用户名: 密码: 验证码:
钢框架结构火灾反应分析及其模拟系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢结构以其突出的优点在建筑领域中得到迅速发展,随着其应用范围的逐渐扩大,钢材不耐火的缺陷也越来越受到人们的关注。20世纪80年代以来,国内外学者围绕钢结构抗火性能这一课题开展了一系列工作,但多数是针对钢构件在升温路径的研究。实际上,钢结构整体的抗火性能与单个构件相比有很大区别,而且钢结构在火灾过程中会受到升温、降温、加载、卸载不同组合的交替作用,基于单一路径的构件研究不能精确反应钢结构在火灾中的实际性能,有必要探索结构整体在多路径条件下的性能。
     基于以上原因,本文以钢结构整体为研究对象,对其在不同温度-荷载条件下的性能反应进行了系统研究,具体工作和相应结论主要有以下几个方面:
     (1)针对我国建筑结构常用钢材Q235进行了高温性能试验。
     以往的高温材性试验一般都是稳态试验或者瞬态试验,获得材料在某一温度状态下的应力-应变关系,以及初始弹性模量、屈服强度、极限强度等力学性能指标随温度的变化规律,这些试验获得的材料高温力学性能只与温度状态有关。本文试验设置不同的温度-荷载路径,分别得到不同路径下材料的应力-应变-温度连续函数型本构关系,探索了温度-荷载历史对钢材高温力学性能的影响。
     (2)基于纤维梁单元推导单元刚度矩阵。
     应用本文得出的钢材连续函数型本构关系,采用纤维梁单元,通过虚功原理推导出适用于钢框架结构高温分析的刚度方程。推导过程中,考虑了材料非线性和几何非线性的影响,并结合纤维梁单元的特点,通过进一步运算,给出了单元刚度矩阵的显式表达。同时还推导出微元平均应变增量以及温度荷载等物理量的显式表达,为后续的钢结构抗火分析软件编制奠定基础。
     (3)推导不同截面形式单元刚度矩阵
     纤维梁单元的应用,可以解决温度沿构件截面高度不均匀分布的计算问题。在此基础上,本文还推导了其他截面形式的刚度矩阵,使得温度在截面高度和宽度两个方向不均匀分布的条件下,以及构件截面为圆形(环形、扇形)的条件下都可以计算。
     (4)编制了钢结构抗火性能的有限元分析软件。
     在理论分析的基础上,编制了钢结构抗火性能分析程序。该程序可以同时输入多种温度-荷载路径下的本构模型,在计算过程中,由程序的路径识别模块判断出当前所处的路径状态,再据此自动选择相应的材料模型进行计算。火灾过程中至少包含一次升温、降温过程,并且高温引起的应力重分布有可能造成加载、卸载的反复,不同路径间计算的自动转化,保证了程序计算的连续性,实现了钢结构在火灾高温下反应的动态跟踪。通过本文计算结果与试验数据、ANSYS计算结果的对比,验证了本文程序的正确性,并通过几个算例介绍了该程序在实际钢结构防火设计中的应用。
Steel structure has developed rapidly in engineering for its unique advantage. With the enlargement of its application range, the non-fire-resistant defect of steel material has been taken people’s more attention. Since 80s of 20th century, a series of researches have been carried out on the behavior of steel structure in fire around the world, while most of them are about steel members in heating path. In fact, the fire-resistant behavior of the global structure is greatly different with that of single member. Furthermore, different combinations of heating, cooling, loading, and unloading may be subjected to the steel structure during the burning process, so the researches basing on single path can not accurately reflect the actual behavior of steel structure in fire, it is necessary to study the behavior of the global structure in multi-path.
     Based on above reasons, the global steel structure is taken as the object and its behavior in different temperature-load paths is researched systematically in this paper, the detail works and corresponding conclusions are as follows:
     (1) Carrying out high-temperature material test using Q235
     Up to now, most of the high-temperature material tests are steady or transient tests, from which the material properties can be obtained, such as stress-strain curve on certain temperature, the variety regulation of initial elastic modulus, yield strength, ultimate strength changing with temperature, which are only related to temperature state. Different temperature-load paths were set in this paper, the continuous functions of stress-strain-temperature relation were obtained under different paths, studying the influence of temperature-load history on steel behavior.
     (2) Deriving stiffness matrix of fiber-beam element
     Using the constitutive relation obtained in this paper, adopting fiber-beam element, the stiffness equation suitable for high-temperature analysis of steel structure was derived by principle of virtual work. In deriving, the material nonlinearity and geometric nonlinearity were considered. According to the characteristic of fiber-beam element, the explicit form of element stiffness matrix was presented by further operation, so as the explicit forms of average strain increment and temperature load, which supply the basis for the follow-up analysis software of steel structure in fire.
     (3) Deriving stiffness matrix based on other sections
     By using fiber-beam element, analysis can be carried out when the temperature distribution is asymmetrical along section height. Based on which, the element stiffness matrixes of other section shapes were also derived, making the analysis be possible when the temperature distribution is asymmetrical along both section height and width, so as the cases of circular, ringshaped, or fanshaped section.
     (4) Developing the finite element analysis software of steel structure in fire
     Based on theoretical analysis, the analysis software of steel structure in fire was developed. Constitutive relation functions of steel under different temperature-load paths can be inputted simultaneously. In computing, the path state can be judged by paths recognition module of the software, and then the corresponding functions was selected automatically. The heating-cooling stage must be included in the burning process at least once, and the alternation of loading and unloading may be caused by stress redistribution at elevated temperature. Automatic paths conversion can ensure the continuity of computation, which realizes dynamic tracking of the steel structure during the fire process. By comparing the results of the software with experimental data and ANSYS results, the analysis software developed in this paper was validated, and its application on fire protection design of steel structure was presented by several examples.
