用户名: 密码: 验证码:
板料成形及模具数值模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国冲压模具高新技术的引进和自身技术的创新,自动化生产水平得到很大的提高,CAD/CAE/CAM集成技术显得空前重要。但我国板料成形CAE技术起步较晚,至今仍未达到市场普及,技术相对落后。
     板料成形CAE技术是在有限元技术和计算机技术的基础上发展起来的。本文系统全面地分析了国内外有限元模拟技术的特点及适用性,以及我国在板料成形CAE技术发展的现状,重点阐述了动力显式有限元模拟技术DYNAFORM的实用性。
     由于工业生产中大型汽车覆盖件尺寸大、变形复杂、受力不均等成形难点给加工和成形性的预测带来了诸多困难。本文结合企业提供的典型汽车内板冲压件,应用动力显式有限元模拟技术,针对成形中易产生起皱、破裂等缺陷,提出了具体的解决方法与对策,并给出了板料形状的优化方法,有效地指导了生产。
     回弹是汽车冲压件中不可避免的现象,为了装配和焊接的需要,必须对其严格控制。针对易产生回弹的典型大弯曲变形汽车结构纵梁件,本文系统分析了回弹产生的原因及控制措施,借助于UG软件,提出了不同的控制回弹的设计方案,结果表明变压边力冲压工艺比恒压边力冲压工艺有较广的适用范围,能更好地控制回弹和板料成形。
     通过分析大弯曲成形件的成形特点,得出了直接影响成形裕度和回弹量的关键因素是压边力与模具间隙。结合正交试验设计技术与变压边力冲压技术,分析各参数对回弹、成形裕度的影响趋势,并提出了变压边力冲压下优选设计方法,使用优选后的工艺参数可获得较小的回弹,满足了厂家和汽车装配要求。
With introducing in more-advanced techniques and innovating self-owned techniques, the level of automatic production in the field of stamping dies has been improved a lot already in our country, and by now the technological collection of CAD/CAM/CAE has become more and more important than anytime before. However, CAE simulating techniques were researched too late to reach a wide range of usage in the market by now with related undeveloped techniques.
     Sheet forming CAE technique has been developed from the base of FEM and computer techniques. In this thesis, the development, characteristic and the usage range of the both-here-and-broad FEM (Finite Element) simulating technology are introduced systemically in the round, especially the practical characteristic of dynamic explicit FEM simulating technique DYNAFORM.
     Those large auto panels of large size, complicated deform and unequal stress when stamping do bring forward a good much hardness for manufacturing and forming forecasting. In this thesis, aiming at the typical stamping part supplied by a company, applying dynamic explicit FEM simulating technique DYNAFORM, concrete solutions to wrinkle and break which occur frequently in stamping process have been introduced, and the way to optimize the blank has been given out also, which made a great help to manufacturing.
     Spring-back is an essential thing in auto stamping parts, however, it should be controlled exactly for requirements of assemble and weld. Aiming at a typical large-bending auto longeron, this thesis systemically analyzed the reason for how spring-back produced and the ways how to control it. Based on CAD software UG NX4.0, different ways to control the spring-back have been brought forward. At the end it showed out that the variable blank holder force had a wider range of usage than the even blank holder force, and also could control the spring-back and blank forming.
     By analyzing the forming characters of large bending parts, key factors influencing directly the forming degree of redundancy and the spring-back have been obtained, which are blank holder force and the gap between punch and die. Combining the orthogonal trial design and the variable blank holder force process, the influencing tendency to the forming degree of redundancy and the spring-back from gap and other parameters has been analyzed. And at last, an optimized design solution has been promoted under the variable blank holder force process, and by using optimized parameters a small spring back could be obtained. It satisfied the requirement of manufacturers and auto assembling.
