, and O. Rozier. Morphodynamics of barchan and transverse dunes using a cellular automaton model [J]. Journal of Geophysical Research:Earth Surface (2003-2012) 115.F3 (2010).
    刘桂芳,黄金国,马建华.自组织和地貌演化[J].地理科学进展,(1996).15(4),5-11.RA·拜格诺,R. A. Bagnold, and秉南.风沙和荒漠沙丘物理学[J].科学出版社,1959.
    Greeley, Ronald, and James D. Iversen. Wind as a geological process:on Earth, Mars, Venus and Titan[J]. Vol.4. CUP Archive,1987.
    Sherman, Douglas J. "An equilibrium relationship for shear velocity and apparent roughness lenght in aeolian saltation[J]. Geomorphology 5.3 (1992):419-431.
    杨斌,王元,王大伟.”风沙流中沙粒相输移的测量[J].西安交通大学学报40.7(2006):846-850.
    Chepil, W. S. Dynamics of wind erosion:I. Nature of movement of soil by wind[J]. Soil Science 60.4 (1945):305-320.
    Chepil, W. S. Sedimentary characteristics of dust storms:III. Composition of suspended dust[J]. Am. J. Sci 255 (1957):206-213.
    Nickling, William G, and Cheryl McKenna Neuman. Aeolian sediment transport[J]. Geomorphology of Desert Environments. Springer Netherlands,2009.517-555.
    朱震达.改造沙漠中地貌学研究的任务和方法[J].地理学报5(1959):004.
    Greeley, Ronald, and James D. Iversen. Wind as a geological process:on Earth, Mars, Venus and Titan[J]. Vol.4. CUP Archive,1987.
    Murray, Bruce C., et al. The surface of Mars 1. Cratered terrains[J]. Journal of Geophysical Research 76.2 (1971):313-330.
    Arvidson, Raymond E. Aeolian processes on Mars:Erosive velocities, settling velocities, and yellow clouds[J]. Geological Society of America Bulletin 83.5 (1972):1503-1508.
    Tsoar, Haim. Dynamic processes acting on a longitudinal (seif) sand dune[J]. Sedimentology 30.4 (1983):567-578.
    van Rijn, Leo C. Sediment transport, part III:Bed forms and alluvial roughness[J]. Journal of hydraulic engineering 110.12 (1984):1733-1754.
    Patel, Virendra C, Wolfgang Rodi, and Georg Scheuerer. Turbulence models for near-wall and low Reynolds number flows-a review[J]. AIAA journal 23.9 (1985): 1308-1319.
    Werner, B. T. Eolian dunes:Computer simulations and attractor interpretation[J]. Geology 23.12(1995):1107-1110.
    Anderson, R. S., and P. K. Haff. Wind modification and bed response during saltation of sand in air[J]. Aeolian Grain Transport 1. Springer Vienna,1991.21-51.
    Werner, B. T. A steady-state model of wind-blown sand transport[J]. the Journal of Geology (1990):1-17.APA
    Best, Jim. The fluid dynamics of river dunes:A review and some future research directions[J]. Journal of Geophysical Research:Earth Surface (2003-2012) 110.F4 (2005).
    Miao, Tian-De, Qing-Song Mu, and Sheng-Zhi Wu. Computer simulation of aeolian sand ripples and dunes[J]. Physics Letters A 288.1 (2001):16-22.APA
    Pike, Richard J. Geomorphometry-diversity in quantitative surface analysis[J]. Progress in Physical Geography 24.1 (2000):1-20.
    McMenamin, Rosemarie, Rachel Cassidy, and John McCloskey. Self-organised criticality at the onset of aeolian sediment transport. Diss[J]. University of Ulster,2002.
    Baas, Andreas CW. Chaos, fractals and self-organization in coastal geomorphology: simulating dune landscapes in vegetated environments[J]. Geomorphology 48.1 (2002): 309-328.
    Dong, Z., et al., A wind tunnel simulation of the mean velocity fields behind upright porous fences[J]. Agricultural and Forest Meteorology,2007.146(1-2):p.82-93.
    Zaghloul, N.A., Sand accumulation around porous fences. Environmental Modelling and Software[J],1997.12(2):p.113-134.
    Lee, S., C. Park and K. Park, Wind tunnel observations about the shelter effect of porous fences on the sand particle movements[J]. Atmospheric Environment,2002.36(9):p.1453-1463.
    Lee, S.和.K.H., Laboratory measurements of velocity and turbulence field behind porous fences[J]. Journal of Wind Engineering Industrial Aerodynamics,1999.80(3):p.311-326.
    Park, C. and S. Lee, Experimental study on surface pressure and flow structure around a triangular prism located behind a porous fence[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003.91(1-2):p.165-184.
    Yeh, C., C. Tsai and R. Yang, An investigation into the sheltering performance of porous windbreaks under various wind directions[J]. Journal of Wind Engineering and Industrial Aerodynamics,2010.98(10-11):p.520-532.
    Boldes, U., J. Colman and J. Maranon Di Leo, About the penetration of a horizontal axis cylindrical vortex into the nearby downwind region of a vertical porous fence[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003.91(7):p.859-872.
    黄强,雷加强与王雪芹,塔里木沙漠公路不同地貌部位的高立式沙障阻沙特征[J].干旱区地理,2000(03):第227-232页.
    韩致文等,复膜沙袋阻沙体与芦苇高立式方格沙障防沙机理风洞模拟实验[J].中国沙漠,2000(01):第41-45页.