引文
[1] GBJ16-87.建筑设计防火规范[S].北京:中国计划出版社, 2001.
    [2] GB50045-95.高层民用建筑设计防火规范[S].北京:中国计划出版社, 2001.
    [3]王学谦.建筑防火[M].北京:中国建筑工业出版社, 2000.
    [4]赵金城,沈为平.高温下钢框架结构非线性有限元分析[J].上海交通大学学报, 1996, 30(8): 55-59.
    [5]童兴.高层及超高层钢结构防火问题浅谈[J].江苏建筑, 2001, (4): 23-27.
    [6]汪永明.浅谈钢结构防火问题[J].安徽消防, 1996, (7): 28-29.
    [7]赵金城,沈祖炎.钢结构抗火设计的燃烧模型及温度传播[J].工业建筑, 1994, (7): 12-15.
    [8]方强.钢结构防火设计和保护[J].钢结构, 2002, 17(4): 43-45.
    [9]高晓勇.建筑钢结构防火处理[J].甘肃科技, 2005, 21(4): 107-109.
    [10]黄滢,万琳.钢结构防火问题探析[J].江西科技师范学院学报, 2003, (5): 15-18.
    [11]甄诚.钢结构防火设计发展[J].低温建筑技术, 2005, (3): 62-63.
    [12]李国强,蒋首超,林桂祥.钢结构抗火计算与设计[M].北京:中国建筑工业出版社, 1999.
    [13]张德榆,陈志东,陈明顺.高层建筑钢结构的防火措施及防火涂料应用[J].建筑技术, 1998, 30(5): 325.
    [14]汝成友,吕玉涛.浅论钢结构防火保护措施[J].鸡西大学学报, 2004, 4(5): 54-55.
    [15]史毅.建筑构件的耐火极限[J].工程质量, 2004, 2: 44-46.
    [16]王广军,边庆策,史毅等.建筑构件耐火性能试验炉的研制与应用[J].建筑科学, 1996, (2): 29-35.
    [17]赵金城,沈祖炎.钢结构抗火设计进展与评述[J].建筑结构, 1995, (5): 3-8.
    [18]李国强,吴波,韩林海.结构抗火研究进展与趋势[J].建筑钢结构进展, 2006, 8(1): 1-13.
    [19]李国强.现代钢结构抗火设计方法[J].消防科学与技术, 2002, (1): 8-11.
    [20]徐莉,郭兆儒.浅谈钢结构抗火设计[J].漯河职业技术学院学报, 2004, 3(2): 22-25.
    [21]刘震宇.关于钢结构抗火设计及防火施工的探讨[J].广西土木建筑, 2002, 27(2): 77-79.
    [22]赵金城.钢框架结构抗火性能研究[D].上海:同济大学, 1995.
    [23] Kirby B R. Recent Developments and Applications in Structural Fire Engineering Design-a Review[J]. Fire Safety Journal, 1986, (11): 141-179.
    [24] Rubert A, Schaumann P. Structural Steel and Plane Frame Assemblies under Fire Action[J]. FireSafety Journal, 1986, 10(3): 173-184.
    [25] Makelainen P, Outinen J, Kesti J. Fire Design Model for Structural Steel S420M Based upon Transient-State Tensile Test Results[J]. Journal of Constructional Steel Research, 1998, 48(1): 47-57.
    [26] Chen J, Young B. Stress-Strain Curves for Stainless Steel at Elevated Temperatures[J]. Engineering Structures, 2006, 28(2): 229-239.
    [27] Chen J, Young B, Uy B. Behavior of High Strength Structural Steel at Elevated Temperatures[J]. Journal of Structural Engineering, 2006, 132(12): 1948-1954.
    [28] Chen J, Young B. Corner Properties of Cold-Formed Steel Sections at Elevated Temperatures[J]. Thin-Walled Structures, 2006, 44(2): 216-223.
    [29] Chen J, Young B. Experimental Investigation of Cold-Formed Steel Material at Elevated Temperatures[J]. Thin-Walled Structures, 2007, 45(1): 96-110.
    [30] Young B. Experimental and Numerical Investigation of High Strength Stainless Steel Structures[J]. Journal of Constructional Steel Research, 2008, 64(11): 1225-1230.
    [31] ECCS-T3. European Recommendations for the Fire Safety of Steel Structures[S]. Amsterdam: Elsevier, 1983.
    [32] NEN-EN 1993-1-2. Eurocode 3: Design of Steel Structures-Part 1-2: General Rules-Structural Fire Design[S]. Brussels: European Committee for Standardization, 2005.
    [33] BS 5950-8: 2003. Structural Use of Steelwork in Building. Code of Practice for Fire Resistance Design[S]. London: British Standards Institution, 2003.
    [34] AS4100. Steel Structures[S]. Sydney: Standards Australia, 1990.
    [35]时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析[D].北京:清华大学, 1992.
    [36]胡克旭.室内火灾模化与结构受火灾作用的全过程分析[D].上海:同济大学, 1992.
    [37]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究, 1990, (1): 37-43.
    [38]吕彤光,时旭东,过镇海.高温下Ⅰ~Ⅴ级钢筋的强度和变形试验研究[J].福州大学学报(自然科学版), 1996,24增刊: 11-17.
    [39]时旭东,过镇海.高温下钢筋混凝土框架的受力性能试验研究[J].土木工程学报, 2000, 33(1): 36-45.
    [40]赵金城.高温下钢材力学性能的试验研究[J].建筑结构, 2000, 30(4): 26-28.
