用户名: 密码: 验证码:
基于过程数据的建模方法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了保证电站的安全经济运行,需要获得一些重要热工参数的信息。由于技术和资金的限制,只利用硬件传感器很难实现这些参数的可靠、准确和快速测量。基于数据的软测量建模方法是解决此问题的途径之一,而且近年来电站信息化的发展使过程数据的获取变得越来越容易,这为构建数据模型提供了良好的研究平台。数据软测量建模已经成为热工过程检测和控制领域的一个新的研究热点。
     一般构建模型采用的数据来源主要有两种:对过程进行试验设计而得到的试验数据和从历史数据库中获得的历史运行数据。两种数据的工况分布、稳态状况、均匀性、相关性以及样本量等特性均不相同。本文以基于过程数据的建模方法为研究主题,在对数据进行分析和预处理的基础上,做了以下工作:
     (1)稳态工况检测
     针对历史运行数据工况的稳态和动态交替特性,提出了一种基于分段曲线拟合的稳态工况检测方法。利用分段曲线将离散数据样本拟合成连续信号,并求得了各样本点对应的一阶导数和二阶导数值,同时滤除了高阶噪声。根据有关阈值判定准则,得到了数据样本的变化趋势和稳态信息,最终判定出稳态工况。以某600MW电站机组给水流量系统的稳态工况检测为例,验证了该方法的有效性。
     (2)基于内部LSSVM的非线性PLS建模方法
     针对热工试验数据工况特性,提出了一种新的非线性偏最小二乘(Partial Least Squares, PLS)建模方法。该方法保留了外部线性PLS框架来提取输入输出主成分特征向量,同时消除了变量间的相关性,内部采用最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM)来描述主成分之间的非线性关系,而且基于误差对权值进行更新,提高了模型的预测精度。利用pH中和过程的Benchmark模型验证了本方法的有效性,并基于某电站燃煤锅炉的实际热态试验数据建立了NOx排放模型,得到了较高的预测精度。
     (3)基于LSSVM集成的建模方法
     针对历史运行数据局部工况分布和大样本的特点,提出了一种基于LSSVM集成的建模方法。在模糊均值聚类(Fuzzy C-Means, FCM)的基础上,提出了软聚类(Soft FCM, SFCM)算法,并基于此方法把原始样本划分成多个相互重叠的子空间;在各子空间上建立了个体LSSVM模型;基于选择性集成思想,利用PLS作为聚合策略来捕获差异度较大的个体信息得到模型输出。选取某电站660MW机组实际运行数据,建立了NOx排放的软测量模型,并与其他建模方法对比,结果表明提出的方法降低了模型的复杂度而且提高了预测精度。
     (4) LSSVM集成模型的更新方法
     针对过程特性的变化,提出了LSSVM集成模型的更新方法。将过程特性变化分为运行工况拓展和工况变迁,并提出了基于样本追加和样本替换的更新策略,在此基础上,利用增量式LSSVM算法来实现集成模型的更新,而且研究了模型的更新时序。基于sinc函数的数值仿真对更新策略的有效性进行了验证;结合NOx排放的集成模型,对更新前后的预测效果进行了对比,结果表明过程特性发生变化时更新后的模型仍能保持较高的预测精度。
To ensure the secure and economical operation of the power plant, some important variables are required to be measured accurately and reliably. However, it is very difficult to achieve such measurements only by using hardware-based sensors owning to economic and technical limitation. The data-driven soft sensor has been used as one of the approaches to overcome the problem. Especially the development of informatization of power plants, which makes it easier to obtain the operation data, has provided a favorable research platform for developing data-driven models. The data-driven modeling technique has become one of research focuses in the thermal process field.
     Commonly there mainly exist two separate sources of data samples for the model development:experimental data samples which are gathered through specially designed experiment and plant data or historical data samples which are captured from historical normal-operation database. The two types of data samples have different characteristics in terms of the distribution, steady condition, uniformity, correlation, samples quantity and etc. Based on the analysis of data characteristics and data preprocess, the modeling methods are studied mainly on the following aspects:
     (1) Steady state detection
     A steady-state detecting method is proposed based on piecewise curve fitting considering the operation characteristics of historical data. Discrete sampling points are transformed to continuous signals utilizing piecewise curve fitting method. Moreover, the first and second order derivative sequences are obtained, and meanwhile, high-order noise is also suppressed. The process trend and steady information are extracted based on threshold criteria. An application is explored using the operation data of feed-water flow system from a600MW utility to validate the effectiveness of the proposed approach.
     (2) Nonlinear PLS model integrated with inner LSSVM function
     Considering the characteristics of the experiment data, this dissertation presents a new nonlinear partial least squares modeling method, in which outer linear partial least squares (PLS) framework is applied to extract the input and output components and eliminate the correlation. Meanwhile, least squares support vector machines (LSSVM) is deployed to describe the inner relationship between the components. Moreover, the weight-updating procedure is incorporated to enhance the accuracy of prediction. The model validity is examined based on a pH neutralization benchmark process. Then the proposed method is utilized to predict NOx emission using the experiment data of a coal-fired boiler and high accuracy is obtained.
     (3) LSSVM-based ensemble modeling method
     A new LSSVM-based ensemble algorithm is proposed to tackle the problem of historical operation data being concentrated in local regions and of large sample size. Based on traditional fuzzy c-means cluster (FCM) algorithm, a soft cluster (SFCM) method is proposed to divide the initial data into several overlapping subspaces, in which the LSSVM learners are trained respectively. According to the selective ensemble, PLS is deployed as the combiner to obtain the final output with capturing the diversity. The proposed method is applied to develop the NOx model based on the operating data selected from a660MW utility coal-fired boiler, and the comparison results reveal that the time complexity is reduced and the generalization is enhanced.