    韩致文,王涛,董治宝,等.风沙危害防治的主要工程措施及其机理[J].地理科学进展,2004,23(1):13-21.
    屈建军,凌裕泉等,半隐蔽格状沙障的综合防护效益观测研究[J].中国沙漠,2005(03):第329-335页.
    王振亭,郑晓静,草方格沙障尺寸分析的简单模型[J].中国沙漠,2002(03):第28-31页.
    高歌,在沙丘驻涡(BD)火焰稳定器诞生的日子里[J].学位与研究生教育,1985(03): 第65-72页.
    李振山,陈广庭,冯起,董治宝.塔克拉玛干沙漠腹地纵向沙垅表面沙物质粒度特征[J].干旱区资源与环境,(1998).12(1),21-28.
    武生智,马崇武,苗天德.沙粒级配和沙丘分布的分形分析[J].中国沙漠,1999(3):50-53.
    李振山,张琦峰.风沙流的输沙率沿程变化规律[J].中国沙漠26,no.2(2006):189-193.
    胡非,刘长庆,姜金华.大气边界层中沙粒悬移运动的数值模拟[J].气候与环境研究12,no.3(2007):277-286.
    刘树林,王涛.津善达克沙地的土地沙漠化过程研究[J].中国沙漠27,no.5(2007).
    蔡明,崔小朝,汪靓,李冰,聂世谦.κ-ωDES与LES方法在光滑与凹坑球的绕流分析[J].太原科技大学学报32,no.2(2011):121-125.
    刘林春,王友恭,王应德.“沙丘之鹰”飞上蓝天——记高歌[J].瞭望38(1985).
    肖青,闻建光.黑河生态水文遥感试验:黑河流域神沙窝沙漠机载激光雷达DEM点云数据.中国科学院遥感与数字地球研究所.2012.doi:10.3972/hiwater.141.2013.db
    Alhajraf, Salem. Computational fluid dynamic modeling of drifting particles at porous fences[J]. Environmental Modelling & Software 19.2 (2004):163-170. Stewart, R. W. Triple velocity correlations in isotropic turbulence[J]. Proc. Camb. Phil. Soc. Vol.47.1951. von Karman, Tn, and C. C. Lin. On the statistical theory of isotropic turbulence[J].
    Advances in Applied Mechanics 2 (1951):1-19. www.symscape.com/blog/helical-strakes-with-your-chimney
    Richmond, M. H. "Properties of a lytic enzyme produced by a strain of< i> Bacillus subtilis." Biochimica et biophysica acta 33, no.1 (1959):92-101.
    Ting, L. L. Effect of teardrop shaped dimple design on the golf ball aerodynamic performance[J]. ISEA 5th engineering of sport conference. Davis, California:International Sports Engineering Association.2004.
    Aoki, Katsumi, Koji Muto, and Hiroo Okanaga. Aerodynamic characteristics and flow pattern of a golf ball with rotation[J]. Procedia Engineering 2.2 (2010):2431-2436.
    Aoki, Katsumi, et al. Aerodynamic Characteristic and Flow Pattern on Dimples Structure of a Sphere[J]. Flucome Proceedings,10th International Conference on Fluid Control,
    Measurements and Visualization, Moscow, Russia.2009. www.youtube.com/watch?v=LvVuuaqCC7A http://www. seas. gwu. edu/-balaras/html/topics. shtml
    http://www.ansys.com/Support/Training+Center/Courses/Introduction+to+ANSYS+FLUE NT www.openfoam.org
    苏军伟,顾兆林,李云.各向同性颗粒系统数量平衡方程直接矩积分求解法的研究[J].化学反应工程与工艺,(2006).22(4),310-316.
    韩致文,刘贤万.”复膜沙袋阻沙体与芒苇高立式方格沙障防沙机理风洞模拟….”中国沙漠20,no.1(2000):40-44.
    屈建军,并暂帆,张克存,组瑞平,韩庆杰,韩光中,牛清河.HDPE峰巢式固沙障研制与防沙效应实验研究[J].中国沙漠,(2008).28(4).
    韩志文,刘贤万,姚正义.复膜沙袋阻沙体与芦苇高立式方格沙障防风机理风洞模拟实验[J].中国沙漠2.1(1982):13-20.
    钱风超.仿生鱼鳞形凹坑表面减阻性能的数值研究[D].大连理工大学,2013.中国气象科学数据共享服务网http://cdc.cma.gov.cn
    张德平,王效科,哈斯,孙宏伟,赵家明,刘秀,冯宗炜.呼伦贝尔沙质草原风蚀坑研究(1)——形态,分类,研究意义[J].中国沙漠,(2006).26(6),894-902.
    Kozmar, H., Truncated vortex generators for part-depth wind-tunnel simulations of the atmospheric boundary layer flow[J]. Journal of Wind Engineering and Industrial Aerodynamics,2011.99(2-3):p.130-136.
    Lasagna, D., et al., Effects of a trapped vortex cell on a thick wing airfoil[J]. Experiments in Fluids,2011.51(5):p.1369-1384.
    Boldes, U., J. Colman and J. Maranon Di Leo, About the penetration of a horizontal axis cylindrical vortex into the nearby downwind region of a vertical porous fence[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003.91(7):p.859-872.
    张召明.平板上挡板前后涡核位置的测量[J].南京航空航天大学学报,(1995).27(4),549-553.
    金昌宁,董治宝,李吉均,陈广庭.高立式沙障处的风沙沉积及其表征的风沙运动规律[J].中国沙漠,(2005).25(5),652-657.
    http://zh.wikipedia.org/Tiling_by_regular_polygons

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700