    [41]赵金城,沈祖炎.钢结构抗火分析中的材性模型[J].工业建筑, 1996, 26(9): 3-6.
    [42]蒋首超,李国强.高温下结构钢的材料特性[J].钢结构, 1996, 11(2): 49-57.
    [43]王鹏林,郝淑英,陈玲等.材料模型对钢结构抗火性能分析结果的影响[J].天津理工大学学报, 2005, 21(2): 4-7.
    [44]曹文衔.损伤累积条件下钢框架结构火灾反应的分析研究[D].上海:同济大学, 1998.
    [45]谭巍.高温火灾条件下钢结构的材料性能及钢框架结构反应的分析研究[D].上海:同济大学, 1998.
    [46]谭巍.高温(火灾)条件下钢结构材料性能研究[J].工业建筑, 2000, 30(10): 61-63.
    [47]李国强,陈凯,蒋首超等.高温下Q345钢的材料性能试验研究[J].建筑结构, 2001, 31(1): 53-55.
    [48] Li G Q, Jiang S C, Yin Y Z et al. Experimental Studies on the Properties of Constructional Steel at Elevated Temperatures[J]. Journal of Structural Engineering, 2003, 129(12): 1717-1721.
    [49]李国强,李明菲,殷颖智等.高温下高强度螺栓20 MnTiB钢的材料性能试验研究[J].土木工程学报, 2001, 34(5): 100-104.
    [50]李国强,张晓进,蒋首超等.高温下SM41钢的材料性能试验研究[J].工业建筑, 2001, 31(6): 57-59.
    [51]陆洲导.钢筋混凝土梁对火灾反应的研究[D].上海:同济大学, 1989.
    [52]刘长青,李占鸿,陆洲导.高温下植筋试件拉拔试验[J].结构工程师, 2008, 24(1): 72-76.
    [53]陆洲导,朱伯龙,周跃华.钢筋混凝土简支梁对火灾反应的试验研究[J].土木工程学报, 1993, 26(3): 47-54.
    [54]李凌志.火灾后混凝土材料力学性能与温度、时间的关系[D].上海:同济大学, 2006.
    [55] Li H L, Nishimura A, Nagasaka T et al. Stress-Strain Behavior on Tensile and Low Cycle Fatigue Tests of JLF-1 Steel at Elevated Temperature in Vacuum[J]. Fusion Engineering and Design, 2006, 81(23-24): 2907-2912.
    [56]徐彦,赵金城. Q235钢在不同应力-温度路径下材料性能的试验研究和本构关系[J].上海交通大学学报, 2004, 38(6): 967-971.
    [57]徐彦.不同应力-温度路径下钢结构材料性能及钢框架火灾反应的分析研究[D].上海:上海交通大学, 2003.
    [58]吕彤光.高温下钢筋的强度和变形试验研究[D].北京:清华大学, 1996.
    [59] Anderberg Y. Modeling Steel Behavior[J]. Fire Safety Journal, 1988, 13 (7): 17-26.
    [60] Cheng W C, Mak C K. Computer Analysis of Steel Frame in Fire [J]. Journal of the Structural Division, 1975, 101(4): 854-866.
    [61] Jeanes D C. Application of the Computer in Modeling Fire Endurance of Structural Steel FloorSystems[J]. Fire Safety Journal, 1985, 9(1): 119-135.
    [62] Franssen J M, Schleich J B, Cajot L G et al. A Simple Model for the Fire Resistance of Axially Loaded Members-Comparison with Experimental Results[J]. Journal of Constructional Steel Research, 1996, 37(3): 175-204.
    [63] Anderberg Y, Forsen N E, Aasen B. Measured and Predicted Behaviour of Steel Beam and Columns in Fire[J]. Fire Safety Science, 1986, 1: 259-269.
    [64] Saab H A, Nethercot D A. Modeling Steel Frame Behavior under Fire Conditions[J]. Engineering Structures, 1991, 13(4): 371-382.
    [65]李国强,沈祖炎.钢结构框架体系弹性及弹塑性分析与设计理论[M].上海:上海科学技术出版社, 1998.
    [66]李国强,蒋首超.非均布高温钢结构梁单元切线刚度方程[J].同济大学学报, 1999, 27(1): 1-5.
    [67] Wang Y C, Moore D B. Steel Frames in Fire: Analysis[J]. Engineering Structures, 1995, 17(6): 462-472.
    [68] Poh K W, Bennetts I D. Analysis of Structural Members under Elevated Temperature Conditions[J]. Journal of Structural Engineering, 1995, 121(4): 664-675.
    [69] Poh K W, Bennetts I D. Behaviour of steel columns at elevated temperature [J]. Journal of structural engineering, 1995, 121(4): 676-684.
    [70] Thomas I R, Bennetts I D. Developments in the design of steel structures for fire[J]. Journal of Constructional Steel Research, 1992, 23(1-3): 295-312.
    [71]李国强,金福安.火灾时钢框架结构的极限状态分析[J].土木工程学报, 1994, 27(1): 49-56.
    [72]李国强,贺军利,蒋首超.约束钢梁的抗火试验与验算[J].土木工程学报, 2000, 33(4): 23-26.
    [73]李国强,贺军利,蒋首超.钢柱的抗火试验与验算[J].建筑结构, 2000, 30(9): 12-15.
    [74]李国强.钢梁抗火计算和设计的实用方法[J].工业建筑, 1994, (7): 43-46.
    [75]李国强,杨明,王兆玺.钢柱抗火计算和设计的实用方法[J].工业建筑, 1995, 25(2): 31-37.
    [76]李国强,陈凯.门式钢刚架结构实用抗火设计方法[J].建筑结构, 2001, 31(6): 14-18.