     (4) Updating strategy of LSSVM-based ensemble
     Aiming at the time-varying characteristics of industrial process, an updating strategy of LSSVM-based ensemble method is presented. Samples addition and replacement methods are proposed to tackle the extension and transition of the operation region, based on which, incremental LSSVM is employed to accomplish the update of the ensemble model. Meanwhile, the updating time and frequency are also studied. The updating strategy is validated based on the sinc function simulation. The NOx ensemble models with and without update are compared, and the results reveal that the prediction accuracy of the model with update still remains high even if the process characteristics have varied.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359
    [2]中电联.2012年全国电力工业统计快报[EB/OL]. http://www.cec.org.cn
    [3]冯兆兴.高挥发分煤种电站锅炉高效低NOx排放系统研究[D].保定:华北电力大学(保定),2007
    [4]环境保护部,国家质量监督检验检疫总局.火电厂大气污染物排放标准[S].2011
    [5]Sarkar P., Gupta S. K. Dynamic simulation of propylene polymerization in continuous flow stirred tank reactors[J]. Polymer Engineering & Science,1993, 33(6):368-374
    [6]Astrom K. J., Eklund K. A simplified non-linear model of a drum boiler-turbine unit[J]. International Journal of Control,1972,16(1):145-169
    [7]田亮,曾德良,刘吉臻,等.简化的330MW机组非线性动态模型[J].中国电机工程学报,2004,24(8):180-184
    [8]Vapnik V. N. Statistical learning theory[M]. New York:John Wiley,1998
    [9]Vapnik V. N. The nature of statistical learning theory[M]. New York: Springer-Verlag,2000
    [10]Wold S. Cross-validatory estimation of the number of components in factor and principal components models[J]. Technometrics,1978,20(4):397-405
    [11]Eastment H. T., Krzanowski W. J. Cross-validatory choice of the number of components from a principal component analysis[J]. Technometrics,1982,24(1): 73-77
    [12]Pearson K. On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine Series 6,1901,2(11):559-572
    [13]Hotelling H. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology,1933,24(6):417-441
    [14]Geladi P., Kowalski B. R. Partial least-squares regression:a tutorial[J]. Analytica Chimica Acta,1986,185:1-17
    [15]Wold S., Sjostrom M., Eriksson L. PLS-regression:a basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems,2001, 58(2):109-130
    [16]Wold S., Trygg J., Berglund A., et al. Some recent developments in PLS modeling[J]. Chemometrics and Intelligent Laboratory Systems,2001,58(2): 131-150
    [17]Hoskuldsson A. PLS regression methods[J]. Journal of Chemometrics,1988, 2(3):211-228
    [18]Jong S. D. PLS fits closer than PCR[J]. Journal of Chemometrics,1993,7(6): 551-557
    [19]Rummelhart D. E., Hinton G. E., Williams R. J. Learning representations by back-propagating errors[J]. Nature,1986,323(9):533-535
    [20]Suykens J. A. K., Vandewalle J. Least squares support vector machine classifiers [J]. Neural processing letters,1999,9(3):293-300
    [21]Suykens J. A. K., De Brabanter J., Lukas L., et al. Weighted least squares support vector machines:robustness and sparse approximation[J]. Neurocomputing,2002,48(1):85-105
    [22]Keerthi S. S., Lin C. Asymptotic behaviors of support vector machines with gaussian kernel [J]. Neural Computation,2003,15(7):1667-1689
    [23]Hansen L. K., Salamon P. Neural network ensembles[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(10):993-1001
    [24]Dietterich T. Ensemble methods in machine learning[J]. Multiple Classifier Systems,2000:1-15
    [25]Brosilow C., Tong M. Inferential control of processes:Part Ⅱ. The structure and dynamics of inferential control systems[J]. AIChE Journal,1978,24(3):492-500
    [26]McAvoy T. J. Contemplative stance for chemical process control:An IFAC report[J]. Automatica,1992,28(2):441-442
    [27]Gonzalez G. D. Soft sensors for processing plants[A]. Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials[C]. IEEE,1999,1:59-69
    [28]Dote Y., Ovaska S. J. Industrial applications of soft computing:a review[J]. Proceedings of the IEEE,2001,89(9):1243-1265
    [29]Fortuna L., Graziani S., Rizzo A., et al. Soft sensors for monitoring and control of industrial processes[M]. London:Springer-Verlag,2007
    [30]Kano M., Nakagawa Y. Data-based process monitoring, process control, and quality improvement:recent developments and applications in steel industry[J]. Computers & Chemical Engineering,2008,32(1-2):12-24
    [31]Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering,2009,33(4):795-814
    [32]Sliskovic D., Grbic R., Hocenski Z. Methods for plant data-based process modeling in soft-sensor development[J]. Automatika,2012,52(4):306-318
    [33]Kano M., Fujiwara K. Virtual sensing technology in process industries:trends and challenges revealed by recent industrial applications[J]. Journal of Chemical Engineering of Japan,2013,46(1):1-17
    [34]金以慧,王诗宓.过程控制的发展与展望[J].控制理论与应用,1997,14(2):145-151
