用户名: 密码: 验证码:
Mg-Mn-RE合金的热处理和变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对镁合金强度低、变形能力差的缺点,以Mg-Mn-RE合金为研究对象,对其铸态合金进行了热处理;然后对400℃下保温7h的样品进行了挤压变形;在挤压变形的基础上对其进行了锻造变形。同时,针对于目前镁合金热处理工艺及合金元素对合金相颗粒析出的影响规律还不清楚,又以Mg-Mn-RE合金以及商用AZ61、AM50和AM50+RE镁合金为研究对象,研究了镁合金热处理过程中不同冷却方式(空冷和水冷)、合金元素(Al、Mn、Zn、Y、Ce等)对合金相颗粒析出的影响规律。得到如下结论:
     (1)为了得到适合于挤压变形的显微组织,对Mg-Mn-RE合金不同热处理工艺下的显微组织和力学性能进行了系统的研究。结果表明:Mg-Mn-RE合金在固相线以下即400℃和520℃热处理时,Y、Ce等合金元素没有完全固溶到镁基体中,但是铸态时存在的枝晶组织被消除;在固液共存区即620℃热处理时,低熔点的合金相颗粒发生了熔化、固溶和细化等一系列变化;
     (2)对400℃下保温7h的样品在400℃以5 mm/s的速率进行了挤压变形。结果表明:Mg-Mn-RE合金在挤压变形过程中发生了动态再结晶,晶粒明显细化,铸态晶粒尺寸约为100μm,挤压变形后平均晶粒尺寸约为5μm;合金挤压变形后硬度、抗拉强度、屈服强度和伸长率都明显高于铸态,分别为HV 68、255 MPa、191 MPa和26%;
     (3)针对镁合金铸态及热处理后的晶粒粗大,降低了其成型性能的特点,同时为了进一步提高挤压合金的强度,对Mg-Mn-RE挤压合金分别在室温、360℃和450℃下进行了快速变形,即锻造变形。结果表明:挤压合金室温锻造变形过程中,锻打3次成型的样品,晶粒发生扭曲变形并细化,随着变形量的增大,晶粒细化的程度增大,聚集在一起的稀土化合物发生分离、细化和均匀分布的程度增大,硬度逐渐升高,相对变形量为25%时,硬度达到HV 101;360℃下不同锻打次数(1次、2次和3次)成型,得到样品的相对变形量都为25%时,合金都发生了动态再结晶,晶粒细化,锻打2次成型的样品位错、孪晶等缺陷密度较大,再结晶晶粒粗大,硬度达到HV 85;不同温度下(室温、360℃和450℃)锻造变形,锻打3次成型,相对变形量为25%时,随着锻造温度的升高晶粒尺寸增大,聚集在一起的稀土化合物发生分离、细化和均匀分布的程度降低,硬度降低。
     (4) Mg-Mn-RE合金520℃保温不同时间,水冷过程中有合金相颗粒析出;AZ61和AM50+RE镁合金520℃保温6h时,空冷过程中有合金相颗粒析出;AM50镁合金520℃保温6h时,保温过程中有合金相颗粒析出;
     (5)镁中由于Al和Mn元素的加入,使热处理保温过程中合金相颗粒有析出;Zn元素的加入,使热处理空冷过程中合金相颗粒有析出;由于稀土元素Y、Ce的加入,使热处理水冷过程中合金相颗粒有析出。
     对挤压和锻造变形的研究为镁合金的广泛应用提供了理论依据;热处理过程中合金相颗粒析出规律的分析,对镁合金的基础理论研究有重要意义。
Research on microstructures and mechanical properties of Mg-Mn-RE alloy for the characteristics that strength and deformability of magnesium alloys are generally low. And then, the specimen was extruded at 400℃which was heat-retaining 7h at 400℃. The extruded specimens were forged. And now, the effect of heat treatment processes and alloying element for alloy phases precipitates are unknown. So research on the effect of different types of cooling (air cooling and water-cooling) and alloying element (Al, Mn, Zn, Y, Ce, and so on) for alloy phases precipitates of Mg-Mn-RE alloy, commercial AZ61, AM50 and AM50+RE magnesium alloys. The research work of the dissertation includes:
     (1) In order to obtain suitable microstructures for extrusion, influences of different heat treatment processes on microstructure and mechanical properties of Mg-Mn-RE alloy were studied. Test results show that alloy elements, Y and Ce, weren't solution at all, but dendritic crystal was disappeared at 400℃and 500℃heat treatment. Low melting point alloy phases precipitates smelt, solute and refine at 620℃heat treatment.