    [77]蒋首超,李国强.局部火灾下钢框架温度内力的实用计算方法[J].工业建筑, 2000, 30(9): 56-61.
    [78]赵金城,沈祖炎.考虑塑性区扩展的钢框架二阶分析[J].同济大学学报, 1995, 23(5): 488-492.
    [79]赵金城,沈祖炎.局部火灾下钢框架结构整体性能的非线性分析[J].建筑结构学报, 1997, 18(4): 30-36.
    [80] Zhao J C. Application of the Direct Iteration Method for Non-Linear Analysis of Steel Frames in Fire[J]. Fire Safety Journal, 2000, 35(3): 241-255.
    [81] Zhao J C, Shen Z Y. NASFAF-A Computer Program for the Fire Resistance Analysis of Steel Frames[J]. Journal of Southeast University, 1995, 11(1A): 630-634.
    [82] Poh K W, Bennett I D. Analysis of Structural Members under Elevated Temperature Conditions[J]. Journal of Structural Engineering, 1995, 121(4): 664-675.
    [83] Najjar S R, Burgess I W. A Nonlinear Analysis for Three-Dimensional Steel Frames in Fire Conditions[J]. Engineering Structures, 1996, 18(1): 77-89.
    [84] Talamona D, Franssen J M, Schleich J B et al. Stability of Steel Columns in Case of Fire: Numerical Modeling[J]. Journal of Structural Engineering, 1997, 123(6): 713-720.
    [85] Skowro n ski W. Plastic Load Capacity and Stability of Frames in Fire[J]. Engineering Structures, 1997, 19(9): 764-771.
    [86] Jahanian S. Numerical Representation of Jiang's Constitutive Equations for a Material with Temperature-Dependent Properties[J]. Engineering Structures, 1997, 19(2): 173-178.
    [87]蒋首超.钢框架抗火承载力极限状态分析[D].上海:同济大学, 1997.
    [88]曹文衔,沈祖炎,董宝.考虑损伤累积的热弹塑性问题变分原理及其有限元方法[J].上海力学, 1996, 17(4): 271-277.
    [89]黄珏倩.平面大空间钢结构抗火研究[D].上海:同济大学, 2006.
    [90]赵金城.高温下钢结构压弯构件的整体稳定极限状态[J].钢结构, 1998, 13(4): 31-34.
    [91] Richard Liew J Y, Tang L K, Holmaas T et al. Advanced Analysis for The Assessment of Steel Frames in Fire[J]. Journal of Constructional Steel Research, 1998, 47(8): 19-45.
    [92] Ma K Y, Richard Liew J Y. Nonlinear Plastic Hinge Analysis of Three-Dimensional Steel Frames in Fire[J]. Journal of Structural Engineering, 2004, 130(7): 981-990.
    [93]谭巍,王肇民.高温(火灾)条件轴心受压变截面钢构件承载力理论研究[J].钢结构, 1999, 14(1): 10-13.
    [94] Li G Q, Jiang S C. Prediction to Nonlinear Behavior of Steel Frames Subjected to Fire[J]. Fire Safety Journal, 1999, 32(4): 347-368.
    [95] Wang Y C. An Analysis of the Global Structural Behaviour of the Cardington Steel-Framed Building during the Two BRE Fire Tests[J]. Engineering Structures, 2000, 22: 401-412.
    [96] Nwosu D I, Kodur V K R. Behaviour of Steel Frames under Fire Conditions[J]. Canadian Journal of Civil Engineering, 1999, 26: 156-167.
    [97] Bailey C G et al. The Influence of the Thermal Expansion of Beams on the Structural Behaviour ofColumns in Steel-Framed Structures during a Fire[J]. Engineering Structures, 2000, 22: 755-768.
    [98] Iu C K, Chan S L. A Simulation-Based Large Deflection and Inelastic Analysis of Steel Frames under Fire[J]. Journal of Constructional Steel Research, 2004, 60(10): 1495-1524.
    [99] Iu C K, Chan S L, Zha X X. Nonlinear Pre-Fire and Post-Fire Analysis of Steel Frames[J]. Engineering Structures, 2005, 27(11): 1689-1702.
    [100] Iu C K, Chan S L, Zha X X. Material Yielding by Both Axial and Bending Spring Stiffness at Elevated Temperature[J]. Journal of Constructional Steel Research, 2007, 63(5): 677-685.
    [101] Huang Z H, Burgess I W, Plank R J. Three-Dimensional Analysis of Composite Steel-Framed Buildings in Fire[J]. Journal of Structural Engineering, 2000, 126(3): 389-397.
    [102] El-Rimawi J A, Burgess I W, Plank R J. Studies of the Behaviour of Steel Subframes with Semi-Rigid Connections in Fire[J]. Journal of Constructional Steel Research, 1999, 49(1): 83-98.
    [103] Wang Y C, Kodur V K R. Research toward Use of Unprotected Steel Structures[J]. Journal of Structural Engineering, 2000, 126(12): 1442-1450.
    [104] Wang Y C. The Effects of Frame Continuity on the Behaviour of Steel Columns Under Fire Conditions and Fire Resistant Design Proposals[J]. Journal of Constructional Steel Research, 1997, 41(1): 93-111.
    [105] Wang Y C. Effects of Structural Continuity on Fire Resistant Design of Steel Columns in Non-sway Multi-storey Frames[J]. Fire Safety Journal, 1997, 28(2): 101-116.
    [106] Wang Y C. The Effects of Structural Continuity on the Fire Resistance of concrete filled columns in Non-sway Frames[J]. Journal of Constructional Steel Research, 1999, 50(2): 177-197.
    [107]李国强,贺军利,韩林海.钢管混凝土轴压构件抗火承载力的计算[J].建筑结构, 2001, 31(1): 60-62.