引文
1 周永泰.中国汽车覆盖件模具的新发展.中国机械与金属,2005,(6):1~3
    2 周永泰.我国冲压模具的现状与发展.中国机械与金属,2006,(8):2~4
    3 李开佛.中国模具市场容量迅速扩大.中国机械与金属,2006,(10):1~3
    4 雷正保. 汽车覆盖件冲压成形 CAE 技术. 长沙:国防科技大学出版社,2003:5~15
    5 中国大百科全书:力学篇.北京:中国大百科全书出版社,1985:10~14
    6 Gupta K K, Meek J L. A Brief History of the Beginning of the Finite Element Method. International Journal for Numerical Methods in Engineering, 1996, (39): 3761~3774
    7 Marcal P V, King I P. Elastic-Plastic Analysis of Two-Dimension System by the Finite Element Method. International Journal of Mechanical Science, 1997, (9): 143~145
    8 Yamada Y. Plastic Stress-Strain Matrix and its Application for the Solution of Elastic-Plastic Problems by the Finite Element Method. International Journal of Mechanical Science, 1998, (6): 30~31
    9 Hibbitt H D, Marcal P V, Rice J R. A Finite Element Formulation for Problems of Large Strain and Large Displacement. International Journal of Solids Structures, 1997, (6): 1069~1087
    10 McMeeking R M, Rice J R. Finite-Element Formulations for Problems of Large Elastic-Plastic Deformation, International Journal of Solids Structures, 2001, (11): 601~616
    11 Oden J T, Bhandari D R, Yagewa G et al. A New Approach to the Finite Element Formulation and Solution of a Class of Problems in Coupled Thermo-Elastoviscoplasticity of Solids. Nuclear Engineering and Design, 2003, (24): 420~429
    12 Lee C H, Kobayashi S. New Solution to Rigid Plastic Deformation Problems Using a Matrix Method, Journal of Engineering for Industry, ASME, 2003, (95): 865~873
    13 Wang N M, Wenner M L. Elastic-Viscoplastic Analysis of Simple StretchingForming Processes. New York: Plenum Press, 1999: 367~391
    14 Wang N M, Budiansky B. Analysis of Sheet Metal Stamping by a Finite Element Method. Journal of Applied Mechanics, ASME, 2001, (100): 73~82
    15 Tang S C. Verification and Application of a Binder Wrap Analysis. In: Wang N M, Tang S C. Modeling of Sheet Metal Forming Process. The Metallurgy Society of USA, 2002: 193~208
    16 Tang S C. Finite Element Prediction of the Deformed Shape of Automobile Trunk Deck-Lid during the Binder-Wrap Stage. ASM, Metals Park, OH, 1999: 189~203
    17 Tang S C, Chappuis L B. Evaluation of Sheet Metal Forming Process Design by Simple Models. Materials in Manufacturing Processes, ASME, 1988, (8): 19~26
    18 Wang Chuantao, Wagoner R H. Square Punch Forming Section Analysis and Bending Study. SAE Trans of Plasticity, 1991, (2): 742~750
    19 Nakamachi E. Development of FEM of Sheet Metal Forming with Arbitrarily Shaped Tools. Advanced Technology of Plasticity, 1990, (3): 1129~1134