    [35]周平,岳恒,赵大勇,等.基于案例推理的软测量方法及在磨矿过程中的应用[J].控制与决策,2006,21(6):646-650
    [36]耿增显,柴天佑.基于LS-SVM的浮选过程工艺技术指标软测量[J].系统仿真学报,2008,20(23):6321-6324
    [37]姜慧研,王晓丹,周晓杰,等.基于SVR的回转窑烧成带温度软测量方法的研究[J].系统仿真学报,2008,20(11):2951-2955
    [38]汤健,郑秀萍,赵立杰,等.基于频域特征提取与信息融合的磨机负荷软测量[J].仪器仪表学报,2010,31(10):2161-2167
    [39]李海波,柴天佑,岳恒.浮选工艺指标KPCA-ELM软测量模型及应用[J].化工学报,2012,63(9):2892-2898
    [40]Zhang Y., Zhou H., Qin S. J., et al. Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares[J]. IEEE Transactions on Industrial Informatics,2010,6(1):3-10
    [41]Qiao J., Chai T. Soft measurement model and its application in raw meal calcination process [J]. Journal of Process Control,2012,22(1):344-351
    [42]Tang J., Chai T., Yu W., et al. Feature extraction and selection based on vibration spectrum with application to estimating the load parameters of ball mill in grinding process [J]. Control Engineering Practice,2012,20(10):991-1004
    [43]贾润达,毛志忠,常玉清,等.钴湿法冶炼萃取过程中的组分含量软测量[J].控制与决策,2009,24(4):632-636
    [44]贾润达,毛志忠,常玉清.基于非线性偏鲁棒M-回归的萃余液pH值软测量[J].自动化学报,2009,35(5):583-587
    [45]田慧欣,毛志忠.基于Bagging的多模型钢水温度预报[J].控制与决策,2009,24(5):687-691
    [46]胡广浩,毛志忠,何大阔.基于矢量基学习的浸出过程在线建模[J].控制与决策,2011,26(4):629-632
    [47]Hu G., Mao Z., He D., et al. Hybrid modeling for the prediction of leaching rate in leaching process based on negative correlation learning bagging ensemble algorithm[J]. Computers & Chemical Engineering,2011,35(12):2611-2617
    [48]Lv W., Mao Z., Yuan P., et al. Multi-kernel learnt partial linear regularization network and its application to predict the liquid steel temperature in ladle furnace[J]. Knowledge-Based Systems,2012,36:280-287
    [49]刘瑞兰,苏宏业,褚健.模糊神经网络的混合学习算法及其软测量建模[J].系统仿真学报,2005,17(12):2878-2881
    [50]张英,苏宏业,褚健.基于模糊最小二乘支持向量机的软测量建模[J].控制与决策,2005,20(6):621-624
    [51]张英,苏宏业,褚健.基于ISVM的软测量建模及其在PX生产中的应用研究[J].控制与决策,2005,20(10):1102-1106
    [52]李修亮,苏宏业,褚健.基于在线聚类的多模型软测量建模方法[J].化工学报,2007,58(11):2834-2839
    [53]Mu S., Zeng Y., Liu R., et al. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process[J]. Journal of Process Control,2006,16(6):557-566
    [54]Fu Y., Su H., Zhang Y., et al. Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process [J]. Chinese Journal of Chemical Engineering,2008,16(5):746-751
    [55]刘毅,王海清,李平.局部最小二乘支持向量机回归在线建模方法及其在间歇过程的应用[J].化工学报,2007,58(11):2846-2851
    [56]刘毅,王海清,李平.关键核网络及其在发酵过程在线建模中的应用[J].化工学报,2008,59(5):1194-1199
    [57]刘毅,陈坤,王海清,等.选择性递推LSSVR及其在过程建模中的应用[J].高校化学工程学报,2008,22(6):1043-1048
    [58]刘毅,王海清,李平.用于发酵过程在线建模的自适应局部最小二乘支持向量机回归方法[J].化工学报,2008,59(8):2052-2057
    [59]刘毅,张锡成,朱可辉,等.自适应递推核学习及在橡胶混炼过程在线质量预报的工业应用[J].控制理论与应用,2010,27(5):609-614
    [60]Liu Y., Hu N., Wang H., et al. Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size[J]. Industrial & Engineering Chemistry Research, 2009,48(12):5731-5741
    [61]Liu Y., Gao Z., Li P., et al. Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes[J]. Industrial & Engineering Chemistry Research,2012,51(11):4313-4327
    [62]陈爱军,宋执环,李平.基于递推最小二乘支持向量回归估计的建模与预报[J].信息与控制,2005,34(6):652-655
    [63]陈爱军,宋执环,李平.基于矢量基学习的最小二乘支持向量机建模[J].控制理论与应用,2007,24(1):1-5
    [64]葛志强,刘毅,宋执环,等.一种基于局部模型的非线性多工况过程监测方法[J].自动化学报,2008,34(7):792-797
    [65]葛志强,宋执环.一种新的多工况过程在线监测方法[J].化工学报,2008,59(1):135-141
    [66]Ge Z., Song Z. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach[J]. Control Engineering Practice,2008, 16(12):1427-1437
    [67]Ge Z., Song Z. A comparative study of just-in-time-learning based methods for online soft sensor modeling[J]. Chemometrics and Intelligent Laboratory Systems,2010,104(2):306-317
    [68]Ge Z., Gao F., Song Z. Batch process monitoring based on support vector data description method[J]. Journal of Process Control,2011,21(6):949-959
    [69]Ge Z., Chen T., Song Z. Quality prediction for polypropylene production process based on CLGPR model[J]. Control Engineering Practice,2011,19(5):423-432
    [70]Chen K., Ji J., Wang H., et al. Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes[J]. Chemical Engineering Research and Design,2011,89(10):2117-2124
    [71]Zhu Z., Song Z., Palazoglu A. Process pattern construction and multi-mode monitoring[J]. Journal of Process Control,2012,22(1):247-262
    [72]许光,俞欢军,陶少辉,等.与机理杂交的支持向量机为发酵过程建模[J].化工学报,2005,56(4):659-664
    [73]成忠,陈德钊.WBRPLSR方法及其在化工软测量中的应用[J].化工学报,2005,56(2):291-295
    [74]陶少辉,陈德钊,胡望明.LSSVM过程建模中超参数选取的梯度优化算法[J].化工学报,2007,58(6):1514-1517
    [75]成忠,诸爱士,陈德钊.组合偏最小二乘回归方法在近红外光谱定量分析中的应用[J].分析化学,2007,35(7):978-982
    [76]曹劲,王桂增.基于鲁棒自适应RBF网络的聚丙烯熔融指数预报[J].控制 与决策,1999,14(4):339-343
    [77]李春富,叶昊,王桂增.基于多向PLS方法的间歇过程质量预测[J].系统仿真学报,2004,16(6):1168-1170
    [78]李春富,王桂增,叶昊.基于操作域划分的聚丙烯熔融指数软测量[J].化工学报,2005,56(10):1915-1921
    [79]王旭东,邵惠鹤.基于神经网络的通用软测量技术[J].自动化学报,1998,24(5):128-132
    [80]阎威武,朱宏栋,邵惠鹤.基于最小二乘支持向量机的软测量建模[J].系统仿真学报,2003,15(10):1494-1496
    [81]罗健旭,邵惠鹤.应用多神经网络建立动态软测量模型[J].化工学报,2003,54(12):1770-1773
    [82]阎威武,邵惠鹤.支持向量机和最小二乘支持向量机的比较及应用研究[J].控制与决策,2003,18(3):358-360
    [83]熊志化,张卫庆,赵瑜,等.基于混合高斯过程的多模型热力参数测量软仪表[J].中国电机工程学报,2005,25(7):30-33