    [108]毛小勇,张耀春,韩林海.标准升温下钢-混凝土组合板的抗火性能[J].建筑结构学报, 2002, 23(2): 55-60.
    [109]毛小勇,肖岩.标准升温下轻钢-混凝土组合梁的抗火性能研究[J].湖南大学学报, 2005, 32(2): 64-70.
    [110]毛小勇.轻钢-混凝土组合梁抗火计算方法[J].江苏建筑, 2005, (1): 21-22.
    [111]韩林海,毛小勇.压型钢板组合板耐火极限的理论研究[J].消防科学与技术, 2001, (5): 4-6.
    [112]韩林海,徐蕾,冯九斌等.钢管混凝土柱耐火极限和防火设计实用方法研究[J].土木工程学报, 2002, 35(6): 6-13.
    [113]杨有福,韩林海.矩形钢管混凝土柱的耐火性能和抗火设计方法[J].建筑结构学报, 2004, 25(1): 25-35.
    [114]郑永乾,杨有福,韩林海.用ANSYS分析钢-混凝土组合柱的温度场[J].工业建筑, 2006, 36(8): 74-77.
    [115]郑永乾,韩林海.钢骨混凝土柱的耐火性能和抗火设计方法(Ⅰ) [J].建筑钢结构进展, 2006, 8(2): 22-29.
    [116]郑永乾,韩林海.钢骨混凝土柱的耐火性能和抗火设计方法(Ⅱ) [J].建筑钢结构进展, 2006, 8(3): 24-33.
    [117]霍静思,韩林海. ISO-834标准火灾作用后钢管混凝土轴压刚度和抗弯刚度的研究[J].工业建筑, 2004, 34(1): 21-25.
    [118]霍静思,韩林海.火灾作用后钢管混凝土轴压与纯弯荷载-变形关系曲线实用计算方法探讨[J].工业建筑, 2006, 36(11): 6-10.
    [119]韩林海,霍静思.火灾作用后钢管混凝土柱的承载力研究[J].土木工程学报, 2002, 35(4): 25-35.
    [120]杨华,韩林海.圆钢管混凝土柱全过程火灾作用后剩余承载力实用计算方法[J].工程建设与设计, 2005, (2): 26-29.
    [121]林晓康,韩林海.火灾作用后圆钢管混凝土柱荷载-位移滞回性能研究[J].建筑结构学报, 2005, 26(3): 19-29.
    [122]林晓康,韩林海.火灾后方钢管混凝土压弯构件滞回性能理论分析[J].地震工程与工程振动, 2005, 25(3): 104-109.
    [123]林晓康,韩林海. ISO-834标准火灾作用后方钢管混凝土构件滞回性能试验研究[J].地震工程与工程振动. 2003, 23(4): 188-194.
    [124]霍静思,韩林海.火灾作用后钢管混凝土柱-钢梁节点滞回性能试验研究[J].建筑结构学报, 2006, 27(6): 28-38.
    [125] Toh W S, Tan K H, Fung T C. Strength and Stability of Steel Frames in Fire: Rankine Approach[J]. Journal of Structural Engineering, 2001, 127(4): 461-469.
    [126] Tang C Y, Tan K H. Basis and Application of Simple Interaction Formula for Steel Frames under Fire Conditions[J]. Journal of Structural Engineering, 2001, 127(10): 1214-1220.
    [127]李国强,丁军.耐火钢梁的抗火性能参数分析与抗火设计[J].钢结构, 2003, 18(5): 52-55.
    [128]丁军,李国强.耐火钢柱的抗火性能参数分析与抗火临界温度估计[J].建筑钢结构进展, 2004, 6(3): 19-22.
    [129] Ding J, Li G Q, Sakumoto Y. Parametric Studies on Fire Resistance of Fire-Resistant Steel Members[J]. Journal of Constructional Steel Research, 2004, 60(7): 1007-1027.
    [130]李国强,殷颖智.钢结构高强度螺栓连接抗火性能的有限元分析[J].土木工程学报, 2003, 36(6): 18-25.
    [131]丁军,李国强.火灾下钢结构楼板的薄膜作用[J].建筑钢结构进展, 2003, 5(2): 17-23.
    [132]郝淑英,杨秀萍,王鹏林.钢梁火灾下响应的虚拟仿真[J].天津理工学院学报, 2004, 20(3): 9-12.
    [133]杨秀萍,张卓,郝淑英等.火灾下三维钢框架结构响应的数值模拟[J].天津理工学院学报, 2004, 20(3): 5-8.
    [134]杨晓杰,高日,白泓.火作用下梁行为的基本原理[J].钢结构, 2004, 19(1): 49-52.
    [135]张玉锁.钢框架梁抗火分析有限元模型的建立[J].山西建筑, 2003, 29(5): 27.
    [136]丁阳,刘涛.钢框架梁抗火承载力的有限元分析[J].天津大学学报, 2006, 39(2): 181-187.
    [137]蒋首超,李国强,叶绮玲.火灾下钢框架结构非线性反应分析与试验研究[J].工业建筑, 2004, 34(8): 66-69.
    [138]蒋首超,李国强,楼国彪等.钢-混凝土组合楼盖抗火性能的数值分析方法[J].建筑结构学报, 2004, 25(3): 38-44.
    [139]蒋首超,李国强,周宏宇等.钢-混凝土组合楼盖抗火性能的试验研究[J].建筑结构学报, 2004, 25(3): 45-50.
    [140] Buchanan A, Moss P, Seputro J et al. The Effect of Stress-Strain Relationships on the Fire Performance of Steel Beams[J]. Engineering Structures, 2004, 26(11): 1505-1515.