    20 Nakagawa T, Makinouchi A, Wei J, et al. Application of Laser Stereolithography in FEM Sheet-Metal Forming Simulation. In: Process of NUMISHEET’93 Numerical Simulation of 3-D Sheet Metal Forming Processes-Verification of Simulation with Experiment. Tokyo, 1993: 318~323
    21 贾明华,曾宪章. 冷挤压工艺刚塑性有限元数值模拟程序及其应用. 模具技术,1987,(6):3~9
    22 肖景容.冲压工艺学(第二版).北京:机械工业出版社,2002:1~19
    23 熊火轮,胡世光.板料成形中的计算机辅助技术.北京航空航天大学出版社,1994:7~17
    24 李赞,董湘怀,李志刚. 复杂油底壳一次拉深成形新工艺的数值模拟. 中国机械工程,2004,(5):84~87
    25 徐金波,董湘怀.汽车翼子板零件冲压成形过程模拟.华中科技大学学报 (自然科学版),2003,(9):114~126
    26 吴勇国,李尚建等. 板料成形有限元分析的显式算法. 塑性工程学报,1995,2(3):31~36
    27 徐伟力,林忠钦,陆匠心,汪承璞. 动态仿真在车身覆盖件成形中的应用. 材料科学与工艺,2001,9(3):266~268
    28 李飞鹏,欧阳可居,胡道钟,陈吕罡. 板材成形模拟技术在汽车工业上的应用,第八届全国塑性加工学术年会论文集,2002:17~19
    29 柳玉起,杜亭,章志兵.板料冲压成形快速分析软件 FASTAMP.材料科学与工艺,2004,12(4):353~356
    30 LIU Yuqi, LI Zhigang, YAN Yakun. Fast Accurate Prediction of Blank Shape in Sheet Metal Stamping Forming. ACTA MECHANIAA SOLIDA SINACA, 2004, 17(1): 58~61
    31 王义林,郑金桥,李志刚.基于 KBE 的汽车覆盖件冲压工艺方案设计.材料科学与工艺,2004,12(4):345~348
    32 李明哲,裵永生,徐建丽.薄板类件多点成形过程的数值模拟.材料科学与工艺,2004,12(4):379~382
    33 裵永生,阎雪萍,李明哲.用于多点成形数值模拟的 LS-DYNA 二次开发[J]. 吉林大学学报[工学版]学术榜,2002,32(3):26~29
    34 朱伟,林启权,张质良,娄臻亮,龚红英. 板料拉深成形过程中变压边力的数值模拟方法. 湘潭大学自然科学学报,2004,(3):85~90
    35 包向军,陶宏之,何丹农,李从心,程惊雷,蒋镜昱. 金属薄板冲压成形数值模拟的并行计算. 塑性工程学报,2000,7(3):33~36
    36 陈文亮. 板料成形 CAE 分析教程. 北京:机械工业出版社,2005:2~4
    37 阮霞,杨文兵,王乘. 板料冲压成形过程的三维动态模拟. 华中理工大学学报,2000,28(3):42~44
    38 徐成林,朱伟成,李仕华. 板料成形数值模拟技术在汽车复杂冲压件生产中的应用. 材料·工艺·设备,2000,(4):25~29
    39 Livermore Software Technology Corporation, eta/DYNAFORM User’s Manual: Version 5.2, 2004:4~76
    40 Eta/DYNAFORM User Manual. Engineering Technology Associates, Inc. 2004
    41 岳陆游,姜银方,陈炜,袁国定. DYNAFORM-PC 软件及其在钣金冲压中的应用. 江苏大学学报,2002,23(6):51~55
    42 蒋向华,郑金桥,王义林,李志刚. 基于有限元分析的覆盖件拉延筋设计与优化,CMET.锻压装备与制造技术,2005,(2):77~80
    43 韩利芬,李光耀,钟志华,冯剑军,李海波. 板料成形中等效拉延筋阻力的模拟计算方法. 汽车工程,2006,28(11):1015~1019
    44 蔡志武. 冲压仿真成型分析在某汽车底板中的应用. 中国汽车工程学会2003 学术年会,2003:396~400
    45 Hibbitt H D, Marcal P V, Rice J R. A Finite Element Formulation for Problemsof Large Strain and Large Displacement, International Journal of Solids Structures, 1975, (6): 1069~1087
    46 Mameeking R M, Rice J R. Finite-Element Formulations for Problems of Large Elastic-Plastic Deformation. International Journal of Solids Structures, 1975, (6): 601~616
    47 王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997:3~7
    48 林忠钦等. 车身覆盖件冲压成形仿真.北京: 机械工业出版社,2004:10~20
    49 雷正保. 汽车覆盖件冲压成形 CAE 技术. 长沙:国防科技大学出版社,2003:5~9
    50 冯天飞,施法中. 板料冲压成形有限元分析软件的智能化. 塑性工程学报,2003,10(1):44~46
    51 付宏生. 冷冲压成形工艺与模具设计制造. 化学工业出版社,2005:3~10
    52 董湘怀,郑莹,李尚健,李赞,李志刚. 冲压成形动力分析中惯性效应对板坯变形的影响. 机械工程学报,2000,36(12):70~74
    53 林启权,宁智群,赵雄. 椭圆盒拉深成形的数值模拟. 湘潭大学自然科 学学报,2005,27(2):136~141
    54 秦泗吉,王志松. 板材冲压成形中的弯曲与反弯曲变形问题的研究. 机械工程学报,2001,37(8):99~105
    55 解汝升. 冲压模具设计与制造技术. 北京:中国标准出版社,1997:10~13