    [84]Zhang X., Yan W., Shao H. Nonlinear multivariate quality estimation and prediction based on kernel partial least squares [J]. Industrial & Engineering Chemistry Research,2008,47(4):1120-1131
    [85]冯瑞,沈伟,张艳珠,等.基于F-SVMs的多模型建模方法[J].控制与决策,2003,18(6):646-650
    [86]王锡淮,李少远,席裕庚.基于自适应模糊聚类的神经网络软测量建模方法[J].控制与决策,2004,19(8):951-953
    [87]王锡淮,李少远,席裕庚.加热炉钢坯温度软测量模型研究[J].自动化学报,2004,30(6):928-932
    [88]颜学峰,余娟,钱锋.基于自适应偏最小二乘回归的初顶石脑油干点软测量[J].化工学报,2005,56(8):1511-1515
    [89]颜学峰.基于径基函数-加权偏最小二乘回归的干点软测量[J].自动化学报,2007,33(2):193-196
    [90]吴国庆,颜学峰.基于ART-SVR的过程建模及在干点软测量中的应用[J].化工学报,2008,59(4):927-933
    [91]Yan X., Zhao W. A novel select-best and prepotency evolution algorithm and its application to develop industrial oxidation reaction macrokinetic model[J]. Computers & Chemical Engineering,2006,30(5):807-815
    [92]Yan X. Data mining macrokinetic approach based on ANN and its application to model industrial oxidation of p-xylene to terephthalic acid[J]. Chemical Engineering Science,2007,62(10):2641-2651
    [93]Cui W., Yan X. Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR[J]. Chemometrics and Intelligent Laboratory Systems,2009,98(2): 130-135
    [94]Yan X. Hybrid artificial neural network based on BP-PLSR and its application in development of soft sensors[J]. Chemometrics and Intelligent Laboratory Systems,2010,103(2):152-159
    [95]王永吉,杨慧中.基于K近邻的支持向量机多模型建模[J].江南大学学报:自然科学版,2010,9(1):7-10
    [96]杨慧中,邓玉俊.基于自适应增强算法的支持向量机组合模型[J].控制与决策,2011,26(2):316-319
    [97]陈定三,杨慧中.基于局部重构融合流形聚类的多模型软测量建模[J].化工学报,2011,62(8):2281-2286
    [98]吕业,邓玉俊,杨慧中.基于类别特征提取的组合支持向量机模型[J].化工学报,2011,62(8):2164-2169
    [99]张文清,傅雨佳,杨慧中.基于改进聚类和加权bagging的多模型软测量建模[J].化工学报,2012,63(9):2697-2702
    [100]Zhang W., Niu P., Li G., et al. Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm[J]. Knowledge-Based Systems,2013,39:34-44
    [101]Li G., Niu P., Liu C., et al. Enhanced combination modeling method for combustion efficiency in coal-fired boilers[J]. Applied Soft Computing,2012, 12(10):3132-3140
    [102]牛培峰,肖兴军,李国强,等.基于万有引力搜索算法的电厂锅炉NOx排放模型的参数优化[J].动力工程学报,2013,33(2):100-106
    [103]周昊,朱洪波,等.大型四角切圆燃烧锅炉NOx排放特性的神经网络模型[J].中国电机工程学报,2002,22(1):33-37
    [104]周昊,朱洪波,等.基于人工神经网络的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2002,22(6):96-100
    [105]王春林,周昊,周樟华,等.基于支持向量机的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2005,25(20):72-76
    [106]王春林,周昊,李国能,等.基于遗传算法和支持向量机的低NOx燃烧优 化[J].中国电机工程学报,2007,27(11):40-44
    [107]王春林,周昊,李国能,等.基于支持向量机与遗传算法的灰熔点预测[J].中国电机工程学报,2007,27(8):11-15
    [108]郑立刚,周昊,王春林,等.变尺度混沌蚁群算法在NOx排放优化中的应用[J].中国电机工程学报,2008,28(11):18-23
    [109]Zhou H., Cen K., Mao J. Combining neural network and genetic algorithms to optimize low NOx pulverized coal combustion[J]. Fuel,2001,80(15):2163-2169
    [110]Zhou H., Qian X., Cen K., et al. Optimizing pulverized coal combustion performance based on ANN and GA[J]. Fuel Processing Technology,2004, 85(2-3):113-124
    [111]Zhou H., Cen K., Fan J. Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks[J]. Energy,2004,29(1):167-183
    [112]Wu F., Zhou H., Ren T., et al. Combining support vector regression and cellular genetic algorithm for multi-objective optimization of coal-fired utility boilers[J]. Fuel,2009,88(10):1864-1870
    [113]Zhou H., Jia P., Li G., et al. Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization[J]. Engineering Applications of Artificial Intelligence,2012,25(1): 147-158
    [114]Zhou H., Zheng L., Cen K. Computational intelligence approach for NOx emissions minimization in a coal-fired utility boiler[J]. Energy Conversion and Management,2010,51(3):580-586
    [115]王培红,李磊磊,陈强,等.人工智能技术在电站锅炉燃烧优化中的应用研究[J].中国电机工程学报,2004,24(4):184-188
    [116]王培红,李磊磊,陈强,等.电站锅炉NOx排放与效率的响应特性模型[J].动力工程,2004,24(2):254-259
    [117]赵欢,王培红,陆璐.电站锅炉热效率与NOx排放响应特性建模方法[J].中国电机工程学报,2008,28(32):96-100
    [118]赵欢,王培红,钱瑾,等.基于模糊C-均值聚类的锅炉监控参数基准值建模[J].中国电机工程学报,2011,31(32):16-22
    [119]毕小龙,王洪跃,司风琪,等.基于趋势提取的稳态检测方法[J].动力工程,2006,26(4):503-506
    [120]司风琪,周建新,仇晓智,等.在线监测燃煤锅炉NOx排放的自适应支持 向量机模型[J].动力工程,2008,28(6):896-900
    [121]Si F., Romero C. E., Yao Z., et al. A new approach for function approximation in boiler combustion optimization based on modified structural AOSVR[J]. Expert Systems with Applications,2009,36(4):8691-8704
    [122]Si F., Romero C. E., Yao Z., et al. Optimization of coal-fired boiler SCRs based on modified support vector machine models and genetic algorithms[J]. Fuel, 2009,88(5)
    [123]张毅,丁艳军,张鸿泉,等.电站锅炉运行性能综合预测模型[J].动力工程,2006,26(1):84-88
    [124]孔亮,丁艳军,张毅,等.基于Kriging方法的电站锅炉NOx排放自适应建模[J].清华大学学报:自然科学版,2008,48(5):848-851
    [125]孔亮,丁艳军,张毅,等.结合稳态模型的非线性动态建模方法及应用[J].中国电机工程学报,2008,28(29):93-98
    [126]赵征,刘伟,刘吉臻,等.基于信息融合的锅炉燃烧优化技术[J].动力工程,2009,29(1):53-56
    [127]顾燕萍,赵文杰,吴占松.基于最小二乘支持向量机的电站锅炉燃烧优化[J].中国电机工程学报,2010,30(17):91-97
    [128]顾燕萍,赵文杰,吴占松.采用最优MVs决策模型的电站锅炉燃烧优化[J].中国电机工程学报,2012,32(2):39-44