    [141] Moss P J, Buchanan A H, Seputro J et al. Effect of Support Conditions on the Fire Behaviour of Steel and Composite Beams[J]. Fire and Materials, 2004, 28(2): 159-175.
    [142] Wong M B, Szafranski M. Elastic Method for Design of 3-D Steel Structures Subject to Fire[J]. Journal of Constructional Steel Research, 2004, 60(7): 1095-1108.
    [143] Wong M B. Modelling of Axial Restraints for Limiting Temperature Calculation of Steel Members in Fire[J]. Journal of Constructional Steel Research, 2005, 61(5): 675-687.
    [144] Wong M B. Effect of Torsion on Limiting Temperature of Steel Structures in Fire[J]. Journal of Structural Engineering, 2006, 132(5): 726-732.
    [145] Wong M B. Adaptation Factor for Moment Capacity Calculation of Steel Beams Subject to Temperature Gradient[J]. Journal of Constructional Steel Research, 2007, 63(8): 1009-1015.
    [146] Lamont S, Usmani A S, Gillie M. Behaviour of a Small Composite Steel Frame Structure in a“Long-Cool”and a“Short-Hot”Fire[J]. Fire Safety Journal, 2004, 39(5): 327-357.
    [147] Ali H M, Senseny P E, Alpert R L. Lateral Displacement and Collapse of Single-Story Steel Frames in Uncontrolled Fires[J]. Engineering Structures, 2004, 26(5): 593-607.
    [148] Landesmann A, Batista E M, Drummond Alves J L. Implementation of Advanced Analysis Method for Steel-Framed Structures under Fire Conditions[J]. Fire Safety Journal, 2005, 40(4): 339-366.
    [149] Richard Liew J Y, Chen H. Explosion and Fire Analysis of Steel Frames Using Fiber Element Approach[J]. Journal of Structural Engineering, 2004, 130(7): 991-1000.
    [150] Chen H, Richard Liew J Y. Explosion and Fire Analysis of Steel Frames Using Mixed Element Approach[J]. Journal of Engineering Mechanics, 2005, 131(6): 606-616.
    [151] Richard Liew J Y. Survivability of Steel Frame Structures Subject to Blast and Fire[J]. Journal of Constructional Steel Research, 2008, 64(7-8): 854-866.
    [152] Vila Real P M M, Cazeli R, Simo es da Silva L et al. The Effect of Residual Stresses in the Lateral-Torsional Buckling of Steel I-Beams at Elevated Temperature[J]. Journal of Constructional Steel Research, 2004, 60(3-5): 783-793.
    [153] Lopes N, Simo es da Silva L, Vila Real P M M et al. New Proposals for the Design of Steel Beam-Columns in Case of Fire, Including a New Approach for the Lateral-Torsional Buckling[J]. Computers and Structures, 2004, 82(17-19): 1463-1472.
    [154] Vila Real P M M, Lopes N, Sim o es da Silva L et al. Numerical Modelling of Steel Beam-Columns in Case of Fire-Comparisons with Eurocode 3[J]. Fire Safety Journal, 2004, 39(1): 23-39.
    [155] Vila Real P M M, Lopes N, Simo es da Silva L et al. Lateral-Torsional Buckling of Unrestrained Steel Beams under Fire Conditions: Improvement of EC3 Proposal[J]. Computers and Structures, 2004, 82(20-21): 1737-1744.
    [156] Vila Real P M M, Lopes N, Sim o es da Silva L et al. Parametric Analysis of the Lateral-Torsional Buckling Resistance of Steel Beams in Case of Fire[J]. Fire Safety Journal, 2007, 42(6-7): 416-424.
    [157] Ghojel J I, Wong M B. Three-Sided Heating of I-Beams in Composite Construction Exposed to Fire[J]. Journal of Constructional Steel Research, 2005, 61(6): 834-844.
    [158]李国强,王银志,李明菲.高温下墙板约束对轴心受压钢柱承载力的影响[J].钢结构, 2005, 20(3): 85-88.
    [159]李国强,李明菲,王银志.考虑墙板约束影响的轴心受压钢柱抗火设计方法[J].建筑钢结构进展, 2005, 7(1): 41-46.
    [160]王银志,李国强.火灾中考虑整体性的钢梁破坏形态研究[J].结构工程师, 2005, 21(3): 25-29.
    [161]王银志,李国强.火灾中约束钢梁破坏过程分析[J].钢结构, 2005, 20(5): 79-81.
    [162] Yin Y Z, Wang Y C. A Numerical Study of Large Deflection Behaviour of Restrained Steel Beams at Elevated Temperatures[J]. Journal of Constructional Steel Research, 2004, 60(7): 1029-1047.
    [163]殷颖智,王永昌.火灾下钢梁悬索效应分析研究[J].建筑钢结构进展, 2004, 6(3): 1-8.
    [164]李国强,郭士雄.约束钢梁高温下大变形状态分析[J].同济大学学报(自然科学版), 2006, 34(7): 853-858.
    [165]郭士雄.约束钢梁在升温段和降温段的反应及梁柱节点的破坏研究[D].上海:同济大学, 2006.
    [166]李国强,郭士雄.受火约束钢梁在升温段和降温段行为的理论分析(Ⅰ)[J].防灾减灾工程学报, 2006, 26(3): 241-250.
    [167]郭士雄,李国强.受火约束钢梁在升温段和降温段行为的理论分析(Ⅱ)[J].防灾减灾工程学报, 2006, 26(4): 359-368.
    [168] Li G Q, Wang P J, Jiang S C. Non-Linear Finite Element Analysis of Axially Restrained Steel Beams at Elevated Temperatures in a Fire[J]. Journal of Constructional Steel Research, 2007, 63(9): 1175-1183.