     (2) The specimen was extruded at 400℃and 5 mm/s rate which was heat-retaining 7h at 400℃. Test results show that the grain was refined and the dynamic re-crystallization occurred during extrusion. As cast grain size is about 100μm, and extruded grain size is about 5μm. The results of mechanical properties of the extruded alloy exhibit the hardness, tensile strength, yield strength and elongation are 68 HV,255 MPa,191 MPa and 26%, respectively.
     (3) Mg-Mn-RE alloy was forged at room temperature,360℃and 450℃, for grain size is big, formability is low and strength is low of magnesium alloy as cast and heat treatment. Test results show that the grain was distorted and the rare earth compounds separated, refined and uniformly distributed in the matrix during forging, at room-temperature forging deformed process, forging 3 times molding specimens. And hardness value of the forged alloy is higher than that of extruded alloy, the value of that is 101 HV when the forging deformation is 25%. When the relative deformation is 25% for different forging times (1 times,2 times and 3 times) molding specimens at 360℃, alloy specimens have happened to the dynamic recrystallization, grain was coarse, dislocation and twin crystal density is larger of forging 2 times molding sample than 1 times and 3 times and it's hardness is HV 85. Grain size increased and hardness reduced as forging temperature rising, but the level of rare earth compounds separated, refined and uniformly distributed in the matrix was reduced, when the relative deformation is 25% for forging 3 times molding specimens at different temperature (room temperature,360℃and 450℃).
     (4) For Mg-Mn-RE alloy, alloy phase particles precipitate in water-cooling process at 520℃. For AZ61 and AM50+RE magnesium alloys, alloy phase particles precipitate in air-cooling process at 520℃and heat-retaining 6 h. For AM50 magnesium alloy, alloy phase particles precipitate in heat-retaining process at 520℃and heat-retaining 6 h.
     (5) Alloy phase particles precipitate in heat treatment process, due to Al and Mn elements addition to magnesium. Alloy phase particles precipitate in air-cooling process, due to Zn element addition to magnesium. Alloy phase particles precipitate in water-cooling process, due to rare-earth element, Y and Ce, addition to magnesium.
     Research on extrution and forging provides theoretical basis for the wide application of magnesium alloy. Analysis of alloy phase particles precipitation in heat treatment processes is very important for magnesium alloy basic theory study.
引文
[1]黎文献等.镁及镁合金[M].长沙:中南大学出版社,2005.
    [2]邹宏辉,曾小勤,翟春泉等.镁合金的强韧化进展[J].机械工程材料,2004,28(5):1-3,16.
    [3]Ferkel H, Mordike B L. Magnesium strengthened by SiC nanoparticles[J]. Materials Science and Engineering A,2001,298(1-2):193-199.
    [4]张菊梅,蒋百灵等.镁合金强韧化的研究现状及发展[J].热加工工艺,2006,35(8):65-67,70.
    [5]Raynor G V. The physical metallurgy of Mg and its alloys[M]. Pergamon Press,1959.
    [6]Aliravci C, Gruzleski J E, Dimayuga F, et al. Creep resistant magnesium alloys for powertrain applications[J]. Proc 48th Ann. Word Magnesium Conference, IMA,1991, 15-20.
    [7]Mordike B L, Ebert I. Magnesium properties applications potential[J]. Materials Science and Engineering A,2001,302(1):37-45.
    [8]Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated temperature applications [J]. Journal of Material Science,1994,29(20):5259-5271.
    [9]Westengen H, Wei L Y, Aune I, et al. In:MORDIKE B L and KAINER K U. Magnesium Alloys and Their Applications[J]. Werkstot Informations Gesellsehaft mbH, Frankfurt,1998,209-214.
    [10]Stanford N, Barnett M R. The origin of "rare earth" texture development in extruded Mg-based alloys and its effect on tensile ductility[J]. Materials Science and Engineering A,2008,496(1-2):399-408.
    [11]Hansen N. Polycrystalline strengthening[J]. Metallurgical and Materials Transactions A, 1985,16(2):2167-2190.
    [12]陆树荪,顾开道,郑来苏.有色铸造合金及熔炼[M].北京:国防工业出版社,1983.
    [13]Yue T. M, Ha H. U, Musson N. J. Grain size effects on the mechanical properties of some squeeze cast light alloys[J]. Journal of Materials Science,1995,30(9):2277-2283.