    [129]Gu Y., Zhao W., Wu Z. Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems[J]. Journal of Process Control,2011,21(7):1040-1048
    [130]田亮,常太华,曾德良,等.基于典型样本数据融合方法的锅炉制粉系统故障诊断[J].热能动力工程,2005,20(2):163-166
    [131]赵征,曾德良,田亮,等.基于数据融合的氧量软测量研究[J].中国电机工程学报,2005,25(7):7-12
    [132]田亮,刘鑫屏,赵征,等.一种新的热量信号构造方法及实验研究[J].动力工程,2006,26(4):499-502
    [133]赵征,刘吉臻,田亮.基于数据融合的燃料量软测量及煤质发热量在线校正[J].热能动力工程,2007,22(1):42-45
    [134]王勇,刘吉臻,刘向杰,等.基于最小二乘支持向量机的软测量建模及在电厂烟气含氧量测量中的应用[J].微计算机信息,2006,22(28):241-243
    [135]邱天,刘吉臻,牛玉广.电站锅炉主元分析建模中的数据选取[J].中国电机工程学报,2009,29(8):87-91
    [136]刘吉臻,朱红路,常太华,等.基于最小均方自适应滤波器的热工过程建模方法[J].中国电机工程学报,2010,30(5):107-112
    [137]刘吉臻,曲亚鑫,田亮,等.基于偏最小二乘回归的锅炉再热汽温建模[J].中国电机工程学报,2011,31(11):99-105
    [138]刘吉臻,吕游,杨婷婷.基于变量选择的锅炉NOx排放的最小二乘支持向量机建模[J].中国电机工程学报,2012,32(20):102-107
    [139]Lv Y., Liu J., Qu Y. A new robust least squares support vector machine for regression with outliers[J]. Procedia Engineering,2011,15:1355-1360
    [140]Lv Y., Liu J., Yang T., et al. Comparison of artificial neuro network, least squares support vector machine and partial least squares modelling on NOx Emission[A]. Asia-Pacific Power and Energy Engineering Conference (APPEEC)[C]. IEEE,2012:1-4
    [141]Lv Y., Liu J., Yang T. Nonlinear PLS integrated with error-based LSSVM and its application to NOx modeling[J]. Industrial & Engineering Chemistry Research,2012,51(49):16092-16100
    [142]Lv Y., Liu J., Yang T., et al. A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler[J]. Energy, 2013,55:319-329
    [143]付忠广,王丽平,戈志华,等.采用主成分分析法综合评价电站机组的运行状态[J].动力工程,2008,28(4):548-551
    [144]蹇浪,付忠广,刘刚,等.电站机组数据仓库的建设及其关键技术[J].动力工程,2008,28(4):552-554
    [145]满若岩,付忠广.基于模糊综合评判的火电厂状态评估[J].中国电机工程学报,2009,29(5):5-10
    [146]靳涛,付忠广,刘刚,等.反向建模方法在火电厂关键参数建模中的应用[J].动力工程,2009,29(11):1008-1012
    [147]付忠广,靳涛,周丽君,等.复杂系统反向建模方法及偏最小二乘法建模应用研究[J].中国电机工程学报,2009,29(2):25-29
    [148]韩璞,乔弘,王东风,等.火电厂热工参数软测量技术的发展和现状[J].仪器仪表学报,2007,28(6):1139-1146
    [149]韩璞,王东风,等.基于神经网络的火电厂烟气含氧量软测量[J].信息与控制,2001,30(2):189-193
    [150]王东风,韩璞.基于RBF神经网络的球磨机负荷软测量[J].仪器仪表学报,2002,23(z1):311-312,317
    [151]Reinschmidt K. F. Neural networks:next step for simulation and control[J]. Power Engineering,1991,95(11):41-46
    [152]Irwin G., Brown M., Hogg B., et al. Neural network modeling of a 200MW boiler system[J]. IEE Proceeding Control Theory Application,1995,142(6): 529-536.
    [153]Booth R. C., Roland W. B. Neural network-based combustion optimization reduces NOx emissions while improving performance [A]. IEEE Industry Applications on Dynamic Modeling Control Applications for Industry Workshop[C]. IEEE,1998:1-6
    [154]Kalogirou S. A. Applications of artificial neural-networks for energy systems[J]. Applied Energy,2000,67(1-2):17-35
    [155]Kalogirou S. A. Artificial intelligence for the modeling and control of combustion processes:a review[J]. Progress in Energy and Combustion Science, 2003,29(6):515-566
    [156]王东风,宋之平.基于神经元网络的制粉系统球磨机负荷软测量[J].中国电机工程学报,2001,21(12):97-99
    [157]卢勇,徐向东.烟气含氧量软测量新方法研究[J].热能动力工程,2002,17(6):614-617
    [158]Yao H. M., Vuthaluru H. B., Tade M. O., et al. Artificial neural network-based prediction of hydrogen content of coal in power station boilers[J]. Fuel,2005, 84(12-13):1535-1542
    [159]Romero C. E., Shan J. Development of an artificial neural network-based software for prediction of power plant canal water discharge temperature [J]. Expert Systems with Applications,2005,29(4):831-838
    [160]Si F., Romero C. E., Yao Z., et al. Inferential sensor for on-line monitoring of ammonium bisulfate formation temperature in coal-fired power plants [J]. Fuel Processing Technology,2009,90(1):56-66
    [161]陈敏生,刘定平.电站锅炉飞灰含碳量的优化控制[J].动力工程,2005,25(4):545-549
    [162]陈敏生,刘定平.基于LS-SVM和SPEA2的电站锅炉燃烧多目标优化研究[J].华东电力,2006,34(3):50-54
    [163]Smrekar J., Assadi M., Fast M., et al. Development of artificial neural network model for a coal-fired boiler using real plant data[J]. Energy,2009,34(2): 144-152
    [164]Smrekar J., Pandit D., Fast M., et al. Prediction of power output of a coal-fired power plant by artificial neural network[J]. Neural Computing & Applications, 2010,19(5):725-740
    [165]Smrekar J., Potocnik P., Senegacnik A. Multi-step-ahead prediction of NOx emissions for a coal-based boiler[J]. Applied Energy,2013,106:89-99
    [166]秦宇飞,白焰,钟艳辉,等.基于偏最小二乘回归法的电站锅炉炉膛出口烟温调整试验研究[J].动力工程学报,2010(2):91-96
    [167]Kljajic M., Gvozdenac D., Vukmirovic S. Use of neural networks for modeling and predicting boiler's operating performance[J]. Energy,2012,45(1):304-311
    [168]Bekat T., Erdogan M., Inal F., et al. Prediction of the bottom ash formed in a coal-fired power plant using artificial neural networks[J]. Energy,2012
    [169]Sliskovic D., Grbic R., Nyarko E. K. Data preprocessing in data based process modeling[A]. International Conference on Intelligent Control Systems and Signal Processing[J]. IFAC,2009,2:559-565
    [170]Pearson R. K. Exploring process data[J]. Journal of Process Control,2001, 11(2):179-194