    [169]李亮文.不同应力-温度路径下平面钢框架火灾反应的非线性分析[D].上海:上海交通大学, 2005.
    [170]李亮文,赵金城.不同应力-温度路径下平面钢框架火灾反应的非线性分析[J].防灾减灾工程学报, 2005, 25(2): 117-123.
    [171] Huang Z F, Tan K H. Effects of External Bending Moments and Heating Schemes on the Responses of Thermally Restrained Steel Columns[J]. Engineering Structures, 2004, 26(6): 769-780.
    [172] Huang Z F, Tan K H, Ting S K. Heating Rate and Boundary Restraint Effects on Fire Resistance of Steel Columns with Creep[J]. Engineering Structures, 2006, 28(6): 805-817.
    [173] Huang Z F, Tan K H. Fire Resistance of Compartments within a High-Rise Steel Frame: New Sub-Frame and Isolated Member Models[J]. Journal of Constructional Steel Research, 2006, 62(10): 974-986.
    [174] Knobloch M, Fontana M. Strain-Based Approach to Local Buckling of Steel Sections Subjected to Fire[J]. Journal of Constructional Steel Research, 2006, 62(1-2): 44-67.
    [175] Takagi J, Deierlein G G. Strength Design Criteria for Steel Members at Elevated Temperatures[J]. Journal of Constructional Steel Research, 2007, 63(8): 1036-1050.
    [176] Souza Junior V, Creus G J. Simplified Elastoplastic Analysis of General Frames on Fire[J]. Engineering Structures, 2007, 29(4): 511-518.
    [177] Zehfuss J, Hosser D. A Parametric Natural Fire Model for the Structural Fire Design of Multi-Storey Buildings[J]. Fire Safety Journal, 2007, 42(2): 115-126.
    [178] Carden Lyle P, Itani Ahmad M. Performance of an Unprotected Steel Structure Subjected to Repeated Fire at a Firefighter Training Facility[J]. Fire Safety Journal, 2007, 42(2): 81-90.
    [179] Santiago A, Simo es da Silva L, Vila Real P et al. Numerical Study of a Steel Sub-Frame in Fire[J]. Computers and Structures, 2008, 86(15-16): 1619-1632.
    [180] Franssen J M. Calculation of Temperature in Fire-Exposed Bare Steel Structures: Comparison between ENV 1993-1-2 and EN 1993-1-2[J]. Fire Safety Journal, 2006, 41(2): 139-143.
    [181] Franssen J M, Pintea D, Dotreppe J C. Considering the Effects of Localised Fires in the Numerical Analysis of a Building Structure[J]. Fire Safety Journal, 2007, 42(6-7): 473-481.
    [182] Bradford M A, Luu T K, Heidarpour A. Generic Nonlinear Modelling of a Steel Beam in a Frame Sub-Assembly at Elevated Temperatures[J]. Journal of Constructional Steel Research, 2008, 64(7-8): 732-736.
    [183] Ghazi Wakili K, Wullschleger L, Hugi E. Thermal Behaviour of a Steel Door Frame Subjected to the Standard Fire of ISO 834: Measurements, Numerical Simulation and Parameter Study[J]. Fire Safety Journal, 2008, 43(5): 325-333.
    [184] Yang H, Han L H, Wang Y C. Effects of Heating and Loading Histories on Post-Fire Cooling Behaviour of Concrete-Filled Steel Tubular Columns[J]. Journal of Constructional Steel Research, 2008, 64(5): 556-570.
    [185] Wang P J, Li G Q, Guo S X. Effects of the Cooling Phase of a Fire on Steel Structures[J]. Fire Safety Journal, 2008, 43(6): 451-458.
    [186] Wang W Y, Li G Q, Dong Y L. A Practical Approach for Fire Resistance Design of Extended End-Plate Joints[J]. Journal of Constructional Steel Research, 2008, 64(12): 1456-1462.
    [187] Newman G M, Robinson J T, Bailey C G. Fire Safety Design: A New Approach to multi-storey steel framed buildings[M]. Berkshire: The Steel Construction Institute, 2000.
    [188]赵金城,沈祖炎,沈为平.钢框架结构抗火性能的试验研究[J].土木工程学报, 1997, 30(2): 49-55.
    [189] Zhao J C, Shen Z Y. Experimental Studies of the Behaviour of Unprotected Steel Frames in Fire[J]. Journal of Constructional Steel Research, 1999, 50(2): 137-150.
    [190]施丽彦.钢结构防火[J].重庆建筑大学学报, 2002, 24(2): 15-18.
    [191] Armer G S T, Moore D B. Full Scale Testing on complete multi-storey structures[J]. The Structural Engineer, 1994, 72(2): 30-42.
    [192] Wang Y C, Lennon T, Moore D B. The Behaviour of Steel Frames Subject to Fire[J]. Journal of Constructional Steel Research, 1995, 35(3): 291-322.
    [193] Han L H, Zhao X L, Yang Y F et al. Experimental Study and Calculation of Fire Resistance of Concrete-Filled Hollow Steel Columns[J]. Journal of Structural Engineering, 2003, 129(3): 346-356.
    [194] Han L H, Huo J S. Concrete-Filled Hollow Structural Steel Columns after Exposure to ISO-834 Fire Standard[J]. Journal of Structural Engineering, 2003, 129(1): 68-78.
    [195] Lennon T, Moore D. The Natural Fire Safety Concept-Full-Scale Tests at Cardington[J]. Fire Safety Journal, 2003, 38(7): 623-643.
    [196]蒋首超,李国强,李明菲.高温下压型钢板-混凝土粘结强度的试验[J].同济大学学报, 2003, 31(3): 273-276.