    [14]Kurota K, Mabuchi M, Higashi K. Processing and mechanical properties of fine grained magnesium alloys[J]. Journal of Materials Science,1999,34(10):2255-2262.
    [15]Dahle K. Arne, Lee C. Young, Nave D. Mark, et al. Development of the as-cast microstructure in magnesium aluminum alloys[J]. Journal of Light Metals,2001,1(1):61-72
    [16]Lee Y. C, Dahle A. K, StJohn D. Grain refinement of magnesium[J]. Maguesium Techn-ology 2000 as held at the 2000 TMS Annual Meeting,2000,211-218.
    [17]Raghunathan N, Sheppard T. Microstructural development during annealing of hot rolled Al-Mg alloys [J]. Materials Science and Technology,1989,5(6):542-547.
    [18]Nussbaum G, Gjestland H, Regazzoni G. Strengthening mechanisms in the rapidly solidified AZ91 magnesium alloy[J]. Scripta Materialia,1989,23(7):1079-1084.
    [19]Han B Q, Dunand D C. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids[J]. Materials Science and Engineering A,2000,277(1-2):297-304.
    [20]杨明波,潘复生,李忠盛,等.镁合金铸态晶粒细化技术的研究进展[J].铸造,2005,54(4):314-319.
    [21]吕亚清,韩辉,刘生发,等.C2Cl6对AZ91镁合金显微组织及力学性能的影响[J].特种铸造及有色合金,2006,26(9):598-600.
    [22]刘峰,冯可芹,杨屹.镁合金晶粒细化的研究现状及发展[J].铸造技术,2004,25(6):450-451.
    [23]吕伟宾.AM60B镁合金的晶粒细化及其在部分重熔过程中的组织演变[D].甘肃:兰州理工大学,2009.
    [24]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002.
    [25]Porter D A, Dington J W. Microanalysis and cell boundary velocity measurements for the cellular reaction in a Mg 9%A1 alloy[J]. Proceedings ofthe Royal Society of London Series A,1978,358(3):335-357.
    [26]肖晓玲,罗承萍,刘江文,等.AZ91镁铝合金中HCP/BCC相界面结构[J].中国有色金属学报,2003,23(2):25-29.
    [27]王越,吴伟,刘正,等.AZ91HP非连续析出的组织转变特点[J].沈阳工业大学学报,2000,22(6):465-470.
    [28]张津,章宗和等,镁合金及应用[M].北京:化学工业出版社,2004.
    [29]李小亮.热处理对固相合成ZM6镁合金组织与性能的影响研究[D].哈尔滨:哈尔滨理工大学,2008.
    [30]文丽华.固相再生ZM6耐热镁合金组织和性能研究[D].哈尔滨:哈尔滨理工大学,2009.
    [31]张小娟.微量添加元素Sc、Mn对Mg-Gd合金组织性能的影响[D].长沙:中南大学,2008.
    [32]Fang X Y, Yi D Q, Zhang X J, et al. Effect of Zr, Mn and Sc additions on the grain size of Mg-Gd alloy[J]. Journal of Alloys and Compounds,2009,470(1-2):311-316.
    [33]王强,高家诚,王勇,等.均匀化退火对WE43镁合金铸坯组织和性能的影响[J].材料热处理学报,2008,29(4):65-68.
    [34]熊创贤,张新明,蒋浩,等.热处理对Mg-Y-Mn-Sc合金显微组织演变的影响[J].特种铸造及有色合金,2006,26(3):129-132.
    [35]刘喜明.冷却方式对Mg-Nd-Pr合金的显微组织与物相构成的影响[J].稀有金属材料与工程,2009,38(4):677-680.
    [36]王渠东.冷却速度及热处理工艺对Mg-Y-Gd-Zn系合金显微组织和力学性能的影响[D].上海:上海交通大学,2008.
    [37]王瑞权,张大华,张军宝.AM60B镁合金等温热处理过程中的组织演变[J].有色金属加工,2010,39(1):17-22.
    [38]麻彦龙,彭华东,潘承聪,等.热处理对AZ91D镁合金显微组织的影响[J].材料热处理技术,2008,37(10):50-53.
    [39]麻彦龙,张津.AZ91D镁合金研究新进展[J].热加工工艺,2007,36(16):73-76.
    [40]Cizek L, Greger M, Pawlica L. Study of selected properties of magnesium alloy AZ91 after heat treatment and forming[J]. Journal of Materials Processing Technology,2004, 157-158(20):466-471.