    [171]Hawkins D. M. Identification of outliers[M]. London:Chapman and Hall, 1980
    [172]Ester M., Kriegel H., Sander J., et al. A density-based algorithm for discovering clusters in large spatial databases with noise [A]. Knowledge Discovery and Data Mining[C].1996,96:226-231
    [173]Ng R. T., Han J. Efficient and effective clustering methods for spatial data mining[A]. International Conference on Very Large Data Bases (VLDB) [C].1994:144-155
    [174]Sheikholeslami G., Chatterjee S., Zhang A. WaveCluster:a multi-resolution clustering approach for very large spatial databases [A]. International Conference on Very Large Data Bases (VLDB)[C].1998:428-439
    [175]Knox E. M., Ng R. T. Algorithms for mining distance-based outliers in large datasets[A]. International Conference on Very Large Data Bases (VLDB) [C].1998:392-403
    [176]Breunig M. M., Kriegel H., Ng R. T., et al. LOF:identifying density-based local outliers[A]. International Conference on Management of Data [C]. ACM, 2000:93-104
    [177]Johnson R. A., Wichern D. W. Applied multivariate statistical analysis[M]. New Jersey:Prentice Hall,2002
    [178]Warne K., Prasad G., Rezvani S., et al. Statistical and computational intelligence techniques for inferential model development:a comparative evaluation and a novel proposition for fusion[J]. Engineering Applications of Artificial Intelligence,2004,17(8):871-885
    [179]吴展,蔡萍.一种改进的动态过程测量数据预处理方法[J].传感技术学报,2010,23(4):558-561
    [180]冉鹏.基于动态数据挖掘的电站热力系统运行优化方法研究[D].北京:华北电力大学,2012
    [181]杨婷婷.基于数据的电站节能优化控制研究[D].北京:华北电力大学,2010
    [182]http://en.wikipedia.org/wiki/Steady_state[Z].2013
    [183]ASME. ASME PRC 4-2008 fired steam generators performance test codes[S].2008
    [184]中华人民共和国机械电子工业部.电站锅炉性能试验规程[S].1988
    [185]Narasimhan S., Mah R. S. H., Tamhane A. C., et al. A composite statistical test for detecting changes of steady states[J]. AIChE Journal,1986,32(9): 1409-1418
    [186]Narasimhan S., Kao C. S., Mah R. S. H. Detecting changes of steady states using the mathematical theory of evidence[J]. AIChE Journal,1987,33(11): 1930-1932
    [187]金思毅,周传光.化工过程稳态检验的区间拓展法[J].高校化学工程学报,2000,14(1):71-76
    [188]Loar J. How can steady-state conditions be identified automatically [J]. Control Process Industries,1994,8:2
    [189]Cao S., Rhinehart R. R. Critical values for a steady-state identifier [J]. Journal of Process Control,1997,7(2):149-152
    [190]李博,陈丙珍,王健,等.稳态过程在线数据校正的应用研究[J].化学通报,2000,07:39
    [191]李初福,陈丙珍,何小荣,等.用于含过失误差数据稳态检测的改进滤波法[J].清华大学学报(自然科学版),2004,24(9):1160-1162
    [192]Flehmig F., Watzdorf R. V., Marquardt W. Identification of trends in process measurements using the wavelet transform[J]. Computers & Chemical Engineering,1998,22:491-496
    [193]Jiang T., Chen B., He X., et al. Application of steady-state detection method based on wavelet transform[J]. Computers & Chemical Engineering,2003,27(4): 569-578
    [194]付克昌,戴连奎,吴铁军.基于多项式滤波算法的白适应稳态检测[J].化工自动化及仪表,2006,33(5):18-22
    [195]李昕,颜学峰.融合离群点判别的稳态检测方法及其应用[J].华东理工大学学报:自然科学版,2009,35(1):144-148
    [196]高林,刘喜梅.基于模糊集的稳态检验方法[J].青岛科技大学学报(自然科学版),2010,31(1):91-95
    [197]程浩斌,周怀春.新型燃煤锅炉燃烧过程稳定性评价指数CSI[J].工程热物理学报,1997,18(4):512-516
    [198]Dorr R., Kratz F., Ragot J., et al. Detection, isolation, and identification of sensor faults in nuclear power plants[J]. IEEE Transactions on Control Systems Technology,1997,5(1):42-60
    [199]刘吉臻,杨光军,谭文.一种基于数据驱动的电站状态稳定性能评价指标[J].热力发电,2008,37(1):45-49
    [200]魏海坤,宋文忠,李奇.基于RBF网络的火电机组实时成本在线建模方法[J].中国电机工程学报,2004,24(7):246-252
    [201]王宁玲.基于数据挖掘的大型燃煤发电机组节能诊断优化理论与方法研究[D].北京:华北电力大学,2011
    [202]王惠杰.基于混合模型的机组状态重构及运行优化研究[D].保定:华北电力大学(保定),2009
    [203]蔡山,张浩,陈洪辉,等.基于最小二乘法的分段三次曲线拟合方法研究[J].科学技术与工程,2007,7(3):352-355
    [204]孔庆鹏,宋开臣,陈鹰.基于分段最小二乘拟合的瞬时频率估计方法[J].农业机械学报,2006,37(11):204-206
    [205]吴晓华,陈德钊.化学计量学非线性偏最小二乘算法进展评述[J].分析化学,2004,32(4):534-540
    [206]Wold S., Kettaneh-Wold N., Skagerberg B. Nonlinear PLS modeling[J]. Chemometrics and Intelligent Laboratory Systems,1989,7(1): 53-65
    [207]Wold S. Nonlinear partial least squares modelling H. Spline inner relation[J]. Chemometrics and Intelligent Laboratory Systems,1992,14(1-3): 71-84
    [208]Qin S. J., Mcavoy T. J. Nonlinear PLS modeling using neural networks[J]. Computers & Chemical Engineering,1992,16(4):379-391
    [209]Wilson D., Irwin G. W., Lightbody G. Nonlinear PLS modelling using radial basis functions[A]. Proceedings of the American Control Conference (ACC)[C]. IEEE,1997:3275-3276
    [210]Baffi G., Martin E. B., Morris A. J. Non-linear projection to latent structures revisited:the quadratic PLS algorithm[J]. Computers & Chemical Engineering, 1999,23(3):395-411
    [211]Baffi G., Martin E. B., Morris A. J. Non-linear projection to latent structures revisited (the neural network PLS algorithm)[J]. Computers & Chemical Engineering,1999,23(9):1293-1307
    [212]Li T., Mei H., Cong P. Combining nonlinear PLS with the numeric genetic algorithm for QSAR[J]. Chemometrics and Intelligent Laboratory Systems, 1999,45(1-2):177-184