    [197]丛术平. H-型钢梁火灾行为的试验研究[D].青岛:青岛建筑工程学院, 2004.
    [198]吕俊利. H-型钢柱火灾行为的试验研究[D].青岛:青岛建筑工程学院, 2004.
    [199]李晓东. H型截面钢框架抗火性能的试验研究及非线性有限元分析[D].西安:西安建筑科技大学, 2006.
    [200]李晓东,董毓利,高立堂等.单层单跨钢框架抗火性能的试验研究[J].建筑结构学报, 2006, 27(6): 39-47.
    [201]丛术平,梁书亭,董毓利.简支钢梁火灾行为的试验研究[J].东南大学学报(自然科学版), 2005, 35增刊(Ⅰ): 66-68.
    [202]李晓东,董毓利,丛术平. H型钢梁(端板连接)火灾行为的试验研究[J].哈尔滨工业大学学报, 2006, 38(6): 978-981.
    [203]李晓东,董毓利,田砾等. H型截面钢柱抗火性能的试验研究[J].工业建筑, 2006, 36(7): 75-78.
    [204]李晓东,董毓利,郭鹏等.一端固定一端铰接H形截面钢柱抗火性能试验研究[J].四川建筑科学研究, 2006, 32(3): 7-10.
    [205]李晓东,董毓利,高立堂等.钢框架边节点抗火性能的试验研究[J].实验力学, 2007, 22(1): 13-19.
    [206] Feng M, Wang Y C. An Experimental Study of Loaded Full-Scale Cold-Formed Thin-Walled Steel Structural Panels under Fire Conditions[J]. Fire Safety Journal, 2005, 40(1): 43-63.
    [207] Feng M, Wang Y C. An Analysis of the Structural Behaviour of Axially Loaded Full-ScaleCold-Formed Thin-Walled Steel Structural Panels Tested under Fire Conditions[J]. Thin-Walled Structures, 2005, 43(2): 291-332.
    [208] Feng M, Wang Y C, Davies J M. A Numerical Imperfection Sensitivity Study of Cold-Formed Thin-Walled Tubular Steel Columns at Uniform Elevated Temperatures[J]. Thin-Walled Structures, 2004, 42(4): 533-555.
    [209] Mesquita L M R, Piloto P A G, Vaz M A P, et al. Experimental and Numerical Research on the Critical Temperature of Laterally Unrestrained Steel I Beams[J]. Journal of Constructional Steel Research, 2005, 61(10): 1435-1446.
    [210] Li G Q, Guo S X. Experiment on Restrained Steel Beams Subjected to Heating and Cooling[J]. Journal of Constructional Steel Research, 2008, 64(3): 268-274.
    [211] Liu T C H, Fahad M K, Davies J M. Experimental Investigation of Behaviour of Axially Restrained Steel Beams in Fire[J]. Journal of Constructional Steel Research, 2002, 58(9): 1211-1230.
    [212] Gardner L, Baddoo N R. Fire Testing and Design of Stainless Steel Structures[J]. Journal of Constructional Steel Research, 2006, 62(6): 532-543.
    [213] Gardner L, Ng K T. Temperature Development in Structural Stainless Steel Sections Exposed to Fire[J]. Fire Safety Journal, 2006, 41(3): 185-203.
    [214] Yang K C, Lee H H, Chan O. Performance of Steel H Columns Loaded under Uniform Temperature[J]. Journal of Constructional Steel Research, 2006, 62(3): 262-270.
    [215] Yang K C, Lee H H, Chan O. Experimental Study of Fire-Resistant Steel H-Columns at Elevated Temperature[J]. Journal of Constructional Steel Research, 2006, 62(6): 544-553.
    [216] Yang K C, Chen S J, Lin C C et al. Experimental Study on Local Buckling of Fire-Resisting Steel Columns under Fire Load[J]. Journal of Constructional Steel Research, 2005, 61(4): 553-565.
    [217] Wald F, Simo es da Silva L, Moore D B, et al. Experimental Behavior of a Steel Structure under Natural Fire[J]. Fire Safety Journal, 2006, 41(7): 509-522.
    [218]沈俊昶,杨才福,马鸣图等.耐火钢综合性能及构件抗火试验分析[J].钢结构, 2006, 21(4): 87-91.
    [219] Tan K H, Toh W S, Huang Z F et al. Structural Responses of Restrained Steel Columns at Elevated Temperatures. Part1: Experiments[J]. Engineering Structures, 2007, 29(8): 1641-1652.
    [220] Huang Z F, Tan K H. Structural Responses of Restrained Steel Columns at Elevated Temperatures. Part2: FE Simulation with Focus on Experimental Secondary Effects[J].Engineering Structures, 2007, 29(9): 2036-2047.
    [221] Dharma R B, Tan K H. Rotational Capacity of Steel I-Beams under Fire Conditions Part I: Experimental Study[J]. Engineering Structures, 2007, 29(9): 2391-2402.
    [222] Dharma R B, Tan K H. Rotational Capacity of Steel I-Beams under Fire Conditions Part II: Numerical Simulations[J]. Engineering Structures, 2007, 29(9): 2403-2418.
    [223]董石麟,钱若军.空间网格结构分析理论与计算方法[M].北京:中国建筑工业出版社, 2000.
    [224]刘正兴,孙雁,王国庆.计算固体力学[M].上海:上海交通大学出版社, 2000.
    [225]朱慈勉,汪榴,江利仁.计算结构力学[M].上海:上海科学技术出版社, 1997.
    [226]龚景海,邱国志.空间结构计算机辅助设计[M].北京:中国建筑工业出版社, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700