    [41]金军兵,王智祥,刘雪峰,等.均匀化处理对AZ91镁合金组织和力学性能的影响[J].金属学报,2006,42(10):1014-1018.
    [42]王志峰,石亚茹,赵维民,等.AZ91-1.0%RE镁合金及其高温热处理研究[J].铸造,2008,57(8):775-779.
    [43]黄巍,李荻.300℃等温处理时间对AZ91D压铸镁合金组织和性能的影[J].材料热处理学报,2006,27(2):37-41.
    [44]张小立,李延举,滕海涛,等.等温热处理过程中铸态AZ91镁合金的微观组织演化[J].铸造,2007,56(10):1048-1052.
    [45]马鸣龙,张奎,李兴刚,等.GWN751K镁合金均匀化热处理[J].中国有色金属学报,2010,20(1):1-9.
    [46]Apps P J, Karimzadeh H, King J F, et al. Precipitation reactions in Magnesium-rare earth alloys containing Yttrium, Gadolinium or Dysprosium[J]. Materials Science Forum, 2003,48(8):1023-1028.
    [47]张诗昌,段汉桥,蔡启舟,等.主要合金元素对镁合金组织和性能的影响[J].铸造,2001,50(6):310-315.
    [48]刘饶川,汪凌云,辜蕾钢,等.AZ31B镁合金板材退火工艺及晶粒尺寸模型的研究[J].轻合金加工技术,2004,32(2):22-25.
    [49]黄光胜,汪凌云,黄光杰,等.均匀化退火对AZ31B镁合金组织与性能的影响[J].重庆大学学报,2004,27(11):15-20.
    [50]张菊梅,蒋百灵,王志虎,等.镁合金强韧化的研究现状及发展[J].热加工工艺,2006,35(8):65-68.
    [51]王志虎,张菊梅,袁森,等.镁合金强韧化处理研究进展[J].铸造技术,2006,27(1):84-86.
    [52]张宝昌.有色金属及其热处理[M].北京:国防工业出版社,1981.
    [53]于宝义,乔日金,时海芳,等.热处理及挤压比对AM50镁合金组织和力学性能的影响[J].铸造,2005,54(11):1076-1078.
    [54]范永革,汪凌云,黄光胜,等.变形镁合金板材在退火时的组织演变[C].2002年材料科学与工程新进展-2002年中国材料研讨会论文集.北京:冶金工业出版社,2003.
    [55]夏翠芹,刘平,任凤章,等.热处理对AZ31B镁合金轧板组织和性能的影响[J].材料开发与应用,2007,22(1):1-4.
    [56]路林林,杨平,王发奇.形变热处理对AZ80镁合金组织及性能的影响[J].中国有色金属学报,2006,16(6):1034-1039.
    [57]廖慧敏,龙思远,原帅,等.挤压铸造AZ81镁合金均匀化热处理工艺研究[J].铸造.2010,59(1):30-33.
    [58]李荣广.高强度Mg-Y-Zn合金的变形和摩擦磨损行为研究[D].长春:吉林大学,2009.
    [59]Junichi K, Makoto S. Effect of texture on the mechanical properties and formability of magnesium wrought materials[J]. Journal of Japan Institute of Light metals,2000,64(2): 141-147.
    [60]Doege E, Draker K. Sheet metal forming of magnesium wrought alloy formability and process technology[J]. Journal of Material Process Technology,2001,115(1):14-19.
    [61]Lukac P. Mechanical properties of some rapidly solidified magnesium alloys[C]. Proc. 3rd International Magnesium Conference,10-11 April 1996, Institute of Materials, London,1997,337-340.
    [62]Mendelson S. Dislocation dissociations in hcp metals[J]. Journal Application Physics, 1970,41(5):1893-1910.
    [63]Couret A, Caillard D. Prismatic slip in beryllium in the controlling mechanism at the peak temperature[J]. Philosophical Magazine A,1989,59(4):783-800.
    [64]Myshlyaev M M, Mcqueen H J, Mwembela A, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy[J]. Materials Science and Engineering A, 2002,337(1-2):121-133.
    [65]Langdon T G. Grain boundary sliding as a deformation mechanism during creep interfaces[J]. Philosophical Magazine A,1970,178(22):689-694.
    [66]Sastry D H, Prasad R K. On stacking fault energies of some close-packed hexagonal metals[J]. Scripta Materialia,1969,3:927-935.
    [67]Mabuchi M, Higashi K. Strengthening mechanisms of Mg-Si alloys[J]. Acta Materialia, 1996,44(11):4611-4618.