    [213]Bang Y. H., Yoo C. K., Lee I. Nonlinear PLS modeling with fuzzy inference system[J]. Chemometrics and Intelligent Laboratory Systems,2002,64(2): 137-155
    [214]Abdel-Rahman A. I., Lim G. J. A nonlinear partial least squares algorithm using quadratic fuzzy inference system[J]. Journal of Chemometrics,2009, 23(10):530-537
    [215]Jong S. D. PLS fits closer than PCR[J]. Journal of Chemometrics,1993,7(6): 551-557
    [216]Henson M. A., Seborg D. E. Adaptive nonlinear control of a pH neutralization process[J]. IEEE Transactions on Control Systems Technology,1994,2(3): 169-182
    [217]Baxter L. L., Mitchell R. E., Fletcher T. H., et al. Nitrogen release during coal combustion[J]. Energy & Fuels,1996,10(1):188-196
    [218]向军,邱纪华.锅炉氮氧化物排放特性试验研究[J].中国电机工程学报,2000,20(9):80-83
    [219]刘建忠,曹欣玉,等.煤粉锅炉NOx排放特性及控制的研究[J].燃料化学学报,2002,30(1):6-10
    [220]肖海平,张千,王磊,等.燃烧调整对NOx排放及锅炉效率的影响[J].中国电机工程学报,2011,31(8):1-6
    [221]张毅.电站锅炉燃烧优化控制理论及应用研究[D].北京:清华大学,2006
    [222]Rokach L. Ensemble-based classifiers[J]. Artificial Intelligence Review,2010, 33(1):1-39
    [223]Chen S., Wang W., van Zuylen H. Construct support vector machine ensemble to detect traffic incident[J]. Expert Systems with Applications,2009,36(8): 10976-10986
    [224]Breiman L. Bagging predictors[J]. Machine Learning,1996,24(2):123-140
    [225]Freund Y., Schapire R. E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences,1997,55(1):119-139
    [226]Dong Y., Han K. Boosting SVM classifiers by ensemble[A]. World Wide Web Conference Series[C]. ACM,2005:1072-1073
    [227]Collobert R., Bengio S., Bengio Y. A parallel mixture of SVMs for very large scale problems[J]. Neural Computation,2002,14(5):1105-1114
    [228]Perrone M. P., Cooper L. N. When networks disagree:Ensemble methods for hybrid neural networks[R]. DTIC Document,1992
    [229]Kim D., Kim C. Forecasting time series with genetic fuzzy predictor ensemble [J]. IEEE Transactions on Fuzzy Systems,1997,5(4):523-535
    [230]Benediktsson J. A., Sveinsson J. R., Ersoy O. K., et al. Parallel consensual neural networks [J]. IEEE Transactions on Neural Networks,1997,8(1):54-64
    [231]Kim H., Pang S., Je H., et al. Constructing support vector machine ensemble[J]. Pattern Recognition,2003,36(12):2757-2767
    [232]Opitz D. W., Shavlik J. W. Actively searching for an effective neural network ensemble[J]. Connection Science,1996,8(3-4):337-354
    [233]Tresp V., Taniguchi M. Combining estimators using non-constant weighting functions[A]. Neural Information Processing Systems[C], MIT Press,1995: 419-426
    [234]Zhang Y., Liu C., Zhu L., et al. Constructing multiple support vector machines ensemble based on fuzzy integral and rough reducts[A]. IEEE Conference on Industrial Electronics and Applications[C]. IEEE,2007:1256-1259
    [235]Frossyniotis D., Stafylopatis A. A multi-SVM classification system[J]. Multiple Classifier Systems,2001,2096:198-207
    [236]Valentini G. An experimental bias-variance analysis of SVM ensembles based on resampling techniques[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2005,35(6):1252-1271
    [237]Valentini G., Dietterich T. G. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods[J]. The Journal of Machine Learning Research,2004,5:725-775
    [238]Bellili A., Gilloux M., Gallinari P. An MLP-SVM combination architecture for offline handwritten digit recognition[J]. International Journal on Document Analysis and Recognition,2003,5(4):244-252
    [239]Lima C. A. M., Coelho A. L. V., Von Zuben F. J. Ensembles of support vector machines for regression problems[A]. Proceedings of the International Joint Conference on Neural Networks[C]. IEEE,2002:2381-2386
    [240]Sun B. Y., Huang D. S. Least squares support vector machine ensemble[A]. Proceedings of the International Joint Conference on Neural Networks[C]. IEEE,2004:2013-2016
    [241]Xuchun L., Lei W., Sung E. A study of AdaBoost with SVM based weak learners[A]. Proceedings of the International Joint Conference on Neural Networks[C]. IEEE,2005:196-201
    [242]Li X., Wang L., Sung E. AdaBoost with SVM-based component classifiers[J]. Engineering Applications of Artificial Intelligence,2008,21(5): 785-795
    [243]Li B. Novel algorithm for constructing support vector machine regression ensemble[J]. Journal of Systems Engineering and Electronics,2006,17(3): 541-545
    [244]Wang S., Mathew A., Chen Y., et al. Empirical analysis of support vector machine ensemble classifiers [J]. Expert Systems with Applications,2009,36(3): 6466-6476
    [245]Nanni L., Lumini A. An ensemble of support vector machines for predicting virulent proteins[J]. Expert Systems with Applications,2009,36(4):7458-7462
    [246]沈学华,周志华.Boosting和Bagging综述[J].计算机工程与应用,2000,36(12):31-32
    [247]周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8
    [248]姜远,陈兆乾,周志华.一种基于神经网络集成的规则学习算法[J].计算机研究与发展,2003,40(10):1419-1423