    56 Liu Yuqi, Hu Ping, Wang Jinchen. Springback simulation and analysis of strong anisotropic sheet metals in U-channel bending process. Acta Mechanica Sinica, 2002, 18(3): 264~273
    57 Jiang Dan, Wang Lancheng. Direct generation of die surfaces from measured data points based on springback compensation. The International Journal of Advanced Manufacturing Technology, 2006, 31(5-6): 574~579
    58 Zhong-Yi Cai, Ming-Zhe Li, Xi-Di Chen. Digitized die forming system for sheet metal and springback minimizing technique. The International Journal of Advanced Manufacturing Technology, 2006, 28(11-12): 1089~1096
    59 K. M. Liew, H. Tan, T. Ray, M. J. Tan. Optimal process design of sheet metal forming for minimum springback via an integrated neural network evolutionary algorithm. Structural and Multidisciplinary Optimization, 2004, 26(3-4): 284-294
    60 Yuung-Hwa Lu. Integration of RP and explicit dynamic FEM for the visualization of the sheet metal forming process. The International Journal of Advanced Manufacturing Technology, 2006, 28(3-4): 255~261
    61 徐丙坤,施法中. 板料冲压成形回弹的数值模拟. 北京航空航天大学学报,2001,27(2):194~197
    62 Joannic D, Gelin J C. Accurate Simulation of Springback in 3D Sheet Metal Forming Processes [A]. In: NUMIFORM’95 [C], 1995: 729~734
    63 A M Prior. Application of Implicit and Explicit Finite Element Techniques to Metal Forming. Journal of Materials Processing Technology, 1994, (45): 649~656
    64 Zhang Dong-juan, Cui Zhen-shan, Chen Zhi-ying,Ruan Xue-yu. An analytical model for predicting sheet springback after V-bending. Journal of Zhejiang University - Science A, 2006, 8(2): 237~244
    65 李雪春,杨玉英,王永志,包军,李顺平. 材料硬化模式对弯曲回弹模拟精度的影响. 材料科学与工艺,2002,10(3):277~280
    66 李雪春,杨玉英,王永志,包军. 宽板 V 型自由弯曲回弹的有限元模拟. 塑性工程学报,2001,8(2):1~3
    67 赵叶锋,陈靖芯,陆国民. U 形件弯曲成形中回弹的数值模拟研究. 拖拉机与农用运输车,2005,(2):42~47
    68 刘罡. 基于回弹控制的提高轿车冲压件成形精度方法研究. 上海交通大学博士学位论文,2001:8~10
    69 付宝连. 金属成形过程的回弹最小势能原理及其应用. 锻压技术,2001,(4):24~26
    70 赵叶锋,陈靖芯,陆国民. U 形件弯曲成形中回弹的数值模拟研究. 拖拉机与农用运输车,2005,(2):42~47
    71 S W Lee, D Y Yang. An Assessment of Numerical Parameters Influencing Springback in Explicit Finite Element Analysis of Sheet Metal Forming Process. Journal of Material Processing Technology, 1998, (8): 60~67
    72 汪晨,张质良. 二维板料 U 形弯曲回弹的数值模拟研究. 金属成形工艺,1999,17(4):33~35
    73 叶军,徐均良. 第十一届中国国际模具技术和设备展览会模具水平评述. 电加工与模具,2006,(3):1~2
    74 杨玉英. 大型薄板成形技术. 北京:国防工业出版社,1996:20~22
    75 卢险峰. 板料拉伸类冲压成形性能非线形关系评定. 南昌大学学报,1996,18(2):35~39
    76 Y.C.Liu. The Effect of Restraining Force on Shape Deviation in Flanged Channels Tran ASME [J]. Engineering Material Technology, 1988(6):30~34
    77 林仲钦,刘罡,李淑慧,倪军. 应用正交试验设计提高 U 形件的成形精度.机械工程学报,2002,38(3):83~89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700