    [68]Liu W J, Kao V, Essadigi E. Dynamic recrystallization of AZ31 magnesium alloy during torsion deformation at elevated temperatures[C]. Magnesium Technology 2004 as held at the 2004 TMS Annual Meeting,2004,73-78.
    [69]Hidetoshi Somekawa, Alok Singh and Toshiji Mukai. Synergetic effect of grain refinement and spherical shaped precipitate dispersions in fracture toughness of a Mg-Zn-Zr alloy[J]. Materials Transactions,2007,48:1422-1426.
    [70]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [71]Da-qing Fang, Guang-li Bi, Li-min Wang, et al. Microstructures and mechanical properties of Mg-2Y-1Mn-1~2Nd alloys fabricated by extrusion[J]. Materials Science and Engineering A,2010,527(16-17):4383-4388.
    [72]Yu Kun, Li Wen-xian, Wang Ri-chu. Mechanical properties and microstructure of as-cast and extruded Mg-(Ce, Nd)-Zn-Zr alloys[J]. Journal of Central South University of Technology,2005,12(5):499-502.
    [73]张新明,陈健美,邓运来,等.Mg-Gd-Y-(Mn, Zr)合金的显微组织和力学性能[J].2006,16(2):219-227.
    [74]Yang Z, Guo Y C, Li J P, et al. Plastic deformation and dynamic recrystallization behaviors of Mg-5Gd-4Y-0.5Zn-0.5Zr alloy[J]. Materials Science and Engineering A, 2008,485(1-2):487-491.
    [75]Tsutomu Murai, Shin-ichi Matsuoka, Susumu Miyamoto, et al. Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions[J]. Journal of Materials Processing Technology,2003,141(2):207-212.
    [76]Beer A G, Barnett M R. The influence of twinning on the hot working flow stress and microstructural evolution of magnesium alloy AZ31 [J]. Materials Science Forum,2005, 488-489:611-614.
    [77]李鹏喜,张爱萍,陈晶益,等.变形工艺对AZ31B镁合金薄板组织及力学性能的影响[J].材料热处理学报,2006,27(3):60-64.
    [78]王强,张治民.坯料温度对AZ31B镁合金反挤压成形的影响[J].材料工程,2006,增刊:310-312.
    [79]蔡薇,柳瑞清,饶克,等.镁合金AZ31B挤压成形工艺及模具研究[J].热加工工艺,2006,35(13):45-47.
    [80]师瑞霞,尹衍升,谭训彦.镁合金的研究进展[J].山东冶金,2003,25(2):53-56.
    [81]高仑.镁合金成形技术的开发与应用[J].轻合金加工技术,2004,32(8):5-12.
    [82]薛治中.铝、镁合金等温精锻试验研究[J].锻压技术,1992,17(3):10-15.
    [83]During M, Schiaeffer L, Viehweger B. Bulk forming of magnesium alloys AZ31 and AZ80[C].8th ICTP 2005-International Conferenceon Technology of Plasticity. Verona, Italy,2005:386-391.
    [84]郝南海,薛克敏,吕炎.上机匣等温锻造工艺研究[J].热加工工艺,1997,(2):36-37.
    [85]王智文,张治民,王强.AZ31变形镁合金等温变形力学特性的研究[J].机械工程与自动化,2005,(1):40-42,44.
    [86]王德林.AZ31镁合金轿车轮毂温成形工艺研究[D].太原:中北大学,2005.
    [87]李德君,刘平,董企铭,等.Mg-3Al-1Zn-0.8Nd合金热压缩变形流变应力的研究[J].材料热处理学报,2008,29(5):26-30.
    [88]熊创贤,张新明,陈健美,等.Mg-Gd-Y-Mn耐热镁合金的压缩变形行为研究[J].材料热处理学报,2007,28(3):47-53.
    [89]Ogawa N, Shiomi M, Osakada K. Forming limit of magnesium alloy at elevated temp-erature for precision forging[J]. Machine Tools and Manufacture,2002,42(5):607-614.
    [90]曹凤红,龙思远,杜勇,等.AZ61镁合金挤锻复合成形组织与力学性能[J].材料热处理学报,2009,30(5):154-157.
    [91]杜勇,龙思远,曹凤红,等.挤锻复合成形工艺对AZ81镁合金组织和性能的影响[J].特种铸造及有色合金,2009,29(1):39-41.
    [92]刘楚明,朱秀荣,周海涛.镁合金相图集[M].长沙:中南大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700