    [249]唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502
    [250]Zhou Z., WuJ., Tang W., et al. Combining regression estimators:GA-based selective neural network ensemble[J]. International Journal of Computational Intelligence and Applications,2001,1(4):341-356
    [251]Zhou Z., Wu J., Tang W. Ensembling neural networks:Many could be better than all[J]. Artificial Intelligence,2002,137(1-2):239-263
    [252]仲蔚,俞金寿.基于模糊c均值聚类的多模型软测量建模[J].华东理工大学学报:自然科学版,2000,26(1):83-87
    [253]Wei-Wu Y., Zhi-Gang C., Hui-He S. Multi support vector machines decision model and its application[J]. Journal of Shanghai Jiaotong University,2002, 7(2):220-222
    [254]李烨,蔡云泽,许晓鸣.基于支持向量机集成的故障诊断[J].控制工程,2005(S2):174-177
    [255]袁平,毛志忠,王福利.基于多支持向量机的软测量模型[J].系统仿真学报,2006(6):1458-1461
    [256]贾华丁,游志胜,王磊.采用二重扰动机制的支持向量机的集成训练算法[J].控制与决策,2008,23(7):828-832
    [257]张妤,王文剑,康向平.一种回归SVM选择性集成方法[J].计算机科学,2008,35(4):178-180
    [258]张娜,张永平.模糊核聚类支持向量机集成模型及应用[J].计算机应用,2010,30(1):175-177
    [259]唐耀华,高静怀,包乾宗.一种新的选择性支持向量机集成学习算法[J].西安交通大学学报,2008,42(10):1221-1225
    [260]李卫,杨煜普,王娜.基于核模糊聚类的多模型LSSVM回归建模[J].控制与决策,2008,23(5):560-562
    [261]Yu L., Wang S., Lai K. K. Developing an SVM-based ensemble learning system for customer risk identification collaborating with customer relationship management[J]. Frontiers of Computer Science in China,2010,4(2):196-203
    [262]Yu L., Yue W., Wang S., et al. Support vector machine based multiagent ensemble learning for credit risk evaluation[J]. Expert Systems with Applications,2010,37(2):1351-1360
    [263]Zhou L., Lai K. K., Yu L. Least squares support vector machines ensemble models for credit scoring[J]. Expert Systems with Applications,2010,37(1): 127-133
    [264]Yu L. An evolutionary programming based asymmetric weighted least squares support vector machine ensemble learning methodology for software repository mining[J]. Information Sciences,2012,191:31-46
    [265]Wang S., Yu L., Tang L., et al. A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China[J]. Energy,2011,36(11):6542-6554
    [266]Tang L., Yu L., Wang S., et al. A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting[J]. Applied Energy,2012,93: 432-443
    [267]孙建平,苑一方.复杂过程的多模型建模方法研究[J].仪器仪表学报,2011,32(1):132-137
    [268]Kim M., Kang D. Classifiers selection in ensembles using genetic algorithms for bankruptcy prediction[J]. Expert Systems with Applications,2012,39(10): 9308-9314
    [269]Bezdek J. C., Ehrlich R., Full W. FCM:The fuzzy c-means clustering algorithm[J]. Computers & Geosciences,1984,10(2):191-203
    [270]裴继红,范九伦.一种新的高效软聚类方法:截集模糊C—均值(S2FCM)聚类算法[J].电子学报,1998,26(2):83-86
    [271]Frossyniotis D., Likas A., Stafylopatis A. A clustering method based on boosting[J]. Pattern Recognition Letters,2004,25(6):641-654
    [272]Pelckmans K., Suykens J. A., Van Gestel T., et al. LS-SVMlab toolbox user's guide[J]. Pattern recognition letters,2003,24:659-675
    [273]Sliskovic D., Grbic R., Hocenski Z. Online data preprocessing in the adaptive process model building based on plant data[J]. Technical Gazette,2011,18(1): 41-50
    [274]Sliskovic D., Grbic R., Hocenski Z. Adaptive estimation of difficult-to-measure process variables[J]. Automatika,2013,55(1):166-177
    [275]Kadlec P., Grbic R., Gabrys B. Review of adaptation mechanisms for data-driven soft sensors[J]. Computers & Chemical Engineering,2011,35(1): 1-24
    [276]Galicia H. J., Peter He Q., Wang J. Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control[J]. Control Engineering Practice,2012,20(8):747-760
    [277]Qin S. J. Recursive PLS algorithms for adaptive data modeling[J]. Computers & Chemical Engineering,1998,22(4-5):503-514
    [278]Li W., Yue H. H., Valle-Cervantes S., et al. Recursive PCA for adaptive process monitoring[J]. Journal of Process Control,2000,10(5):471-486
    [279]Lee M. W., Joung J. Y., Lee D. S., et al. Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process[J]. Industrial & Engineering Chemistry Research, 2005, 44(11):3973-3982
    [280]Liu J., Chen D., Shen J. Development of self-validating soft sensors using fast moving window partial least squares[J]. Industrial & Engineering Chemistry Research,2010,49(22):11530-11546
    [281]Cheng C., Chiu M. A new data-based methodology for nonlinear process modeling[J]. Chemical Engineering Science,2004,59(13):2801-2810
    [282]Kadlec P., Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction[J]. AIChE Journal,2011,57(5):1288-1301
    [283]Pan T. H., Wong D. S. H., Jang S. S. Development of a novel soft sensor using a local model network with an adaptive subtractive clustering approach[J]. Industrial & Engineering Chemistry Research,2010,49(10): 4738-4747
    [284]Kaneko H., Funatsu K. Maintenance-free soft sensor models with time difference of process variables[J]. Chemometrics and Intelligent Laboratory Systems,2011,107(2):312-317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700